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1.  Introduction* 
 
 Data analysis for the Survey of Income and 
Program Participation (SIPP) requires special 
consideration due to the survey’s complex design and 
the methodology used to adjust design weights. 
Balanced Repeated Replication (BRR) has proven 
reliable at estimating variances for a broad range of 
SIPP statistics, and this has been the primary method 
of design-based estimation since the survey began. 
But BRR requires access to large replicate weight 
files, which in some circumstances can be 
problematic. We present an alternative method 
following an approach that incorporates linearization 
by way of regression. The variances of totals, ratios, 
quantiles, and yearly changes will be considered, 
along with estimates of their degrees of freedom, 
which will allow construction of confidence intervals 
based on the t distribution. Data from the 1996 panel 
of SIPP are used for numerical comparisons with 
BRR.  
 Our motivation for pursuing a new method of 
variance estimation is to improve public access to 
SIPP data. Currently, the Census Bureau is 
examining the feasibility of allowing interactive data 
analysis online through an expanded version of 
FERRET, the Census Bureau’s data extraction tool. 
Due to computing constraints, reading in a lot of 
replicate weights, such as the 108 available for the 
1996 SIPP panel, is not practical. Significantly 
reducing the number of replicate weights may be 
possible, but this has the drawback of reducing the 
stability of the variance estimator. The linearization 
approach described in this paper is being considered 
for the FERRET system. It is non-iterative, requires 
few additional variables, and results in variance 
estimates that are comparable to BRR estimates. 
Furthermore, its added capability of estimating 
                                                 
* Disclaimer: This paper reports the results of 
research and analysis undertaken by Census Bureau 
staff.  It has undergone a Census Bureau review more 
limited in scope than that given to official Census 
Bureau publications.  This report is released to 
inform interested parties of ongoing research and to 
encourage discussion of work in progress. 

degrees of freedom is especially important for cross-
tabulations and statistics related to rare 
characteristics, where variance stability may be an 
issue. 
 
2.  Background 
2.1  The Survey Design and Weighting Procedure 
 
 The SIPP uses a two-stage sample design.  In the 
first stage, primary sampling units (PSUs) are 
selected from strata with probability proportional to 
size. Some of the larger PSUs form unique (self-
representing, or SR) strata, which guarantees they 
will be selected.  In the 1996 panel, two PSUs were 
selected without replacement from each of the 
remaining (non-self-representing, or NSR) strata. 
Within PSUs, clusters of households are selected 
systematically. 
 The households are divided into four replicate 
sample groups, called rotations.  Each month, one of 
the rotations is designated for interview, and the 
household reference persons are asked questions 
about each of the previous four months. So for a 
given reference month, data collection usually spans 
four consecutive months of interview, one for each of 
the rotation groups. 
 When a household is initially selected into 
SIPP’s sample, a design weight is assigned that is 
equal to the inverse of its probability of selection. A 
series of adjustments are made to the weights for 
improved estimation. Some factors are needed to 
account for the discrepancy between the probability 
of selection at the design stage and the probability of 
selecting a survey respondent. Prior to the 1996 
panel, a first-stage ratio adjustment was applied to 
sample in NSR strata to reduce the between-PSU 
variances. Beginning with the 1996 panel, this 
adjustment was dropped because there was 
insufficient evidence that it improved estimation. In 
all panels, the final adjustment made is the second-
stage adjustment, which ensures that certain SIPP 
estimates of population totals match control totals 
derived from the Current Population Survey (CPS), 
and simultaneously forces the final weights of 
husbands and wives to be equal. The CPS controls 
can be interpreted as three-way tables, of which only 
the marginals, formed on combinations of age, 
marital status, family type, race, sex, and ethnicity, 
are supplied.  So estimates of cell totals remain 
subject to SIPP sampling variability, while estimates 
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of marginals do not. These adjustments are done 
independently among rotations of SIPP, where each 
rotation is weighted to one-quarter of the CPS 
controls. The second stage adjustment is really a 
series of ratio adjustments and husband-wife 
equalizations applied iteratively until all constraints 
are met, a process referred to as raking. SIPP 
statistics closely approximate raking ratio estimators, 
which are discussed in many sources, including 
Sarndal, Deville, and Sautory [1993] on the subject 
of variance estimation. Differences from the raking 
ratio estimator are due to the nonresponse adjustment 
and the procedure for achieving Hispanic control 
totals, whereby these are the first controls to be met, 
at which point only the weights of non-Hispanics are 
adjusted to meet the total population controls.   
 
