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ABSTRACT 
This paper describes a method for imputation in general contingency tables when the imputations 
are subject to both analytic (edit) constraints and probabilistic distributional constraints.  The 
model extends edit ideas in Fellegi and Holt (1976) and Winkler and Chen (2002).  The model 
extends missing-at-random imputation ideas in Little and Rubin (1987).  Some of the ideas are 
related to Friedman (2001) and Thibaudeau and Winkler (2002). 
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1.  INTRODUCTION 
Missing and contradictory data are endemic in computer databases.  If we are only interested in 
missing data, then the methods described in Little and Rubin (1987) represent a good starting 
point for suitable imputation.  In this paper, we typically consider imputation under a missing at 
random  (MAR) mechanism for nonresponse.  As we illustrate later, in the simplest situations, 
filling in for nonresponse under MAR corresponds to the usual hot-deck methods for filling in 
missing data provided an exceptionally large number of donors are available.  If an exceptionally 
large number of donors is not available, then we must use model-based (model-assisted) methods 
as in Little and Rubin. 
   If we are only concerned with contradictory information, then we might begin by editing the 
data.  In editing, we are concerned with �correcting� data in records according to the rules 
defined by analysts.  For instance, we might not allow an individual of less than 15 years of age 
to be married.  To correct a record subject to this error condition, we might change age to be 
greater than or equal than 15 or change marital status to not married.  Our edit ideas build on the 
edit model introduced by Fellegi and Holt (1976).  Although the original model appeared in the 
statistical literature, the methods for implementing it have primarily relied on methods from the 
Operations Research (OR) literature and are largely unknown to statisticians. 
   The goal of this paper is to provide methods for filling in for missing data and replacing 
contradictory data in a manner than is consistent with the missing-data methods of Little and 
Rubin (1987) and the edit methods of Fellegi and Holt (2001).  The outline of this paper is as 
follows.  In the second section, we give background on hot-deck, the missing-data methods as 
given in chapter 9 of Little and Rubin (1987), and the Fellegi-Holt model of editing.  The hot-
deck method provides crucial insights in the MAR imputation used by Little and Rubin.  When 
the hot-deck is properly structured, it can also provide insight into the easiest aspects of the edit 
models.  A key feature of the global optimization methods of the Fellegi-Holt model is that it 
gives a method of filling in missing values or replacing contradictory values in a manner that 
assures the resultant �corrected� record satisfies all edits.  By adapting the modeling ideas of 
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Little and Rubin, we also provide a method that places a probability distribution on the set of 
�corrected� records that is consistent with the observed complete and incomplete data.  In the 
third section, we present the main theoretical results.  Most of the ideas are straightforward but 
have not been connected previously.  Section four consists of discussion and the final section is 
concluding remarks. 
 
2.  BACKGROUND 
This section provides background on the hot-deck, the MAR missing-data mechanism, and the 
Fellegi-Holt model of editing.  In this paper, we only address situations with discrete data.  
Extensions to continuous or combinations of discrete and continuous data are sometimes 
straightforward. 
 
