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Abstract 

We provide a model-based approach to test whether the 
difference between two receiver operating characteristic 
(ROC) curves is statistically significant when subjects are 
selected from a cluster sample design with unequal selection 
probabilities. The variance of the difference is expressed in 
terms of parameters of a mixed-model. The procedure is 
applied to detecting undiagnosed diabetes using data from the 
third National Health and Nutrition Examination Survey 
(NHANES III).  The method is shown to yield similar 
conclusions to two approximate tests that utilize replication 
methods. Modeling the diagnostic measurements yields insight 
that is not captured by the two approximate hypothesis tests.  

 
1. Introduction 

When a diagnostic test is based on an observed variable 
that lies on a continuous scale, the receiver operating 
characteristic curve (ROC) can be used to assess the overall 
value of the new test relative to a standard diagnostic test.  The 
ROC curve is given by varying the cut point used to determine 
whether the subject’s measurement is considered normal. The 
ROC curve is then obtained by plotting the sensitivity versus  
one minus the specificity for each cut point.  For statistical 
analysis, the area under the curve (AUC) is used as an index of 
accuracy [1].  The population ROC AUC is the probability 
that when the variable is observed for a randomly selected 
subject from the diseased population and a randomly selected 
subject from the normal population the resulting values will be 
in the correct order.  Thus, if subjects from the diseased 
population tend to have high values on the test, the ROC AUC 
is the probability that a randomly selected subject from the 
diseased population will have a higher value than a randomly 
selected subject from the normal population.   If a test can 
discriminate perfectly, it will have an AUC of 1.0 while a test 
with no diagnostic capability has an AUC of 0.5.  

Maximum likelihood estimates of the AUC and model 
parameters have been developed for a number of parametric 
models [2-4].  The empirical ROC AUC has been shown to be 
equal to the Mann-Whitney U-statistic for comparing 
distributions of values from the two independent samples [5].  

We assume that the data arose from a design with 
cluster sampling. Most national surveys are of this form with 
unequal selection probabilities used to guarantee desired 
domain accuracy and cluster sampling used to reduce survey 
cost. With this design, measurements on subjects within a 
cluster are correlated since individuals residing in a small area 
may be similar; thus, the intra-cluster correlation must be 
considered in the analysis. Obuchowski [6] provided an 
approach to estimation of the ROC AUC that for cluster 

sampling. However, this approach does not allow unequal 
selection probabilities, which is the case in national surveys.    

In Section 2, we introduce notation for the ROC AUC 
for both independent and cluster samples, define a population 
model for the sample values obtained from a cluster sample, 
derive parameter estimates and a significance test of the 
difference. Section 3 provides a description of approximate 
variance estimation for complex survey data using two 
replication methods.  In Section 4, we apply the model-based 
and replication methods to test for the equality of two 
alternative diagnostic procedures for undiagnosed diabetes.  

 
2. ROC Estimation for Cluster Designs 
2.1. ROC AUC from Independent Samples  

The N subjects are classified into diseased and normal; 
for example, using a gold standard, which may involve 
comparison of another measurement on the subject with a 
threshold. We assume that n of the subjects are normal and m 
are diseased (with N=m+n) and 2 distinct test measurements 
are made on the subjects. For the two tests (r=1 and 2), we 

define the values for the diseased subjects as )(riX  for i=1,..,m 

and the values for the normal subjects as )(rjY  for j=1,...,n; 

also, ),( )()( 2i1ii XXX =  and ),( )()( 2j1jj YYY = . The two 

components of X i  (or Y j ) are typically correlated since they 

arise from measurements on the same subject. Procedures to 
handle this intra-subject correlation have been introduced in 
ROC curve testing and estimation [7]. 

The ROC curve is a plot of the set of pairs (1-
specificity(z), sensitivity(z)) for all z where specificity (spec) 
and sensitivity (sens) are defined for the rth diagnostic test as  
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where I is the indicator function that is 1 when the event is 
true and 0 otherwise. We define the Mann-Whitney (MW) 
statistic for the rth diagnostic test by  
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where )(, YXIY)(X >=Ψ . Then, the MW statistic is an 

unbiased estimated of the ROC AUC ( )( )
)()(

ˆ.,.
rr

Eei θθ = .  

