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Abstract  
It can happen, especially in economic surveys, that we 
are interested in estimating the population mean or 
total of a variable Y, based on a sample, when a linear 
model seems appropriate, not for Y itself, but for a 
transformation (strictly monotonic function) of Y. In 
the present paper, we mainly focus on the important 
case where the transformation is logarithmic, but the 
ideas introduced here are not limited to that case. 
Currently available methods, based on the lognormal 
distribution, are reviewed, and two new methods 
introduced, one based on the idea of “smearing” (Duan, 
1983), which do not require the lognormal assumption. 
Theoretical biases and variances have been calculated 
(although not shown herein), and suggestions made for 
effective sample design and for reducing sensitivity to 
deviant points. We evaluate and compare the different 
estimators we describe in an extensive empirical study 
on four economic populations taken from the UK 
Monthly Wages and Salaries Survey. 
 
1. Introduction 
Given a population of N units, we wish to predict the 

finite population total ∑
=

=
N

i
iyT

1

 of a variable of 

interest Y, based on a sample s of size n from that 
population. In addition to the sampled values of Y, we 
have auxiliary information in the form of population 
values xi, i = 1, .., N of a covariate X. The standard 
approach to this task (see Royall, 1982) assumes a 
linear relationship between Y and X. Often, however, 
there is good reason to think that the relationship 
between Y and X themselves is not linear, but linear in 
another scale of measurement, so that we have 
 

                 εββ ++= )()( 10 XgYh ,                    (1) 
where β0,  β1 are unknown parameters, we allow for a 
transform of X (possibly X itself), and the errors ε  have 

mean 0 and variance 2σ . The question then becomes: 
how do we make an inference concerning T, based on 
the available data, using this model? Allowing for  
 

 
transformation of X does not of course by itself carry 
us beyond the standard linear model; the essential  
difficulty posed by (1) is in handling the transform of 
the dependent variable Y. In the present paper we focus 
mainly on the case where h is the (natural) logarithm 
log, and we also assume that g(x) = log(x), so that the 
special case of interest is the log-log model 

                  ( ) εβ +′= ZYlog                                  (2) 

where ))log(1( X=′Z  and )'( 10 βββ = . 

The use of transformations in inference has a 
long history, and has been much studied (e.g. Deming 
1984 [original publication 1943], Carroll and Ruppert 
1988), but not a great deal has been done in the 
sampling context. Chen and Chen (1996) considered an 
approach based on empirical likelihood, restricting its 
use to attainment of confidence intervals. Their results 
improved on earlier coverage attained using robust 
variance estimators based on a linear model (Royall 
and Cumberland, 1985). Karlberg (2000a, 2000b) 
assumed the errors ε  were normal (so that Y has a 
lognormal distribution) and developed predictors with 
negligible biases; see Section 2. Section 3 introduces 
two new predictors of total: a SMEARING predictor, 
based on ideas in Duan (1983), and a ratio-adjusted-
for-sample-total (RAST) predictor. Approximations to 
their biases and variances have been calculated and are 
available in a longer version of this paper; the 
respective jackknife variance estimators are 
approximately unbiased for the variances. 
Vulnerability to data values that deviate from the 
model is noted, and modifications that improve the 
robustness of the proposed methods are described. 
Section 4 describes an extensive empirical study, 
evaluating several of the approaches proposed in this 
paper. Section 5 states conclusions. 

 
2. Predictors based on the lognormal model 
A too simple response to model (2) is to use optimal 
linear methods to get an (ordinary least squares) 
estimate bols of β , back-transform to get predicted 
values of Y at non-sample values, and use these to 

predict ∑=
r ir yT , the non-sample component of T. 

Here r denotes the set of non-sampled population units. 
This gives 

∑∑∑∑∑
′− +=′+=+=

rs ir olsis iArs iA
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,
 

the naïve back-transformation predictor of T. 
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That this is not very satisfactory is readily 
seen. Suppose the errors are normally distributed, ε ~ 
N(0,σ2). Then Y has a lognormal distribution, and we 

have 2/2

)|( σβ +′= ZeXYE , so that 

( ) ∑
+′=

rr
ieTE 2/2σβz . AT̂  will be biased low, since 

( ) ( )
∑

′+′=
rAr

iolsiieTE 2/var
,

ˆ zbzz β , and ( ) iolsi zbz var′  

is of lower order than 2σ . 
  