2.1  Hot-Deck 
Let X be an n×k array of discrete data.  For some m < n, the first m rows of array X are complete 
data.  The remaining n-m rows of X are incomplete data in which some of the data fields are 
missing.   We use Xj to denote the jth row that corresponds to a data record.  We can think of X as 
being obtained from a sample survey or census.  The missing data are due to item nonresponse.  
For j > m, Xj = (xj1, �, xjk) has some xji values missing.  We denote the missing values of xji in 
row j by NR(j) and the non-missing values by R(j).   
    For the Xj, j>m, we match against the corresponding values of xki in R(j) to the records Xjl for 
l≤m.  Denote the set of records that match Xj according to this criteria by M(j).  Then M(j) can 
contain no record, one record, or more than one records.  In the first case, hierarchical collapsing 
rules for using subsets of R(j) in the matching are used.  If collapsing has been used, then we 
denote M(j) by Mc(j). If only one record is in M(j), then in many practical situations, the same 
record will be in M(j1) for some j1 > m and j1 ≠ j.  This is the well-known situation where a 
complete-data record serves as a donor for more than one incomplete record.  If there is more 
than one record in M(j), then it is still typical that the filled in values may not accurately 
represent the distributions of the values of the variables from the non-missing (complete) data 
records.  This can be because the inherent sampling mechanism induced by matching of the non-
missing values of record Xj may not obtain a set of records that accurately represent the 
distributions of the values for the missing data items.  We use XCH to denote an array where the 
missing item values have been filled in by hot-deck.   
   In many practical situations, hot-deck will yield marginal distributions for single variables in 
the completed data XCH that approximate the marginal distributions from the original complete 
data from the first m rows of X.  It is well known that joint marginal distributions are not 
preserved.  This is often due to the collapsing rules that are used in the matching.  If there is 
much collapsing (M(j) null for many j) or many single donor situations, then even the marginal 
distributions for single variables can be somewhat distorted.    We observe that the matching on 
the observed (non-missing) values of variables is a type of sampling mechanism that may not 
typically get values of variables that represent reasonable approximations of the true underlying 
set of values of the variables.  
   In the next section, we will apply missing data ideas that are consistent with hot-deck and give 
us a framework for better understanding of the characteristics of the joint distributions that we 
need. 
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2.2  MAR Missing-Data Mechanism and Imputation 
To focus our understanding better, we can let XT represent a large population in which there is no 
missing data.  We let fT(x1, �, xk) represent the probability distribution of the data.  We let X 
represent our observed population data in which the rows greater than m have missing item 
values.  We wish to fill-in data in X to get a completed set of data XC with no missing data and 
for which the associated probability distribution fC(x1, �, xk) is a good approximation of fT(x1, 
�, xk) .    For j > m, let Xj = (xj1, �, xjk) be a record with missing items.  Let M(j) be the set of  
records among the complete data records that it can be matched against.  For now, we assume 
that M(j) contains a moderately large number of records.  If we sample one record in M(j) at 
random, then we fill in values in Xj assuming that the item value are missing at random.  The 
missing values depend on the non-missing values in Xj and not on the (unobserved) missing 
values in Xj .  
   We next raise a somewhat subtle point that allows us to sample in a manner that also causes the 
filled-in data XC with distribution fC to satisfy edit constraints.  We begin with the hypothetical 
situation where there are a nearly infinite number of donors for each record that requires 
imputation.  If all the donor records are only taken from records that satisfy edits, then the record 
that results from the substitution of item values from the donor record will also satisfy edits.  
Indeed, the resultant record will be identical to the donor record.  In practical situations, we must 
do collapsing to get potential donors.  With many real-world situations, we will not be able to 
find suitable donors for greater than 99.9% of the records.  We return to this issue after we 
describe MAR imputation. 
   We fill in missing data via an EM procedure that ignores edit constraints.  The procedures are 
those due to Little and Rubin (1987, section 9.4).  There are two ways of doing this.  The first 
way is to find a set of interactions that parsimoniously represents the data.  We can use only the 
first m rows to model the data as in Bishop, Fienberg, and Holland (1975).  With the set of 
interactions found in the first modeling exercise, we can also fill-in the missing data in the last n-
m rows as in Little and Rubin (1987, Chapter 9).  In this latter situation, we can also increase the 
number of interactions based on terms occurring in the last n-m rows.  We also adjust the 
margins to which the fitting is done based on the additional non-missing items in the last n-m 
rows.  The result of the two modeling steps is a representation XC of data X in which missing 
values are replaced by expected values that may not be integers. 
   We restate the above filling-in procedure as a lemma. 
 
Lemma 1 (Little and Rubin 1987).  Let X be an incomplete data array.  Let I1 be a set of 
interactions and let M1 be a set of margins determined by the complete data records and the non-
missing items in the in the incomplete records of X.  Then the EM fitting procedure yields a 
complete data representation XC that is a model for filling-in incomplete data records with 
probability distributions that are consistent with the observed data X. 
 
   There are several observations that we can now make.  First, the resultant representation XC 
along with appropriate interaction parameters and margins that were used in the fitting is a 
parametric form (i.e., model for the data).  For convenience, we assume that XC is a probability 
distribution by dividing each cell value by an appropriate population value that causes the 
resultant set of cells to add to one.  Second, the number of cells in the array is given by SX = |v1| 
|v2| ⋅ ⋅ ⋅ |vk| where |vi| is the cardinality of the set of values for field i in the observed data.  The 
number SX can be very large (approaching 1046) for a large labor force survey (Winkler 1997).  
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For each record Xj, j > m, that has missing item values, we can enumerate cells MX(j) that match 
on the nonmissing values of Xj.  We note that, unlike the hot-deck situation, it is always possible 
to find donors satisfying all possible missing data patterns.  If we randomly draw a value from 
MX(j) with probability proportional to the probability of the cell in the fitted array XC, then we 
are preserving the probability distribution defined by the probability distribution of XC.  We note 
that the sampling mechanism in MX(j) causes the conditional probabilities to add to 1.  
   The difference between this method and hot-deck is that hot-deck often has 0 or 1 donors 
instead of potentially thousands or more with this procedure.  The collapsing of typical hot-deck 
implementations can cause distortions in the joint distributions.  At the expense of significantly 
increased computation in contrast to typical hot-deck situations, the data structure given by XC 
allows us the possibility of filling in data in a manner that satisfies restraints on the probabilistic 
distributions and additional �edit� restraints. 
    
