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1 Introduction

For the prediction problem in model-based survey
sampling, an optimal sampling strategy consists of
an unbiased predictor T(d) and a sampling design
that can select the sample s to minimized the condi-
tional mean-square prediction error given s (Thomp-
son and Seber 1996). Sacks and Schiller (1988) pro-
posed a modified annealing algorithm to select the
optimal conventional sampling sites under a given
population model when the best unbiased estimator
is used. Since the optimal sampling strategy is ac-
tually one with a n-stage adaptive sampling design
(Zacks 1969), Chao and Thompson (2001) proposed
an simplified two-stage optimal adaptive sampling
strategy when the values of the parameters of the
population model are given. Chao (2003) also pro-
posed a two-stage adaptive optimal sampling strat-
egy under a Bayesian population model with a given
prior. Although the optimality of the optimal sam-
pling strategies have been illustrated in both sim-
ulation studies and a real data set (e.g Chao and
Thompson 2001, Chao 2003), the computation of the
optimization algorithms used are usually very com-
putationally intensive. Also these optimal strate-
gies require exact population model. Therefore, the
practical usage of these strategies is restricted (Chao
2003).

In practice, a simple sampling strategy that can
provide more efficient predictor with an easy sam-
pling procedure, less population assumption and af-
fordable computation load is desired. In this re-
search, a convenient method to select sampling units
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with a fixed sample size under a given population
covariance structure, but not the exact population
distribution is proposed. The sampling units are se-
lected based on the eigensystem of the population
covariance matrix. The intuition and algorithm of
the proposed sampling design are introduced in Sec-
tion 2. Instead of the full knowledge of the pop-
ulation model, only the covariance structure is re-
quired to select the sampling units by a simple algo-
rithm. In Section 3, the performance of the proposed
method is examined in terms its relative efficiency to
Simple Random Sampling (SRS). Results show that
the proposed sampling scheme is usually better than
SRS under a moderate correlated population. The
proposed sampling procedure can also be extended
to the optimal adaptive two-stage sampling strategy
with slight modification. Application and further
research are discussed in Section 4

2 Method

To select sampling units that can give lower mean-
square prediction error, the units that have better
prediction ability to other unselected units or higher
variance themselves are preferred. In other words,
one would like to select the units that account for
as much total population variability as possible. Let

A1, A2, ..., AN be the ordered eigenvalues of 3,
A> A > > Ay, (1)
and ej,es,...,ey be the associated normalized

eigenvectors. Then the original N-dimensional co-
ordinate system can be rotated into a new N-
dimensional orthogonal coordinate system, in which
the N axes are the linear combinations of the orig-
inal variables, such that the coefficients of the iy,
linear combination, denoted as X;, i =1,..., N, are
the components of the iy, eigenvectors e;. That is

Xi=eY =eqY1+epYo+ ... +enYn,
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where e;; is the jy, component in the i, eigenvec-
tors. X is also known as the 4, principal component
in Principal Component Analysis (PCA). The orig-
inal covariance structure can then be explained by
X;’s. The variability in Y is extracted into the vari-

ances of uncorrelated random variables, X;’s, and
(e.g. Anderson 1984)

N N
Z Var(X;) = Z Var(Y;).

In addition, the variance of X is
Var(X;) =\, Vi=1,...,N

Hence, if one would like to select the units that can
account for more variability in Y, then the unit that
is associated with component having a large abso-
lute value in the leading eigenvectors are reasonable
candidates. Based on this intuition, we propose the
following sampling design to select

s = {il, ig, .
with a fixed sample size n.

Both the sign and magnitude of e;; provide in-
formation regarding the role corresponding unit j
plays in X;. In the following proposed design, the
sampling units are selected depending not only the
magnitude, but also the sign of their corresponding
components in the leading eigenvectors. The sam-
pling units are selected by the following algorithm:

n=1:s={j}, lei;| = miax|eli|.

n>1: Step 1: Let s’ = {j1,72,...
where

s Jm}, m < N,

levjs | > lerj,| > > lews,, | =0 > lenjnl

and m is an integer that indicates the num-
ber of units in s’. m can be appropriately
specified before the survey according to the
population size N.

Step k : Let symp = {l1,l2}, where l; and Iy
satisfy
1. I, l5 have not been selected into s.

2.
et | = max e

!/
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lers,| = max lex;]
ej €riy <O

Units [; and Iy will be added into s by

{

Repeat step k tilln =2k —1or n=2(k —1)

io(k—1) = l1,026—1 = l2, if n > 2k -1
Z‘Z(kfl) = ll, if n = 2(]{; - 1)

Final Adjustment : Let s_;, = {i2,...,in},
and i1 = jp, jp € §' such that j, satisfies

meor (fp, $—iy) = min mcor (ji, S—i,)
JkES
JkEs—iq

where mcor(ji, s—;, ) is the multiple corre-
lation coefficient between unit j; and the
set s_;,,

Simulation Study

In the spatial Gaussian model, the population ran-
dom vector Y is assumed to follow a multivariate
normal distribution

Y ~ N(n, %) (2)

where

®= (.ulv"'v.uN)/a Y= {Jij}v Z?] = 17~'~5N-
In this article, a Gaussian-shaped spatial covariance
function (Cressie 1993) is used to generate X, that
is

aij = 0% exp(—||h]|?/c?)