Karlberg (2000a, 2000b) provides the following bias 
corrected estimator: 
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        ( )∑ ′−−= −
s olsiiyns 212 )(log)2( bz ,    

        issiiia zZZz 1)( −′′= , and 

Zs denotes the matrix of sample values of Z.  Under the 
lognormal assumption, this predictor has O(n-2) bias, 
and can be expected to perform well, provided the 
lognormal model holds, or nearly holds. 
 
3. The RAST and SMEARING Predictors 
The preceding transformation-based predictors use bias 
adjustments that assume a normal distribution for the 
transformed variable. We introduce two new predictors 
that escape this restriction and have other desirable 
properties. 
 
3.1 Ratio Adjustment by Sample Totals (RAST) 
A method of predicting the non-sample total Tr of Y 
should be able to exactly recover the (known) sample 
total of this variable. If it does, then the method yields 
an unbiased predictor of this sample total, and we can 
anticipate that it will then also give a close to unbiased 

predictor of Tr, and hence of T. Let iŷ  denote the 

predicted value of yi under the method of interest. Then 
this requirement translates into the condition 

∑∑ =
s is i yy ˆ . 

 
None of the lognormal predictors discussed in the 
previous section possess this property. However, for an 

arbitrary estimator )( 10 ′= bbb  of β, it is not difficult 

to modify the naïve back-transformation predictor so 

that it does. Put ∑∑
′−=

ss i
iey bzb lnlog)(γ  and 

define ))(( 10
* ′+= bb bb γ . It is then easy to see that 
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which we term the Ratio Adjustment by Sample Total 
(RAST) predictor. More generally, we can consider 
using weighted sample sums in the numerator and 
denominator of the second term. Even more general, 
for the model (1), is 

( ) ( )∑
∑
∑

∑ ′
′

+= −
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s ii
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1

1
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We assume the weights wi when normalized to be of 
order n-1

. 

 

3.2 The SMEARING Predictor  
For predicting a Y-value at Z, where Y obeys the model 
(2), Duan (1983) suggested estimating 

∫
+′= )()|( εεβ dFeYE ZZ  by  

                    ∑
+′−=

s

RiolsenYE bZZ 1)|(ˆ ,  

where the Ri are the sample residuals from the ordinary 
least squares (ols) fit of ln (yi) on zi. For an arbitrary 

estimator )( 10 ′= bbb  of β this leads naturally to the 

corresponding SMEARING predictor of the population 
total: 
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Observe that for the log-log model, the RAST predictor 
in (3) is a ratio of means estimator, and the 
SMEARING predictor in (5), a mean of ratios 

estimator, in the auxiliary 1bx . Again we can easily 
extend this to a weighted version. The generalization 
for the model (1) is 

( )∑ ∑∑ ∈ ∈
− +′+=

rj si ijis iSMEAR RhyT bz1ˆ ϕ   (6) 

where the weights iϕ  add to 1 and are of order 1−n .. 
We also consider the Twiced SMEARING estimator,  
with the predictor of non-sample total given by 

( ) ( ){ }.ˆˆ~ 11
∑∑∑ ∑ +′−++′= ′

−
′′

−
s iiiis iijr s ir RzhYwRzhT βϕβϕ

The second term amounts to an original scale residual 
adjustment, intended to accommodate model mis-
specification. 
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3.3 Biases 
If the working model is correct, then the RAST and 
SMEARING estimators have O(1/n) order biases.  
Details are available in the longer version of this paper. 

Under weighted balance, that is, if 

( )
( )∑

∑∑ =
−

P i

P

K
is

K
ii

xw

x

n

xxw 1

, for K = 0, 1, 2, 3,…  

then the RAST and Twiced SMEARING estimators are 
approximately unbiased even if the working model 
incorrect. 

To aim at balance, given a particular sample, 
we employed  “histogram weights” wI, where wi is the 

number non-sample units j having nRyy ij ≤− ˆˆ , 

for si ∈ , and  iŷ  are the fitted values from a 

(preliminary) LS fit.   
For the ϕ -weights, we considered two 

options: 

(a) ni 1=ϕ , “plain vanilla”  

(b) ii w=ϕ . 