2.3  Editing Model of Fellegi and Holt 
Fellegi and Holt (1976, hereafter FH) provided a theoretical model for editing.  In providing their 
model, they had three goals: 
 
  1. The data in each record should be made to satisfy all edits by changing the fewest possible 
variables (fields). 
  2. Imputation rules should derive automatically from edit rules. 
  3. When imputation is necessary, it should maintain the joint distribution of variables. 
 
   Fellegi and Holt (Theorem 1) proved that implicit edits are needed for solving the problem of 
goal 1.  Implicit edits are those that can be logically derived from explicitly defined edits.  
Implicit edits contain information about edits that do not fail initially for a record but may fail as 
values in fields associated with failing edits are changed.  An edit places restrictions on certain 
fields called entering fields.  By �correcting� a record, we mean changing values in entering 
fields associated with failing edits so that the modified record no longer fails edits.  Goal 1 is 
referred as the error localization (EL) problem.  The complete set E of edits consists of the set of 
explicit and implicit edits.   
   Prior to the seminal work of Fellegi and Holt (1976), edit methods would fail to correct many 
records.  They failed because, as values associated with fields in explicit edits were changed, 
previously non-failing edits would fail.  Both the set-covering algorithms for generating implicit 
edits and the integer programming methods of finding optimal solutions are known to be NP-
Complete (Garfinkel, Kunnathur, and Liepins 1986).  Much of the later work (Winkler 1995, 
1997; Chen 1998; Winkler and Chen 2002) has been concerned with increasing the speed of the 
algorithms.  In the extreme case of a large labor force survey, the computational speedups can be 
on the order of 100,000.  In those situations, the new methods are sufficiently fast for production 
editing systems that fill-in data that satisfy edit restraints.   Prior methods, however, do not yield 
filled-in data that satisfy probabilistic restraints assuring the joint and marginal distributions 
correspond to the originally observed data. 
   The following example illustrates some of the computational issues.  An edit can be considered 
as a set of points.  Let edit E = {married & age ≤  15}.  Let r be a data record.  Then r ∈  E => r 
fails edit.  This formulation is equivalent to �If age ≤ 15, then not married.�  We note that if a 
record r fails a set of edits, then one field in each of the failing edits must be changed.  Now 
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consider an implicit edit E3 that can be implied from two explicitly defined edits E1 and E2; i.e., 
E1 & E2 => E3. 
 
E1 = {age ≤ 15, married,   .              } 
E2 = {.              ,not married, spouse} 
E3 = {age ≤ 15,                 . , spouse} 
 
   In the above edits, the values in the entering fields age, marital status and relationship to head 
of household are restricted.  Implicit edit E3 can be logically derived from E1 and E2.  If E3 fails 
for a record r = {age ≤ 15, not married, spouse}, then necessarily either E1 or E2 fail.  Assume 
that the implicit edit E3 is unobserved.  If edit E2 fails for record r, then we may change the 
marital status field in record r to married to obtain a new record r1.  Record r1 does not fail for E2 
but now fails for E1.  If the implicit edit E3 were observed, then we would know to change at 
least one additional field in record r.  For much larger data situations having more edits and more 
fields, the number of possibilities increases at a very high exponential rate. 
  The main theorem of Fellegi and Holt proved that any cover C1 of the fields in the failing 
(explicit and implicit) edits associated always yields an edit-passing record r1 from record r by 
finding new values of the fields in C1.  If the cover C1 is prime (i.e., has no subsets that are also 
covers), then we know that we must always change the value in each field in the cover.  Efficient 
algorithms for filling in data are available in Chen (1998) and Chen, Thibaudeau, and Winkler 
(2002). 
   We are primarily concerned with enhancing the Fellegi-Holt in the sense of better preserving 
probabilistic restrictions of the characteristics on the joint distributions of the filled-in data 
represented by XC.  If a value in a field is designated for replacement because of the edit 
restraints, then we set it to missing.  This artificial missing condition (called replaced or blanked) 
and the ordinary missing data must be imputed.  The restriction on the imputation is that the 
result of the imputation in a record must not create a record that fails edits.  The difficulty with 
conventional edit/imputation built around a Fellegi-Holt edit mechanism is that formal models 
for the imputation process have not been available.  If hot-deck methods are combined in an ad 
hoc way with the edits, then the resultant data does not satisfy distributional constraints and 
many imputed records may still fail edits.  In practice, the result of imputations in the Fellegi-
Holt systems has been data that do not satisfy goal 2 of Fellegi and Holt and often do not satisfy 
goal 3.  Satisfying goal 3 might cause additional constraints to be placed on the joint 
distributions.  With the types of OR approaches in applications of the Fellegi-Holt model that 
have typically been used, it is not clear how these types of constraints could be imposed. 
 