The parameter )(rθ  is the probability that the rth test 

provides the correct order for persons who are randomly 
sampled from normal and diseased subjects. If )()( 21 θθ > , the 

first diagnostic test is preferred.  A test that the difference 
between the two diagnostic tests is zero (i.e., 0=L θη '=  

where ),(' 11L −=  and ),( )()( 21 θθθ = ) can be based on  
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with ( ))()(
ˆ,ˆ'ˆ 21 = θθθ . For a sample from an infinite population, 

an asymptotically valid test of 0=η  is available [7].   
 

2.2 ROC AUC from Cluster Samples  
 Now, we relax the independent sample assumption and 

assume that the sample arose from k clusters and allow the 
subject’s selection probability to vary.  Typically, estimates 
and tests based on data from a complex multi-stage design of 
this type are made using statistical weights [8]. The most 
important component of the weight is the inverse of the 
selection probability; however, other factors such as non-
response and post stratification adjustment are often included.  
Korn and Graubard [9] recommend the use of statistical 
weights for descriptive analyses of populations.  ROC AUC 
estimation falls into this category since it can be interpreted as 
the proportion of subjects satisfying a specified condition.  

After sampling, all subjects are classified as normal or 
diseased. In the ith cluster there are mi and ni diseased and 

normal subjects respectively with ∑
=

=
k

1i
imm and ∑

=

=
k

1i
inn .  

For the rth diagnostic test, the measurements on the subjects in 
the ith cluster are labeled as ),...( )()()( rimr1iri i

xxx =  and 

( ) ),...( )()( rinr1iri i
yyy =  for i=1,..,k.  The statistical weights for 

these observations are labeled as ),...( x
im
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www = , and the statistical weights are normalized 

so that their sums over all clusters is one [10]; that is, 
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and the ROC AUC estimate is given by 
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In the special case of a single cluster and equal selection 

probabilities, the weights reduce to 1x
is mw −=  and 1y

jt nw −=  

so that the estimate (3) reduces to equation (1).   
 
2.3  A Gaussian Population Model for the Sample Values  

Here, we propose a population model for the sample 
values obtained from the two diagnostic tests and calculate the 
expected value of the ROC AUC estimate under the model, 
which utilizes random cluster effects [10].  We label the 

observed values in the ith cluster as ),( '
)(

'
)(

'
)( ririri yxz =  a 

vector of length ii nm +  for i=1,…,k and r=1,2, and assume 
that the components are generated by the model 

)()()()( rxijrxirxrij eax ++= µ  (4a) 

)()()()( ryijryiryrij eay ++= µ  (4b) 

where )(rxµ  and )(ryµ  are fixed,  )(rxia  and )(ryia  are 

random cluster effects for the x- and y-measurements 
respectively for the ith cluster and rth diagnostic test with  

• ),(~ )()(
2

raxrxi 0a σΝ  for i=1.,…,k and r=1,2,  

• ),(~ )()(
2

rayryi 0a σΝ  for i=1.,…,k and r=1,2,  

The terms )(rxije  and )(ryije  include the within clusters 

variation (between-subjects including measurement error) for 
the x- and y-measurements respectively for the ith cluster, jth 
subject, and rth diagnostic test (r=1,2) with distributions  

• ),(~ )()(
2

rexrxij 0e σΝ  for i=1.,…,k;  j=1,…,mi, and  

• ),(~ )()(
2

reyryij 0e σΝ  for i=1.,…,k;  j=1,…,ni. 

The impact of measurement error on inference about the ROC 
curve has been discussed in non-survey settings  [11, 12]. 

We assume that within cluster measurements on normal 
and diseased subjects are independent [6].  The four sets of 
random variables { )(rxia }, { )(ryia }, { )(rxije }, and { )(ryije } 

are assumed to be mutually independent; also, all random 
variables defined in different clusters are assumed to be 
independent while the following dependence is allowed within 
a cluster. The random cluster effects for the x-measurements 
for the two diagnostic tests have correlation (Cor) coefficient 

axρ  (with a similar definition for y-measurements) 

• ),( )()( 2xi1xiax aaCor=ρ  & ),( )()( 2yi1yiay aaCor=ρ  for all i 

Furthermore, the x-measurements for the two diagnostic tests 
have correlation coefficient exρ  for every subject (with a 
similar definition for y-measurements) 

• ),( )()( 2xij1xijex eeCor=ρ  & ),( )()( 2yij1yijey eeCor=ρ  for all i ,j. 