 
3.4 Dealing with outliers 
All the predictors developed thus far assume that the 
linear model (2) for log(Y) in terms of log(X) fits well, 
or at least that Y is well behaved with respect to some 
underlying true model.  However, the reality is that the 
sample data typically include a substantial number of 
“special” values (e.g. zero) and outliers. The 
logarithmic transformation effectively controls the 
influence of raw-scale outliers, but is then susceptible 
to log-scale outliers (e.g. values near zero). These 
values can have a large effect on back-transformed 
predictions. 

In order to control the influence of such 
outliers, we use robust methods of parameter 
estimation. In particular, the simulation study reported 
on in the next section was carried out using R (Ihaka 
and Gentleman, 1996), and we estimated β in (2) using 
the rlm function, which is part of the MASS robust 
statistics library (Venables and Ripley, 1994). We used 
a biweight influence function with tuning constant c = 
4.685 and calculated the standard deviation s of the 
residuals using the MAD estimate output by rlm. 

For the RAST and SMEARING predictors, 
we can go one step further, discounting outlying terms 
that enter into the RAST or SMEARING adjustment 
terms by using the outlier robust weights {wi}, output 
by rlm. This leads to robust versions of these predictors 
such as  
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(where robb1  is the robust estimate of β1 output by rlm.) 
Thus those sample units that are effectively 

down-weighted as outliers in the log-scale in the course 
of robust estimation of the regression parameters are 
also down-weighted in the RAST and SMEARING 
adjustments. These weights are not of course the 
weights described in section 3.3 above to achieve 
weighted balance. Estimators that incorporate 
histogram weights will be codified with an “H”, those 
that incorporate robust weights, with an “R”.  The 
former (and twicing, in the case of SMEAR) is meant 
to deal with global deviations from the working model;  
the latter is intended to handle local deviations from 
the model.  It is possible to incorporate both, for 
example the Twiced Robustified SMEARING 
estimator:  
SM/RH(2) =

 ∑ ∑∑ −++
r s OiwiiOiws i yRywyRy )~(~ , 

where 
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and Oα̂  and Oβ̂  are outlier robust estimates with iw  

is histogram weights based on the sample Oiy~  values. 

 
4. Simulation Study 
We carried out an extensive simulation study on four 
populations of businesses drawn from the UK’s 
Monthly Wages and Salaries Survey (MWSS). These 
were the businesses making up two sectors of the 
MWSS sample, labeled A with population size N = 
768, and B with N = 1005. For each sector, we 
considered two dependent variables Y, wages 
(WAGES) and number employed (EMP) at the time of 
the survey. For each, the dependent variable X was 
employment as measured on the UK Inter 
Departmental Business Register, the sampling frame 
for the MWSS, at the time of selection of the MWSS 
sample. This is denoted Register EMP below. The 
populations are represented graphically in Figures 1 
and 2. It is readily apparent that the log-log transform 
yields something close to a homoscedastic linear fit, 
but with various anomalies peculiar to each population.  

Each population was independently sampled 
1000 times using (a) simple random sampling without 
replacement (SRSWOR), (b) size stratified random 
sampling (SizeSTRS), with size defined by X = 
Register EMP, (c) systematic probability proportional 
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to size sampling (SYSPPS), with X as size variable, 
and finally (d) restricted “overbalanced” PPSSYS 
sampling that give samples that are nearly balanced 
with respect to inverse X weights (details in the 
Appendix.) In all cases sample sizes were n = 50. In 
the stratified case, we employed 4 strata, with strata 
boundaries cutting off approximately equal stratum X-
totals. The “top” stratum was completely enumerated, 
with SRSWOR for the remaining strata. The sector B 
allocation was 15, 15, 15, 5, and the sector A 
allocation, 13,13,12,12. 