2.2 Inferential Statistics 
  
 The variance codes available to public users are 
pseudo-stratum and half-sample (cluster). Direct 
variance estimation is based on the two-cluster-per-
stratum estimator when sampling occurs with 
replacement. For confidentiality reasons, these codes 
do not provide complete information on the sample 
design, such as the information needed to use the 
“without replacement” estimator, but they can be 
used for reliable estimates of variance. Generally, the 
estimator will have a small positive bias.   
 
Given a statistic of the form 
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where  h = 1, 2, ..., L represents pseudo-stratum; i = 

1, 2 represents half-sample within pseudo-
stratum h; k represents a sample person 
within pseudo-stratum h, cluster i; yhik is a 
numeric variable assigned to every person in 
sample; ahik is the design weight; 

 
the variance estimator is 
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 This formula is only appropriate for linear 
statistics; that is, statistics that are linear functions of 
the design weights. To be of any real use, the formula 
must be generalized to nonlinear statistics, which 
includes any statistic computed using final weights. 
Typically, variance estimation for nonlinear statistics 
follows either a replication approach or a 
linearization approach. The SIPP has supported 
replication estimates of variance through the use of 
replicate weight files provided to public users. These 
replicate weights extend equation (2), via a method 
developed by Robert Fay [1984, 1989], to statistics 
computed using SIPP final weights. To calculate 
variances, the user must first calculate the statistic 
independently for each weight in the replicate array, 
and then input the set of statistics to a quadratic 
function.  Refer to the SIPP Users’ Guide [U.S. 
Census Bureau, 2001] for details. One of the appeals 
of this estimator is the uniform treatment of any type 
of statistic that is computed with the final weights, 
regardless of the statistic’s complexity.  
 Linearization methods modify the statistic, and 
leave the form of the variance estimator mostly 
unchanged. To estimate the variance of a nonlinear 
statistic, create an artificial linear statistic that has 
approximately the same variance as that of the 
nonlinear statistic and use equation (2) directly. 
 The primary difficulty in applying linearization 
methods is finding an expression for the artificial 
statistic. Linearizations of common statistics, such as 
ratios, means, and medians, are easy to find in 
statistical literature, but in most cases they are not 
intended for use with poststratified weights. The 
procedure for creating SIPP final weights is very 
complex, and methods of linearization based strictly 
on Taylor Series approximations do not easily lend 
themselves to statistics computed with these weights. 
An alternative method has been developed in recent 
years that is much simpler than the pure Taylor Series 
approach. It is the residual technique outlined by 
Deville [1999]. We have extended this method of 
variance estimation to estimation of degrees of 
freedom using the Satterthwaite approximation, to 
allow statistical tests based on the t distribution.  
 Due to its suitability to our survey design, we 
recommend the estimator described by Eltinge and 
Jang [1996] that was derived using method of 
moment arguments. With a statistic in the form of 
equation (1) and variance estimator in the form of 
equation (2), the degrees of freedom approximation is 
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variance from stratum h. 
 
The methodology of BRR does not readily lend itself 
to Satterthwaite-like estimates of degrees of freedom. 
 
3.   The Residual Technique 
3.1 Overview and Notation 
 
 In this discussion, T̂ is a statistic computed using 
final weights. The residual technique is a method of 
linearization, so the first objective is to create a 
synthetic variable such that its weighted sum has 
approximately the same variance as T̂ . This occurs 
in two stages, where first an intermediate variable, 
shik, is derived from T̂  following a linearization 
approach but replacing design weights with final 
weights.  That is, the variable shik has the theoretical 
property  
 
  )ˆ()ˆ( TVSV ≈   
 
where ∑=
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hikhik swS

,,

ˆ ; R represents a restriction 

to survey respondents; whik is the final 
weight.  