It follows that 2
rxrijxVar )()( )( σ=  with 2

rae
2

rax
2

rx )()()( σσσ += , 

and 2
rxrx

2
raxrijrij xxCov )()()()'()( ),( σρσ ≡=  for 'jj ≠  with the 

intra-cluster correlation coefficient defined by 
2

rx
2

raxrx )()()( /σσρ =  with similar definitions for 2
ry )(σ  and )(ryρ .  

Thus, within a cluster the observations )(riz  have a 

(block-diagonal) equi-correlated multivariate normal (MVN) 
model of the form 
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where ),( ΣΝ µ  denotes the MVN distribution with mean µ  

and covariance matrix Σ , n1  denotes a vector of n ones, and 

),( cvR  denotes the equi-correlated matrix with all diagonal 
elements (variances) v and all off diagonal elements 
(covariances) equal to c.  

The expected value of the ROC AUC estimate (3) can 
be calculated from the model assumptions. Now, 

( ) )Pr(),( )()()()( 0xyyxE risrjtrjtris <−=Ψ , and from (5) 

),(~ )()()()(
2

rzrzrisrjt xy σµΝ−  with )()()( rxryrz µµµ −=  and 
2

ry
2

rx
2

rz )()()( σσσ += .  Thus, ( ) ( ))()()( ),( rzrjtris yxE δΦ=Ψ  

where )()()( / rzrzrz σµδ −=  and Φ  denotes the standard 

normal cumulative distribution function (c.d.f.).  From 
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equation (3) we have that ( ) ( ))()(
ˆ

rzrE δθ Φ=  since both sets of 

weights are normalized.  To test the hypothesis 0=η , we 

need the variance/covariance matrix of ( ))()(
ˆ,ˆ'ˆ 21 = θθθ .  In the 

Appendix, we provide an exact expression for this 2x2 matrix.  
This approach can be extended to include linear 

covariates in equations (4a) and (4b). A useful extension 
would be to allow correlation between normal and diseased 
subjects within a cluster.   
  

2.4   Estimation of the model parameters 
The measurements from the two diagnostic tests on N 

subjects can be written as )','(' yxz =  with y  a vector of 

length 2n defined by ),...,( '''

k1
yyy =  where 

i
y  is of length 

2ni with ),...,( '''

iin1ii
yyy =  with ),( )()(

'
2ij1ijij

yyy = ; the x-

measurements can be written in a similar fashion.  Then, x  

and y  are independent and follow the mixed-linear model 
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where, 2ny I1 ⊗=Χ , ),...,( 2n2ny I1I1diagZ
k1

⊗⊗=  with 

⊗  the  “direct product”,  ),( )()(
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2y1yy
µµµ = ,  ya  the 2k 

dimensional vector of random components is defined by 
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ye  the error vector is defined by ),...,( '''
yk1yy eee =  where yie  

is a vector of length 2ni given by ),...,( '''
iyin1yiyi eee =  with 
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2yij1yijyij εεε = .  The joint distribution of the random 

effects and the errors of y  are given by 
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The 2x2 covariance matrices ayΣ  and yεΣ  measure the 

between- and within-cluster (including measurement error) 
variation for the normal subjects respectively. Similar 
definitions and distributions are valid for x .   

Either maximum likelihood estimation (MLE) or 
restricted maximum likelihood (REML) can be used to obtain 
consistent and asymptotically normal estimates of the model 
parameters.  We used the EM algorithm to obtain the MLE 
[13].  Due to the separability of the likelihood, the parameter 
estimates of x  and y  can be obtained separately so it is 

sufficient to describe the estimation process for y . The 

variance can be expressed as yyyyy RZGZVyVar +== ')(  

and given the estimates of the variance/covariance matrices, 

the estimates for the fixed and random effects can be obtained 
by generalized least squares (GLS) and are given by 
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where the residual vector is 
yyy yr µ̂Χ−= .  The MLE was 

obtained in an iterative fashion by minimizing 

 ( )y
1

yyy rVrnVL2 −+=− ˆˆln)ln(* '  (6) 

with respect to the covariance matrices ( )yay εΣΣ , .  To use the 

weights in the parameter estimation, we replaced yV  with wyV   

in equation (6) where yyywy WVWV
~~= , 2yy IWW ⊗=~

, and 

( ) 




=

21y
jty wDiagW

/
 with a similar modification for xV  [14].  