For all designs, we considered 10 predictors of T. 
These were the Expansion Estimator (EE), the Ratio 
Estimator (RE), the naïve back-transform predictor 
(TA), the Karlberg lognormal model-based predictor 
(TK), the RAST predictor (RA), the SMEARING 
predictor (SM), and robust versions of the last four, 
signified by TA/R, TK/R, RA/R and SM /R 
respectively. In the case of stratified sampling, we used 
both stratified versions of these predictors (that is, 
within stratum estimators – “SizeSTRS/Stratified”) as 
well as versions that ignored the strata (i.e. 
stratification was treated purely as a sampling device -
“SizeSTRS/Unstratified”). In this latter case we also 
replaced EE by the across-stratum ratio estimator 
(RE/Across) as a more suitable comparator 
commensurate with “survey practice”. 

Additionally, for SizeSTRS/Unstratified we 
added on versions of the “H” estimators, namely RA/H 
and RA/RH, SM/H, SM/RH, SM/H(2), SM/RH(2), 
SM/H(2v), SM/RH(2v),  where (2) refers to twicing, 
and “v” to the vanilla version of the choice of ϕ - 
weights (see above.)  These same additional 8 
estimators were also calculated for PPSSYS and 
overbalanced samples. 

For variance estimation, we used the Jackknife 
for all transformation-based predictors. The 
conventional design-based variance estimator was used 
for EE, while for RE and RE/Across we used the 
robust variance estimator suggested by Royall and 
Cumberland (1981). Variances were summed by 
stratum for the stratified versions of the estimators. 
Discussion of results relating to variance and 
consideration of measures of performance besides root 
mean square error (RMSE), is contained in a longer 
version of this paper available from the authors.   

We focus here on RMSE.  Table 1 gives the 
“winners” for each design/population combination.  It 
is clear that no single estimator dominates. 

 
1.    What is most notable is the impact of sample 

design.  In all case the RMSE for SRS exceeds 
that of the STRS/stratified estimators, which in 
turn exceeds the STRS/unstratified estimators, 
which is about the same as the PPS estimators, 
which, finally, exceeds the Balanced samples.  

2.   The table also suggests that the use of the 
histogram weights and twicing is more effective 
in the Y = Wages populations than for Y = 
Employment.  This makes sense since the latter 
provides a cleaner linear fit on the log scale.  (In 
fact, the hypothesis of a zero quadratic term is 
convincingly rejected for the log-log model in the 
A/Y=Wages population.) 

               
Restricting attention to just the three better 

designs, we give all the “near winners” in Table 2, 
that is, those estimators whose RMSE was within 
1.1 of the smallest for the given 
design/population.  Again, robustified estimators 
dominate and twicing and use of the Histogram 
weights have better results for the messier 
WAGES populations, and we also note:  
 
3.  Robust SMEARING (SM/R) is best for the 

conventional sample designs, in the sense of 
appearing most often (3 times in the 
STRS/Unstratified and 3 times in the SYPPS) but 
TK/R and RA/RH are close behind (both 2 and 3 
times, respectively.) 

4.     In general, robustifying seems like a very 
desirable precaution. 

5.    The conventional expansion and ratio estimators 
and the naïve estimator TA are not contenders, 
although RE/π and TA/R each appear once. 

 
        Table 3 displays  estimators in the Overbalanced 
samples which have RMSE within 1.1 of the smallest 
RMSE that occurred in the conventional designs 
(SYSPPS or SizeSTRS/Unstratified) for each 
population.  The potential gain from restricting samples 
to those with weighted balance is readily apparent. 
 
5. Summary 
Using models for transformed data to handle non-
linearity can bring gains in the prediction of finite 
population totals. However, outliers in the transformed 
scale can have a much more dramatic effect on 
transformation-based predictors than raw-scale outliers 
have on linear predictors. Our empirical results suggest 
that the robustified SMEARING, RAST, and Karlberg 
predictors are the preferred predictors for the log-log 
model (2), with further modification using twicing and 
histogram weights, where the log-log model possibly 
holds less strictly. In particular, it seems that SM/R, is 
the most consistently reliable, with TK/R and RA/RH 
not far behind. Also, SM/RH(2) is very effective in the 
messier (wage) populations.  Efficiencies are strongly 
effected by the sample design. The RAST and 
SMEARING estimators can also be applied to 
transform models other than the logarithmic transform, 
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and theoretical grounds have given leading us to 
anticipate good results.  Empirical testing of their 
behavior, however, remains for further investigation.  
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Table 1. Minimal Root Mean Square Error for each Design/Population 
 A/Y=EMP A/Y=WAGE B/Y=EMP B/Y=WAGE 
Design Estimator minimal 