 
 Secondly, we create a new statistic that is a 
linear function of the non-interview adjusted weights 
and has approximately the same variance as Ŝ . If the 
response probabilities were known, this would 
complete the linearization procedure since replacing 
design weights with the non-interview adjusted 
weights (the ratio of the design weight and the 
response probability) in equations (1) and (2) would 
provide similarly valid estimators. If the response 
probabilities are not known, but estimated 
adequately, it is often acceptable to treat them as 
known quantities. Note that the BRR estimator does 
not rely on this assumption, although our 
linearization estimator does. For simplicity, the 
language used when describing the linearization 
approach will be consistent with defining a linear 

statistic to be linear in the non-interview adjusted 
weights.  
 The artificial statistic Ŝ  is treated as a 
generalized regression estimator of a population total.  
As such, the following relationship is established in 
the theory of generalized regression estimators: 
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where bhik is the non-interview adjusted weight; ehik 

is a residual in the weighted least squares 
regression of s onto indicators of control 
groups. 

 
 The regression procedure completes the 
linearization, and a variance estimator derived from 
equation (2) is constructed. This is accomplished 
following the arguments made by Stukel, Hidiroglou, 
and Sarndal [1996, Section 3]. The estimator is 
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 Extending equation (3) to these circumstances 
gives the implied degrees of freedom approximation: 
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3.2 The First Transformation 
 
 Expressions for shik depend on the form of the 
statistic T̂  and are often easy to find in statistical 
literature. Some examples are given in the following 
table.  These expressions were used to generate the 
numerical results in this paper.  
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Table 1 
Examples of Common Transformationsa 

Description T̂  s 

Total ∑wy  y 

Ratio or 
Mean ∑

∑
wz
wy

 )ˆ(1 zTy
wz

−
∑

 

Quantile w
pY  })({

)( 12

12 pYyI
wpp

YY w
p

w
p

w
p −≤
−

−

∑
 

aAll summations are performed over survey 
respondents; w represents the final weight; y and z are 
numeric variables; w

pY  is the pth weighted sample 
quantile of the variable y;  p1 and p2 have the property 
0<p1<p<p2<1; I(·) is an indicator function. 
 
3.3 The Second Transformation 
 
 A weighted least squares regression (weighted 
by final weights) is required to create the variable ehik 
from the variable shik. For the 1996 and 2001 panels, 
the control groups we need for the regression are 
marginals in a three dimensional table. One 
dimension consists of sex by age categories of 
Hispanics, another dimension is categories of sex by 
race by age of the total population, and the last is 
categories of sex by race by household and family 
member type of the total population. 
 
 

Table 2 
First Marginal Control Categories 

Age 
Hispanic 

Male 
Hispanic 
Female 

Non-
Hispanic 

0-14 1  5  9  
15-24 2  6  9  
25-44 3  7  9  
45+ 4  8  9  

 

Table 3 
Second Marginal Control Categories 

Age 
Black 
Male 

Black 
Female 

Non-
black 
Male 

Non-
black 

Female 
<1 1 24 48 80 
1 2 25 49 81 
2 2 25 50 82 
3 2 25 51 83 
4 3 26 52 84 
5 3 26 53 85 
6 4 27 54 86 
7 4 27 55 87 
8 5 28 56 88 
9 5 28 57 89 

10-11 6 29 58 90 
12-13 7 30 59 91 

14 8 31 60 92 
15 9 32 61 93 

16-17 10 33 62 94 
18-19 11 34 63 95 
20-21 12 35 64 96 
22-24 13 36 65 97 
25-29 14 37 66 98 
30-34 15 38 67 99 
35-39 16 39 68 100 
40-44 17 40 69 101 
45-49 18 41 70 102 
50-54 19 42 71 103 
55-59 20 43 72 104 
60-61 21 44 73 105 
62-64 21 44 74 106 
65-69 22 45 75 107 
70-74 23 46 76 108 
75-79 23 47 77 109 
80-84 23 47 78 110 
85+ 23 47 79 111 
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Table 4 
Third Marginal Control Categoriesb 