 
3. ROC AUC Estimation using Replication 

Here, we sketch how two replication methods, the 
jackknife and balanced repeated replication (BRR), are used in 
complex surveys to estimate the variance of nonlinear 
functions such as the difference in the two ROC AUCs.  The 
two replication procedures are asymptotically valid in the 
presence of within-cluster correlation and provide a check on 
the estimation obtained under the parametric model.  We 
assume that the survey design is such that the clusters are 
formed from S strata with 2 primary sampling units (PSUs) 
per strata. Thus, the total number of clusters is k=2*S.   
 

3.1 The Jackknife 
Quenouille [15] introduced the jackknife as a bias 

reduction tool. Later, Tukey [16] conjectured that it could be 
used to estimate variance for a large class of (possibly non-
linear) estimators.  Efron [17] and Wolter [18, Chap. 4] 
provide comprehensive discussion of the jackknife for infinite 
populations and finite populations respectively.  

For variance estimation, the jackknife proceeds by 
splitting the sample into a set of disjoint groups of the same 
approximate size. Each of these groups is removed, and the 
estimate is calculated on the remaining observations. The 
variability of the resulting estimates can be used to estimate 
the variance of the full-sample estimator. 

When applying the jackknife methodology to multi-
stage cluster samples, the groups are formed using the ultimate 
clusters [18, Sec. 2.4] rather than the elementary units.  The 
estimator η̂ ],[ ls  is computed for s=1,...,S  and l=1,2 using (2) 

and (3) but eliminating the observations in stratum s and PSU l 
and by doubling the weights in the remaining PSU in stratum s 
[19].  The jackknife estimate of variance is  

)-(    2 = )(arV 2
ls

2

1=l

S

1=s

k- ηηη ˆˆˆˆ
],[∑∑  (7) 

with η̂  the full sample estimate. For linear functions of the 
strata means, (7) is an unbiased estimate; even for nonlinear 
functions such as η̂  the method usually performs well [20]. 
 
 

2003 Joint Statistical Meetings - Section on Survey Research Methods

1184



 
 

3.2  Balanced Repeated Replication (BRR) 
Whereas, the jackknife procedure retains most of the 

sample in each replicate, the balanced repeated replication 
method (BRR) retains about one-half of the sample. Because 
there are S strata with 2 PSUs/strata, the total number of 
replicate samples that can be formed is 2S.  However, all of the 
information in the replicates is available in g orthogonal or 
“balanced” replications, where g is the smallest integer 
divisible by 4 that is greater than or equal to S.   

We used Fay’s method, a variant of the BRR method as 
a second replication procedure. See Judkins [21] for a review 
of this method, which is based on g- parameter estimates, ][ˆ iη . 

The replication estimates are calculated using the standard 
full-sample estimator, η̂ , with statistical weights that depend 
on the replication. For each replication, the sampling weights 
in the selected half sample are multiplied by f while the 
remaining (half-sample) weights are multiplied by 2-f where 
0<f<1. Since every observation has positive weight, it is 
viewed as a compromise between the jackknife and standard 
BRR. Using Fay’s method, the variance estimator is   

  )-(   
f1g

1
 = )(arV 2

i

g

1=i
2

ηηη ˆˆ
)(

ˆˆ
][∑−

 (8) 

where ][ˆ iη  the estimate using the ith replication (i=1,..,g). 

 
4.  Detecting Undiagnosed Diabetes using NHANES III  

In this section, we test the equality of the ROC AUCs 
for two predictors of undiagnosed diabetes using data from the 
third National Health and Nutrition Examination Survey 
(NHANES III).  In a related study, Thompson, Smith and 
Boyle [22] applied a model-based approach for diabetes 
detection to data from an Egyptian population-based 
household survey but did not phrase the problem in terms of 
ROC.  Prior to discussing our estimation results, we give a 
brief description of the NHANES III survey design, data 
collection, and study population.  
 
4.1 NHANES III: Survey Design 

NHANES III was conducted from 1988 to 1994 by 
the National Center for Health Statistics (NCHS) of the 
Centers for Disease Control and Prevention (CDC) [23-24].   
A nationally representative sample of the U.S. civilian non-
institutionalized population was selected using a complex, 
stratified, multi-stage probability cluster sampling design. The 
survey design included planned oversampling of black and 
Mexican-American persons, as well as of children and the 
elderly, to provide more precise estimates for these subgroups 
of the population. Informed consent was obtained from all 
respondents and the protocol was reviewed and approved by 
the NCHS NHANES Institutional Review Board.  Health and 
dietary information on sampled persons was obtained through 
an interview in the home followed by a standardized physical 
examination in a mobile examination center (MEC).  