3.  THEORETICAL RESULTS 
This section contains the main theoretical results.  For clarity and to target a few additional ideas 
specifically, we repeat some of the notation from previous sections.   Let X be an n×k array of 
discrete data.  For some m < n, the first m rows of array X are complete data.  The remaining n-m 
rows of X are incomplete data in which some data are missing.   We can think of X as being 
obtained from a sample survey or census.  Some of the missing data is due to item nonresponse.  
The remainder of the missing data is due to fields that have been blanked because of edit 
constraints.  Edit constraints can be given as in the Fellegi-Holt model of statistical data editing 
(Fellegi and Holt 1976).  We let XC represent the filled-in or completed data that will be obtained 
according to procedures that we describe below. 
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3.1  Current Means of Imputation in the Fellegi-Holt Model of Editing 
    If all implicit edits are available, then it is straightforward to fill-in the missing or to-be-
replaced values of a record (see e.g., Winkler and Chen 2002) in an OR sense.  The filling-in 
procedure may not necessarily preserve statistical distributions.  For any set of missing (or 
replaced) items in a record Xj for j > m, we can fill in the missing values sequentially according 
to method 1 of Fellegi and Holt (1976).  If we repeat the fill-in procedure, then it is possible to 
enumerate all the ways the record Xj can be filled in to yield completed records Xj

c(i) where 0 ≤ i 
≤ N(j) where N(j) is the number of different ways that Xj can be filled-in.  The Fellegi-Holt 
methodology does not provide a suitable means of putting probability distributions on the set of 
filled-in values.  From Winkler and Chen (2002), we know that there is potentially a very large 
combinatorial explosion of the number of values that can be filled-in.  Further, we can observe 
that there is little possibility that the set of hot-deck donors will give a full representation of the 
filled-in values in {Xj

c(i) where 0 ≤ i ≤ N(j)} or that the hot-deck donors will even have a 
sufficiently large number of different value states to preserve a large set of explicitly defined 
margins. 
 
3.2 Missing Data Imputation that Satisfies Edit Restraints 
   It is straightforward to extend Lemma 1 to the situation in which we include both restraints due 
to edits and to probability distributions.  We assume that we are able to generate all the needed 
edits by separate procedures and that the set of edits is consistent.  We assume that each of the 
edits define a structural zero (Bishop, Fienberg, and Holland 1975) of the fitting procedure.   
An edit restraint imposes a structural zero because certain combinations of values of fields 
corresponding to the edit are forbidden.  The appropriate margin and all corresponding cells in 
the XC must be zero.  Structural zeros can be dealt with according to the procedure in Lemma 1 
of Winkler (1990).  If the set of marginal restraints and the set of structural zeros induced by the 
edits yield a logically consistent set of constraints, then the iterative fitting procedure will still 
converge in the sense the likelihood will increase monotonely.  Winkler (1993) provides a more 
general iterative fitting procedure than the special case needed to yield the following lemma.   
 
Lemma 2.  Let X be an incomplete data array.  Let I1 be a set of interactions, let M1 be a set of 
margins determined by the complete data records and the non-missing items in the in the 
incomplete records of X and let E1 be a complete set of edit restraints.  Then the EM fitting 
procedure that accounts for E1 as structural zeros yields a complete data representation XC that is 
a probabilistic model for the data.  
 