Black 
Male 

Black 
Female 

Non-
black 
Male 

Non-
black 

Female 

Household 
& Family 
Member 

Type C A C A C A C A 
HH1 - 3 - 11 - 19 - 27 
HH2 - 4 - 12 - 20 - 28 
HH3 - 5 - 13 - 21 - 29 
HH4 1 6 9 14 17 22 25 30 
HH5 - 7 - 15 - 23 - 31 
HH6 2 8 10 16 18 24 26 32 

bC = Child (Age 0-14); A = Adult (Age 15+); HH1 = 
Household with family, spouse in primary family; 
HH2 = Household with family, householder, no 
spouse present; HH3 = Household with family, 
spouse in subfamily; HH4 = Household with family, 
other household member; HH5 = Household without 
family, householder; HH6 = Household without 
family, other household member. 
 
 Since each rotation of SIPP is raked to match 
one-quarter of the population controls within the 
marginal categories, the marginals should be viewed 
as being nested within rotation group.  
 Note that in some instances, such as when the 
sample representing a control group is considered too 
small, a control group will be collapsed with another. 
In effect, there will be fewer control groups than are 
listed in the tables. The rules for collapsing are 
complicated and are not discussed here. To obtain the 
numerical results for the linearization method 
presented in this paper, we have ignored the effect of 
collapsing control groups. 
  
Summary of the regression model:  The residuals 
ehik, analogous to those expressed in equation (9.1) of 
Deville, Sarndal, and Sautory [1993], are computed 
from the whik -weighted least squares regression of shik 
onto the three categorical marginals, all nested within 
rotation group. Every respondent in the cross-section 
with a positive weight should be  included in the 
regression.  
 
4.   Cross-Sectional Differences 
 
 Due to the longitudinal design of SIPP, different 
cross-sections of the survey within the same panel are 
likely to contain many of the same persons in sample, 
resulting in a high correlation between estimates 

calculated at the two points in time. This will have a 
substantial effect on variance estimates of cross-
sectional differences, so treating the statistic as the 
difference between two independent samples is 
unreasonable. A more thorough discussion of this 
issue may be found in Roberts, et al [2001]. Let 

12
ˆˆˆ TT −=∆  be the estimated difference between 

time=2 and time=1 of a measurement. Then we have 
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which leads to the estimator 
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If equation (4) is generalized to estimates of 
covariance by replacing the squared term with a 
cross-product, the variance estimator given above 
reduces to  
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and R2 are survey respondents at times 1 and 
2, respectively; w1,hik  and w2,hik are final 
weights at times 1 and 2, respectively; 1̂T  

has a linearized variable e1,hik  and 2T̂  has a 
linearized variable e2,hik . 

 
This form of the variance estimator allows for the 
following degrees of freedom approximation, which 
is analogous to equation (5): 
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5.   Numerical Comparisons with BRR 
 
 We used data from the 1996 panel public use 
files of SIPP for numerical comparisons. These files 
have 105 pseudo-strata. Our BRR estimator used the 
replicate weights currently provided to public users, 
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which contains an array of 108 replicate weights for 
each person within each cross-section. Since the 
number of replicate weights is greater than the 
number of pseudo-strata, there is no expected loss in 
degrees of freedom between the linearization and 
replication variance estimators.  
 The comparisons were generally favorable, 
showing the linearization and replicate standard 
errors to be quite close in most situations. For 
example, Table 5 displays a comparison for a typical 
statistic of interest. We estimated the average Social 
Security payment per recipient for the months of 
November 1996 and November 1997. We were 
interested not only in this ratio of two population 
totals (total payments over number of recipients), but 
also their change between the two years. Social 
Security recipiency was chosen because of its high 
correlation with age, which is controlled for in post-
stratification. The variances of Social Security 
statistics are substantially reduced by post-
stratification. 
 As Table 5 indicates, the linearization standard 
errors are in accord with the BRR standard errors.  
The largest departure is for the number of Social 
Security recipients in November 1996, which is 
4.24% larger than the BRR standard error. Most of 
the linearization standard errors were within two 
percent of the corresponding BRR standard errors. 
 Another useful comparison that can be made is 
the ratio of the length of a confidence interval using 
linearization versus BRR. A 90% confidence interval 
using the linearization standard error is found from 
the t distribution using our degrees of freedom 
approximation, whereas the BRR confidence interval 
is found from the normal curve since degrees of 
freedom have not been computed with BRR. The 
comparisons demonstrate that the use of the 
linearization standard error and calculated degrees of 
freedom would have little impact on the length of a 
90% confidence interval for these statistics. 
  Alternatively, Table 6 demonstrates that not all 
statistics will necessarily have large degrees of 
freedom. We calculated participation rates for five 
programs in the three west coast states. The 
proportion of the civilian non-institutional population 
of Oregon with health insurance in November 1996, 
for example, has only an estimated two degrees of 
freedom.  
 Finally, Table 7 displays estimated quartiles for 
the distribution of total household incomes for the 
month of November 1996.  The linearization estimate 