A four stage sampling design was used: (1) PSUs 
consisting mostly of single counties, (2) area segments within 
PSUs, (3) households within area segments, and (4) persons 
within households. The probability of selection of a person in 
NHANES III depended on the PSU and the person’s age-sex-
race/ethnicity domain. For NHANES III, the design had 49 

pseudo-strata each with 2 pseudo-PSUs. We use the pseudo-
strata as strata and the pseudo-PSUs as PSUs to form the 
clusters for the jackknife analysis.  

For the BRR analysis, g=52 replicates were used (as the 
smallest integer divisible by 4 and also greater than 49).  The 
NHANES III MEC examination replicate weights [24] using 
Fay’s method with f=0.3 were used to determine the replicate 
estimates that were used in equation (8). 
 
4.2 Administration of the Oral Glucose Tolerance Test  

In NHANES III, an oral glucose tolerance test (OGTT) 
was administered to person’s ages 40-74 years as part of the 
examination. Each interviewed household was randomly 
assigned to either the morning or to the afternoon/evening 
session. Those assigned to the morning session were requested 
to fast overnight.  For the OGTT, a fasting blood sample was 
drawn and a 75-g glucose-equivalent oral glucose challenge 
was then administered.  A second blood sample was drawn 
two hours after the glucose challenge. 

 
4.3 Study Population, Sample Design, and Gold Standard 

For the purposes of this analysis, the sample consisted 
of persons who were assigned to the morning session and 
examined in the morning after an overnight fast of at least 9 
hours but less than 24 hours and who had a second blood draw 

2 hours ±  15 minutes after the glucose challenge was 
administered. This group conforms most closely to the World 
Health Organization (WHO) criteria for OGTT testing [25].  
We excluded subjects who had diabetes based on self-report.   
Persons with a fasting plasma glucose of 140 mg/dL or greater 
or with a two-hour plasma glucose of 200 mg/dL or greater 
were considered to have undiagnosed diabetes (i.e., diseased). 

 
4.4 Model-based Estimation Results 

We used data for all 3053 NHANES III subjects who 
met the criteria described in Section 4.3.   Of these subjects, 
420 (13.8%) had undiagnosed diabetes using the OGTT gold 
standard. Then, we evaluated the diagnostic capability, as 
compared to the results from the OGTT test, of each of two 
alternative procedures for defining diabetes, namely fasting 
plasma glucose (FPG) and glycohemoglobin (HbA1c).   

Scatterplots of the logarithm of two diagnostic 
measurements on the same scale for diseased and normal 
subjects (Figure 1a and 1b) yields the following conclusions:  

 
• The normality assumption of the logarithm of the 

measurements appears reasonable for both normal and 
diseased subjects.   

 
• The correlation between the two measurements on the 

same subject is appreciable and must be considered in 
the analysis.  The correlation between the two 
procedures is much higher for diseased (Pearson 
correlation, r=0.87) than for normal subjects (r=0.26).   

 
• In general, diseased patients have larger values for both 

measurements. However, classification cannot be made 
perfectly with either measurement (since the 
distributions of diseased and normal subjects overlap). 
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Figure 1a. Log of Diagnostic Measures for Diseased Subjects  

Figure 1b. Log of Diagnostic Measures for Normal Subjects 
 
The mle’s of the parameters were obtained using SAS 

IML [26].  Nested models for normal and diseased subjects 
were used to test for the statistical significance of the 
correlation coefficients.  For example, for diseased subjects, 
we used the three nested hypotheses:  

• H1: ( )exax ρρ ,  unrestricted 

• H2: 0ex =ρ  and axρ  unrestricted  

• H3: ( ) ),(, 00exax =ρρ  
Parameters were estimated for each of these 

hypotheses, and the difference in the log-likelihood obtained 
from (6) was used to test the significance of the correlations 
by comparison with a chi-square distribution with 1 degree of 
freedom.  Table 1 shows the values of -2ln(L), the differences, 
and the p-value of the hypothesis test.  For diseased subjects, 
both tests were statistically significant at the 5% level while 
for normal subjects neither test was significant (estimated 
values for H1 were ( )0218 eyay .ˆ,.ˆ −== ρρ ).  This analysis 

showed that both correlations were necessary in the analysis; 
at least, for diseased subjects.  For example, the test of the null 
hypothesis 0ex =ρ  can be obtained by testing H2 versus H1; 
from the table the test statistic is 14.1 (=1340.96-1326.82) and 
the p-value of the test is <0.0001.   