   We observe that the only difference between the iterative fitting procedures of Lemmas 1 and 2 
is due to the method of accounting for structural zeros.  Although XC obtained by Lemma 1 and 
XC obtained by Lemma 2 represent all SX potential cells in the product space associated with the 
fields of X, the latter mechanism forces a large number of cells to zero and automatically adjusts 
the remaining cell probabilities associated with XC. 
  
   Our goal in the remainder of this paper is to develop a imputation strategy that: 
(1) imputes integer values of missing items, 
(2) preserves the probability structure of the model that produced XC, and 
(3) imputes records that satisfy edits.   
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The EM procedure for filling in missing data assumes that a set of interactions between variables 
has been determined.  Little and Rubin (1987, Chapter 9) provide good examples on how the 
interactions and the EM fill-in procedure are done. 
   Given the representation XC, we can match any incomplete record Xj against the appropriate 
rows in XC.  We denote the matching rows by M(j) = {XC,1, XC,2, �, XC,N(j)}.  If we then sample 
from M(j) with probabilities proportional to the probabilities in the appropriate rows in XC, then 
we obtain records that satisfy edits and preserve the probabilistic structure induced by XC.  This 
yields the following theorem. 
 
Theorem 1.  Let X be an incomplete data array.  Let I1 be a set of interactions, let M1 be a set of 
margins determined by the complete data records and the non-missing items in the in the 
incomplete records of X, and let E1 be a complete set of edit restraints.  Then, using a complete 
data representation XC obtained via the EM fitting procedure of Lemma 2, it is possible to fill in 
incomplete data records in a manner that preserves the probability distribution of XC and that 
satisfies edit restraints. 
 
Remark.  The procedure is not intended to be computationally feasible in the very largest 
situations.  It is intended to cast theoretical insight on an imputation method for contingency 
tables that satisfies edit constraints and preserves the underlying probability distribution.  
Although Chen et al. (2003) provide computationally tractable methods for enumerating all of 
the different ways of filling in a record, the iterative proportional fitting methods for getting the 
complete data representation XC are not computationally tractable when XC has on the order of 
1035 cells.  
 
4.  DISCUSSION 
In this section, we describe alternative methods of representing probabilistic structures and 
performing computation.  In the first subsection, we describe how Bayesian Networks can be 
used to represent the data and allow filling-in data satisfying edit restraints.  The advantage of 
Bayesian Networks is that there is considerable software that will automatically create 
probabilistic representations of the data with little or no modeling expertise.  Because Bayesian 
Networks provide a very crude representation of the conditional probabilities needed for 
computing joint distributions, they will not perform as well as the method of Theorem 1.  They 
can be expected to outperform many types of hot-deck imputation in terms of preserving joint 
distributions and satisfying edit restraints.  In the second subsection, we describe extensions of 
Theorem 1 to situations where not all implicit edits can be generated.    
 
4.1 Much Simpler Procedures Using Bayesian Networks 
   Graphical representation of Bayes Nets and other probabilistic relationships date to Lauritzen 
and Spiegelhalter (1988).  They are used extensively in machine learning.  For instance, Getoor 
et al. (2001) demonstrate an efficient representation of Census data.  951 parameters are able to 
represent a potentially large number of cells in a contingency table (7 billion).  Bayes Net 
software will quickly determine dependency relationship (see e.g. Figure 2 in Getoor et al. 
(2001).  A mathematical representation is 
 
PB(A1, �, An) = Πi≤n  PB(Ai | Parents(Ai)).                                                                             (1) 
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The advantage of the representation is that it allows extraordinarily fast computation of the 
probabilities of the form (1).  There are many commercial and freeware software packages that 
automatically obtain a representation of the form (1), display the representation graphically, and 
give tools for easily modifying the representation to take advantage of different elementary 
dependency relationships.  If a given variable depends on only a few other variables (i.e., the 
number of parents is small), then representation (1) is very efficient.  If there is no missing data, 
then computation of the probabilities in (1) is exceedingly rapid (see e.g., Friedman 1997). 
   If we begin with either complete data or a combination of complete and incomplete data where 
fields are missing due to nonresponse or blanking due to edit restraints, then we can use 
representation (1) to generate imputes for all of the missing data.  The crucial advantage is that 
the representation is very parsimonious.  It is very easy to generate imputations from the 
representation (1).  A minor disadvantage is that we are only approximately generating the true 
underlying distributions within a factor of epsilon where epsilon may be much larger than the 
epsilon obtained when generating imputations using Theorem 1.  More details of imputation 
procedures that use Bayes Networks are given in Thibaudeau and Winkler (2002). 
  