of standard error was less than that of the BRR 
standard error for each quartile.  
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Table 5 

Average Social Security Payments 

 Estimate DF 
SE 

(Lin) 
SE 

(BRR) 
% 

Diff 
CI 

Ratio 
CV 

(Lin) 
Nov. 1996        
    Social Security Payments ($1000) 23,856,013 118 177,365 173,659 2.13 1.03 0.007 
    Number of Recipients 37,478,979 78 179,784 172,480 4.24 1.05 0.005 
    SS Payments/Recipient ($) 636.52 91 3.209 3.156 1.68 1.03 0.005 
Nov. 1997        
    Social Security Payments ($1000) 24,655,365 88 164,588 163,394 0.73 1.02 0.007 
    Number of Recipients 38,054,239 70 188,863 181,563 4.02 1.05 0.005 
    SS Payments/Recipient ($) 647.90 102 2.959 3.010 -1.69 0.99 0.005 
Change:  Nov. 1996 to Nov. 1997        
    Social Security Payments ($1000) 799,352 92 134,962 135,698 -0.54 1.00 0.169 
    Number of Recipients 575,261 108 163,035 161,601 0.89 1.02 0.283 
    SS Payments/Recipient ($) 11.39 48 2.821 2.858 -1.30 1.01 0.248 
 

Table 6 
November 1996 Program Participation Rates in Three States 

 Estimate DF 
SE 

(Lin) 
SE 

(BRR) 
% 

Diff 
CI 

Ratio 
CV 

(Lin) 
California        
    Medicaid 0.151 40 0.0050 0.0053 -5.44 0.97 0.033 
    Health Insurance 0.612 26 0.0081 0.0082 -0.73 1.03 0.013 
    Social Security 0.117 31 0.0041 0.0041 -1.09 1.02 0.035 
    WIC 0.027 21 0.0019 0.0019 -1.28 1.03 0.070 
    Food Stamps 0.088 30 0.0041 0.0042 -3.34 1.00 0.046 
Oregon        
    Medicaid 0.096 4 0.0210 0.0211 -0.47 1.29 0.220 
    Health Insurance 0.743 2 0.0215 0.0226 -4.87 1.69 0.030 
    Social Security 0.134 6 0.0124 0.0133 -6.77 1.10 0.099 
    WIC 0.018 4 0.0071 0.0074 -4.05 1.24 0.411 
    Food Stamps 0.069 7 0.0177 0.0176 0.57 1.16 0.255 
Washington        
    Medicaid 0.126 4 0.0117 0.0121 -3.31 1.25 0.096 
    Health Insurance 0.732 7 0.0120 0.0134 -10.45 1.03 0.018 
    Social Security 0.137 16 0.0090 0.0133 -32.33 0.72 0.097 
    WIC 0.014 6 0.0040 0.0038 5.26 1.24 0.271 
    Food Stamps 0.079 7 0.0111 0.0118 -5.93 1.08 0.149 
 

Table 7 
November 1996 Total Household Income Quartiles 

 Estimate DF 
SE 

(Lin) 
SE 

(BRR) 
% 

Diff 
CI 

Ratio 
CV 

(Lin) 
Quartile        
    0.25 1,727 117 14.20 16.20 -12.35 0.88 0.008 
    0.50 3,234 117 19.80 22.77 -13.04 0.88 0.006 
    0.75 5,248 126 32.01 34.12 -6.18 0.95 0.006 
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