 

Table 1. Nested models for normal and diseased subjects 

Diseased  subjects -2ln(L) Difference (p-value) 

        unrestricted -1340.96  

        0ex =ρ  -1326.82 14.1       (<0.0001) 

       Both zero -1275.17 51.6       (<0.0001) 

Normal subjects   

       unrestricted -19565.78  

       0ey =ρ  -19564.60 1.2          (0.30) 

       Both zero -19562.36 2.2          (0.11) 

 
Based on the tests summarized in table 1, we included 

both correlations for diseased subjects but neither for normal 
subjects.  The estimated covariance matrices of the random 
effects and measurement errors (with correlation coefficients 
below the diagonal) for both diseased (x) and normal (y) 
subjects were given by 
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The distribution of the (unweighted) cluster mean is  

),(~. ex
1

iaxxi mNx Σ+Σ −µ       (10) 

where mi is the number of diseased subjects in the ith cluster 
and ‘dot’ denotes average.  The unweighted Pearson 
correlation of cluster means is 0.914. However, measurement 
error (and within-cluster variation) can reduce the correlation, 
so it is not surprising the mixed-model gives a higher 
correlation estimate for cluster means, 99590ax .=ρ . In 
summary, the model predicts an almost co-linear relationship 
between the cluster means of diseased subjects -- if large 
numbers of subjects are obtained in each cluster. Rohlfing et 
al. [27] gave correlation results for diseased subjects for FPG 
and Hb1Ac from a large multi-center clinical trial. 
  
4.5 Design of future studies  

The variance inflation factor (IF) due to clustering and 
the effective sample size (neff) can be calculated from the 
estimated covariance matrices.  The IF is given by 

ρ)( 1n1IF −+=  (11) 

where n  is the average cluster size and ρ  is the intra-cluster 
correlation coefficient. The IF measures the ratio of the 
variance of a cluster sample mean to an independent sample 
mean with the same number of subjects [28].  The effective 
cluster sample size is the equivalent number of independent 
subjects ( IFnneff /=  where n is the total number of 

subjects). Table 2 shows the inflation factors, the effective 
sample size, and the actual sample size for both normal and 
diseased subjects. For example, for FPG the IF is obtained 

from (11) where 96420n /=  and the intra-cluster correlation 
is given by 260081140028600028600 .)../(. =+=ρ  from (9a). 
The inflation factors are useful in conducting power analyses 
for the design of future studies. The table shows a total 
effective sample size of 1195 for FPG and 1072 for HBA1c 
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respectively; an appreciable reduction in both cases from the 
actual number of 3053 subjects.  In the table, the IFs range 
from 1.80 to 3.14, and the corresponding increase in the length 
of the associated confidence intervals range from 34% to 77%. 

 
Table 2. Inflation factor and effective sample sizes  

 Fasting plasma 

glucose (FPG) 

Glycohemoglobin 

(HbA1c) 

 

 IF neff IF neff Actual n 

Diseased 2.14 196 1.80 234 420 
Normal 2.64 999 3.14 838 2633 
Total  1195  1072 3053 

 

4.6 Model-Based ROC AUC estimation and testing  
Figure 2 shows the ROC curves for FPG and HbA1c.  

Since the ROC curve for FPG lies completely above the curve 
for HbA1c, FPG seems to be a better predictor of undiagnosed 
diabetes than HbA1c.  We use (FPG, HbA1c) as the ordering 
of the tests; from equation (3), we estimate the ROC AUCs 

and obtain θ̂ =(0.9310, 0.8665) so their difference is estimated 

by 064508665093100 ...ˆ =−=η  using (2).  

Figure 2. Weighted ROC Curves for Undiagnosed Diabetes 
 
To test the hypothesis of the equality of the two 

diagnostic procedures, we replace parameters by their 
estimates in equation (A-2) and (A-10) and obtain the 

estimated covariance matrix of θ̂   











= −

10936170

4151
10Var

69114

..