4.2  Alternate Computational Procedure for the Iterative Fitting and Imputation 
   In some situations such as very large labor force surveys with skip patterns, it is still not 
possible to generate all implicit edits.  In those situations, Winkler and Chen (2002) provide a 
method for computing additional information about missing implicit edits �on-the-fly� when a 
large subset of all of the implicit edits is available.  The method allows filling in most 
information (in the Fellegi-Holt OR sense) quickly using the available set of implicit edits.  A 
few additional implicit associated with edit-failing records that cannot be error localized can be 
found via a algorithm that is much more efficient computationally than the cutting-plane 
algorithm 2 of Garfinkel, Kunnathur, and Liepins (1986).  We note that we can fill in incomplete 
records using the method of Winkler and Chen (2002) but cannot put a suitable probabilistic 
structure on them. 
    We can adapt the information available from the representation XC of Lemma 1 that does not 
use edit information.  The EM fitting procedure gives a representation log(XC) = ∑k ak Ak (e.g., 
Bishop et al. 1975).  The functions Ak are determined by the interactions that we are using.  The 
coefficients ak are obtained when we believe we have iterated sufficiently to get a solution that is 
close to the observed data according to our modeling criteria.  We do not need to know the exact 
form of the ak and Ak.   The terms and coefficients are determined by an iterative fitting 
procedure such as multi-cycle ECM (MCECM) (Meng and Rubin 1993; also Winkler 1990, 
1993).  The additive representation has relationship to Hastie, Tibshirani, and Friedman (2001).  
A greedy function fitting method might be used as a more efficient computational alternative 
(Friedman 2001).  As in classic loglinear modeling (e.g., Bishop et al. 1975), the terms ak might 
be grouped into subgroups corresponding to different interactions.  For instance, two-way 
interactions between fields y1 and y2 might correspond to probabilities P(y1∈  C, y2 ∈  D), P(y1∈  
Cc, y2 ∈  D), P(y1∈  C, y2 ∈  Dc) and P(y1∈  Cc, y2 ∈  Dc).    
   Let r be a record in the last n-m rows of X.  Then, for convenience, we let r = (xj1, xj2, �, xjl, 
�.) where the last k-l columns must be filled-in.  Using a Fellegi-Holt sequential fill-in 
procedure obtain N(j) new records r1, …., rN(j) corresponding to N(j) different ways that record r 
can be filled in.  We need to sample from the model given by the probabilistic representation XC 
of Lemma 1.  That is, we sample a set of values (all at once) from one of the records in {Xj

c(i) 
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where 0 ≤ i ≤ N(j)}.   To do this, we begin by assigning each record probability mass 1.  
Depending on the interactions present in each record, adjust the probability pj associated with 
each record rj according to the appropriate coefficients ak.  To select the actual filled-in record, 
sample record rj, j = 1, �, N(j), with probability proportional to size pj where the probabilities pj 
are the appropriate cell probabilities from XC.   If this is done for each of the last n-m rows of X, 
then the resultant completed data XD will have integer values, satisfy edit restraints, and preserve 
(approximately) the overall distribution determined by the model associated with XC. 
   We observe that the only rows of XD where we know the appropriate probabilities of the cells 
are those that are filled in.  The procedure adjusts the probabilities for the structural zeros in the 
rows where we fill in for missing data.  It does this because each of the records that we match 
already satisfy edits.   
 
5.  CONCLUDING REMARKS 
This paper provides an imputation methodology that generalizes hot-deck imputation.  The 
methodology is consistent with the imputation method of Little and Rubin (1987) under the 
assumption of missing-at-random and with the edit-constraint model of Fellegi and Holt (1976).  
For large surveys with many edit restraints, the methods can be very computationally intensive.  
They target probability distributions and analytic concerns as exemplified in Little and Rubin. 
 
1/ This paper reports the results of research and analysis undertaken by Census Bureau staff.  It has undergone a 
Census Bureau review more limited in scope than that given to official Census Bureau publications.  This report is 
released to inform interested parties of research and to encourage discussion.  The views expressed are those of the 
author and not necessarily those of the U. S. Census Bureau.  The author thanks Dr. Yves Thibaudeau, Dr. Stephen 
Ash and Dr. Tommy Wright for comments on an earlier version of this paper. 
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