RMSE 
Estimator min RMSE Estimator minimal 

RMSE 
Estimator minimal 

RMSE 
SRSWOR TA/R 

 
12.30 TA/R 20.09 TA/R 11.33 TA/R 28.27 

SizeSTRS 
Stratified 

TA/R 4.19 TK/R 10.11 TK/R 6.33 RE 13.05 

SizeSTRS 
Unstratified 

SM/RH 
 

2.18 RA/RH 
SM/RH(2) 

7.81 SM/R 4.21 SM 10.95 

SYSPPS TK 
 

2.87 TK 7.26 SM/R 3.98 SM/RH(2) 9.47 

Over-balanced SM 
 

1.05 SM/RH(2) 3.01 SM/R 3.57 SM/RH(2) 5.15 

  
Table 2. Near Best (< 1.1 Min) Root Mean Square Error for 3 Designs 

 A/Y=EMP A/Y=WAGE B/Y=EMP B/Y=WAGE 
Design Estimator RMSE Estimator RMSE Estimator RMSE Estimator RMSE 
STRS 
Unstratified 

SM/RH 
TK/R 
SM/R 
RA/RH 

2.18 
2.25 
2.25 
2.48 

RA/RH 
SM/RH(2) 
SM/RH(2v) 
SM/RH 

7.81 
7.81 
7.87 
8.41 

SM/R 
TK/R 
SM/RH 

4.21 
4.25 
4.54 

SM 
TK 
SM/R 
SM/RH(2v) 
 

10.95 
11.04 
11.29 
11.83 

SYSPPS TK 
SM/RH 
RA/R 
RA/RH 
RE/π  
TK/R 
SM/R 
 

2.87 
2.92 
3.00 
3.05 
3.07 
3.09 
3.09 

TK 
RA/RH 
SM/RH(2) 
SM 
SM/RH 

7.26 
7.70 
7.81 
7.86 
7.95 

SM/R 
TK/R 
TA/R 
RA/R 

3.98 
4.00 
4.23 
4.36 

SM/RH(2) 
RA/RH 
SM/RH(2v) 
SM/R 
SM/H 
RA/H 
TK/R 

9.47 
9.53 
9.90 
9.97 
10.17 
10.19 
10.33 

Over-balanced SM 
TK 
 

1.05 
1.09 

SM/RH(2) 
TK 

3.01 
3.17 

SM/R 
TK/R 

3.57 
3.67 

SM/RH(2) 
RA/RH 

5.15 
5.51 
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Table 3.  Overbalanced Samples: Estimators with RMSE < 1.1 of 
Minimum of RMSE in PPS, STRS/unstrat estimators  

  
A/Y=Emp A/Y=Wage 

Estimator % of min RMSE  Estimator % of min RMSE  
SM 48 SM/RH(2) 41 
TK 50 TK 44 

RE/pi 59 SM 48 
SM/RH(2) 66 RA/RH 51 

RA/RH 71 RA 53 
RA 76 SM/RH(2v) 53 

SM/RH 82 SM/H(2) 58 
TK/R 90 TK/R 70 
SM/R 91 SM/R 71 
SM/H 95 RE/pi 73 
RA/R 107 SM/RH 73 

  RA/H 77 
  RA/R 80 
  TA 103 
  TA/R 110 
  TA 103 

 
B/Y=Emp B/Y=Wage 

Estimator % of min RMSE  Estimator % of min RMSE  
SM/R 90 SM/RH(2) 54 
TK/R 92 RA/RH 58 
RA/R 102 SM/H(2) 70 

[RA/RH] [135] SM/RH(2) 71 
[SM/RH(2)] [139] SM/R 72 

  TK/R 83 
  RA/H 85 
  SM/H(2v) 91 
  SM 101 
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Figure 1. The sector A population from the Monthly Wages and Salaries Survey 
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Figure 2. The sector B population from the Monthly Wages and Salaries Survey 
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