.
)ˆ(

.
θ  (12) 

where, again, the element below the diagonal in matrix (12) is 
the correlation coefficient.  From (12), the variance of the 

difference )()(
ˆˆˆ 21= θθη −  is estimated by  

)40(0.01=)8302-1093+6911(10=)Var( 2-4 ...η̂ . (13) 

The distribution of η̂  is approximated as a Student t-
distribution with 49 degrees of freedom (the difference 
between the number of sampled PSUs and strata). Thus, the 
95% confidence interval for the difference in the ROC AUCs 
is (0.037, 0.093). Since the confidence interval does not 
contain zero, we reject the null hypothesis at the 5% level.  

4.7 Comparison with alternative procedures 
In table 3, we compare the model-based results with 

the two data replication procedures. The model-based and 
replication methods do not differ in the estimate of the ROC 
AUCs; so the difference is estimated by 0.0645 for all three 
procedures. However, the estimated standard error, t-statistic, 
and confidence interval for the difference differ. For all three, 
the table shows that we obtain the same general conclusion; 
namely, FPG is a better predictor than HbA1c for undiagnosed 
diabetes since the 95% confidence intervals do not overlap the 
origin (In fact, all differences are statistically significant at 
p<0.001). The model-based procedure yields the smallest 
standard error; hence the largest t-statistic and shortest 
confidence interval.  The model-based procedure is the only 
exact test and also allows checks of the analytic assumptions.  

 

Table 3. Statistics for the difference of the ROC AUCs  
Method St. Err. T-Stat 95% CI
Model-Based 0.0140 4.60 (0.037, 0.093)
Jackknife 0.0153 4.21 (0.034, 0.095)
BRR 0.0162 3.98 (0.032, 0.097)

  

It is interesting to compare the results with those that 
would be obtained if the sampling design were ignored, and 
the 3053 subjects were treated as an independent and 
identically distributed sample so that the ROC AUC 
estimation procedure proposed in [7] is valid. Applying the 
method of [7], a 95% confidence interval for the ROC AUC 
difference is 0198005840 .. ± . Since the 95% confidence 
interval does not contain zero, the result of the hypothesis test 
is the same as the result obtained from the procedures that 
utilize the design information (table 3).   

In general, ignoring the sampling design could lead to 
erroneous conclusions since the estimated standard error is 
overly optimistic -- hence confidence limits are too narrow. As 
a measure of the reduction in variance, we calculate the 
inflation factor (IF) for the variance of the ROC AUC 
difference; that is we calculate the ratio of )Var(η̂  from the 
model-based (i.e., table 3) to the independent analysis from [7] 

 
022VarbasedodelVarIF .)indep.(/)m( =−=   (14) 

Equation (14) shows that the variance from the independent 
analysis is approximately half as much as it would be if the 
design were utilized. 
 
 5. DISCUSSION 

When two empirical ROC curves are constructed to 
evaluate two diagnostic tests, statistical tests on the difference 
between the curves must take into account the correlated 
nature of the data.  Techniques have been developed to deal 
with intra-subject (between two measurements on the same 
subject) correlation.   

In most national surveys, the data are obtained from a 
multi-stage design with cluster sampling so the correlation of 
the measurements may be higher for subjects within the same 
PSU than for subjects in different PSUs due to the similarity 
of subjects who reside in a small area. Here, we provide a 
model-based approach that can be used to test whether the 
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difference between two ROC AUC curves is statistically 
significant when the data are obtained from a cluster sample 
with different selection probabilities.  The ROC AUC variance 
is expressed in terms of parameters of a mixed-model, which 
include parameters measuring the between- and within-cluster 
variation in both measurements. Estimation of the parameter 
yields a test of the equality of two ROC AUCs.  

The model-based procedure is applied to NHANES III 
data to test for the difference between two predictors of 
undiagnosed diabetes.  Previously, the only procedure for 
testing the equality of ROC AUCs for cluster samples [6] 
assumed equal selection probabilities, which is not satisfied 
for NHANES III.  The hypothesis test of the ROC AUC yields 
similar conclusions to that obtained from the replication 
procedures (the jackknife method and balanced repeated 
replication), which are often used to approximate the variance 
of non-linear estimators (such as the ROC AUC) for complex 
survey designs. However, the model-based analysis yields the 
exact variance under the model assumptions, allows checks for 
assumptions, yields insights that are difficult to obtain without 
a model, and can be useful in designing future studies. In 
addition, the model-based results are contrasted with the 
analysis that ignores the sample design [7], which yields 
overly optimistic confidence limits.   
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APPENDIX: ROC AUC Covariance Matrix 