3)

where h is the Euclidean distance between sites ¢
and j. The parameter ¢ determines the strength of
covariance in the study region. The larger c is, the
stronger the covariance between population units is,
and vice versa. In the following simulation, param-
eter values ¢ = 3.5 y; = 0, 7 and 02 = 1 are used.
The parameter c is set to be 3.5 for a moderate cor-
related spatial population. The population size IV is
chosen to be 81.
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The population quantity of interest is the popula-
tion total.

where 1y is a vector of length N in which all ele-
ments are 1. The Best Linear Unbiased Predictor
(BLUP) for the population total,

Tl = 1/nWs + 1/N—n[V§ + A§SA5_51 (ws —vs)], (4)

(cf. Bolfarine and Zacks 1992 p.25) is used. In Equa-
tion 4, § is an index set containing the labels of all
the unselected units, w, is the vector of observed
values, v, and v; consist of the mean values asso-
ciated with s and 5. Ajgg is the covariance matrix
between W3z and W, and A, is the covariance ma-
trix of W,. Note that the Best Unbiased Predictor
(BUP) and BLUP are equivalent under the Gaussian
model.

The relative efficiency of a design to SRS is defined
as the ratio of the mean-square prediction error ob-
tained with SRS to that obtained with the design,
so that a value greater than 1 indicates the proposed
design is more efficient. In this article, mean-square
prediction error was estimated with simulation by
producing K realizations of the model and design
and calculating

where T and Tj are the true and predicted pop-
ulation total of the j;; realization. For each case,
K = 15,000 realizations are simulated for each case.

Two sampling situations are considered: the reg-
ularly and randomly distributed possible sampling
locations. In Figure 1(a), N = 81 possible sampling
locations are regularly located at the cross points of
a 9 x 9 rectangular grid (case 1). On the other hand,
the 81 locations in Figure 1(b) are generated by a
bivariate uniform distribution. Let (A;, B;) be the
coordinates of site 7, then

A; Unif(1,xlim)

B; "kt Unif(1,ylim)

and A; is independent from B;, Vi. In this case,
zlivm and ylim are both selected to be 9.
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(a) Casel (b) Case2
Figure 1: Regularly and randomly distributed pop-
ulation locations.

The relative efficiencies of the proposed design to
SRS with respect to the sample sizes from 1 to 40
under two different cases are plotted in Figures 2(a)
and (b). It is clear that the performance of the pro-
posed design is in general better than SRS in both
cases. The relative efficiency to SRS can be as high
as 10 in case 1 and 6 in case 2. The reason is that,
symmetrically and evenly placing the sampling sites
is advantageous with the regularly distributed pop-
ulation sites as in case 1. By taking the sign of
e;; into consideration, the proposed design implic-
itly arranges the sampling units symmetrically. In
addition, the final adjustment of selecting ¢; from s’
is helpful to arrange s more evenly.

0 0 ) El [} 0 )

Sanplesien

(a) Case 1 (b) Case 2

Figure 2: Relative efficiencies to SRS

Though the relative efficiency is often greater than
1, the proposed design does not perform as well when
the possible sites are randomly distributed. A pos-
sible reason is that the proposed evaluates the mag-
nitude and sign of e;; separately. In each step of the
proposed design, the component ey, has the largest
absolute value among all ex;, Vj = 1,...,N and
erj-er, < 0, under the condition that > has not been
selected. However, the magnitude of ey, might not
be large enough for ls to be a “good” sampling unit,
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especially when the population units are distributed
randomly. It is possible to improve the proposed
with further modification. The possible approaches
for further improvement is briefly discussed in Sec-
tion 4.

4 Discussion

With a population covariance function that is not a
monotonically decreasing function of the distance, it
is not appropriate to locate the sampling sites in the
study region systematically and evenly. One would
need an alternative sampling design to select sam-
pling units for lower prediction error. As illustrated
in Section 3, the proposed design can usually pro-
vide better selection of sampling units than SRS
for predicting the population quantity of interest
under a moderately correlated population. Unlike
the earlier results of model-based optimal sampling
strategies, the proposed design does not depend on
the exact population distribution nor the predictor
used for the population quantity of interest. No in-
tensive computation is required to select the sam-
pling sites, and the computation load does not in-
crease too much with the population size. Further-
more, the sampling procedure is easy and straight-
forward. Hence, the proposed designs should be of
more practical interest than the earlier optimal sam-
pling strategies.

The two-stage optimal adaptive sampling strat-
egy proposed by Chao and Thompson (2001) also
needs intensive computation to determine the sam-
pling sites. Another future research possibility is
the extension of the proposed design to a two-stage
adaptive sampling strategy - the observed values will
be considered in the sampling design. A similar se-
lection procedure as in the proposed design should
be able to locate the second-stage sampling sites for
lower prediction error with much less computation
load.

Although the proposed sampling design can often
select better sampling units than SRS, their perfor-
mances are not stable. Appropriate modification is
required for further improvement. The goal is to im-
prove its performance as close to the optimal sam-
pling strategy as possible. One possible approach
is to evaluate the magnitude and sign of e;; with
a more delicate procedure. For another possibil-
ity, some of the techniques used in PCA to select
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the number of principal components which can ef-
fectively summarize the covariance matrix might be
helpful (e.g Rencher 1995 pp.434-437). For example,
a screen plot is a simple procedure widely used in
PCA to determine the number of principal compo-
nents that account for most of the population vari-
ability, therefore, another possible modified design is
to select the sampling sites only based on the eigen-
vectors corresponding to the selected “important”
principal component.
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