We calculate the covariance matrix of θ̂ . The elements 

of the 2x2 covariance matrix ( ) ( )( ))'()(',
ˆ,ˆ

rrrr CovCC θθ==  are  

)),(),,(( )'('')'(''
, ','

)()(''''
',',

', rtjrsi

tj tj

rjtris
y

tj
x
si

y
jt

x
is

sisi

rr yxyxCovwwwwC ΨΨ= ∑∑∑∑   

First, we calculate the variance; that is, rrC , .The covariance 

term on the right side of the equation involves two x-subjects 
defined by pairs (i,s) and  )s',(i'  and two y-subjects defined 
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by pairs (j,t) and  )t',(j' .  If we define the subject pairs by the 

four-dimensional vectors )',',,( sisii =  and )',',,( tjtjj =  

then the covariance term is constant for ( ) y
v

x
u xBAji ∈,  where 

3vu1 ≤≤ ,  and the sets x
uA  and y

vB  are defined as follows: 

• }',':{ ssiiiAx
1 === and  

• }',':{ ssiiiAx
2 ≠==  and }',':{ ttjjjB y

2 ≠==  

• }':{ iiiAx
3 ≠= and }':{ jjjB y

1 ≠=  

These sets are characterized as follows. In x
1A  and y

1B , the 

two subjects are the same.  In x
2A  and y

2B , the subjects are 

different but the clusters are the same. In x
3A  and y

3B , the 
clusters are different. Now , 
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with )),(),,(( )'(')'(')()()( rtjrsirjtrisruv yxyxCov ΨΨ=ς  for 

( ) y
v

x
u xBAji ∈, and  
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The 3x3 matrix W=(Wuv) can be expressed as the product 
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 Now, we express )(ruvς  in terms of the parameter 

vector ),,,,,( )()()()()()()( ryrx
2

ry
2

rxryrxr ρρσσµµα = .        Since   
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it follows that ( ) )(),(),(Pr )()()('')('')()( 1F00xyxy rzrrsirtjrisrjt δρ=<−−  

where (.)ρF  is the c.d.f. of the normalized bivariate normal 

distribution with correlation ρ .  Since the x- and y- values are 
uncorrelated, from equation (A-5) we have 
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The two covariance terms on the right hand side of equation 
(A-6) can be calculated using equation (5).  For 

( ) y
v

x
u xBAji ∈, , the right hand side of equation (A-6) is 

constant and we define the value as )(ruvγ . Then, the matrix 

( ))()( ruvr γ=Γ  is given by  
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The correlation )()( ruvr ρρ =  of (A-5) and (A-6) can be 

obtained from 2
rzruvruv )()()( /σγρ = .  

In summary, the variance of the ROC AUC estimate (3) 
can be calculated exactly from equation (A-1) where Wuv for 

3vu1 ≤≤ ,  is defined by equation (A-2), 

( ))()()( )(
)( rz

2
rzruv 1F
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with )()()( / rzrzrz σµδ −= , )()()( rxryrz µµµ −= , 2
ry

2
rx

2
rz )()()( σσσ += , 

2
rzruvruv )()()( /σγρ = , ( ))()( ruvr γ=Γ  is defined in equation (A-

7), Φ  denotes the standard normal c.d.f., and (.)ρF  is the 

c.d.f. of the normalized bivariate normal distribution with 
correlation ρ .   

 Calculation of ( ))()(
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21Cov θθ  is similar but involves 
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where the diagonal elements are 

)()()()( 2ex1exex2ax1axaxxv σσρσσρ +=  and the off-diagonal 

elements are )()( 2ax1axaxxc σσρ=  for x, with similar expressions 

for the elements of y ( )()()()( 2ey1eyey2ay1ayayyv σσρσσρ +=  and 

)()( 2ay1ayayyc σσρ= ).   

Using similar arguments as above, we can show that 
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where W=(Wuv) is defined by equation (A-2), 
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),( 2z1z2z1z21uv 21uv
F δδδδς ρ ΦΦ−=  

with ( ))()(),(),( / 2z1z21uv21uv σσγρ =  and ( )),(),( 21uv21 γ=Γ  is 

the 3x3 matrix defined by 
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where vx, cx, vy, and cy are defined below equation (A-9). 
Equation (A-10) shows that the covariance of the estimates 

( ))()(
ˆ,ˆ

21 θθ  involves the four within cluster correlation 

coefficients ( )eyexayax ρρρρ ,, ,  while the variance of the two 

components do not.   
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