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SUMMARY

The generalized regression predictor (greg) is used for the
estimation of a finite population total when the study variable
is well related to the auxiliary variable. Chaudhuri and Roy
(1997) provided the lower bound of the mean square error
(mse) of variance estimators belonging to a class of non-
homogeneous quadratic unbiased estimators. They also
found the optimum variance estimator whose mean square
error attains the lower bound. In the present paper, we have
shown that the derivation of the lower bound in Chaudhuri
and Roy (1997)'s paper is incorrect and their proposed
optimal estimator does not attain the lower bound as
originally claimed. An example is also provided which
contradict the result of Chaudhuri and Roy (1997). Model
assisted higher order calibration approach has been
proposed to investigate the variance of the regression
predictor.

Key words: Generalized regression predictor, Auxiliary
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1. INTRODUCTION

The use of auxiliary information in survey sampling plays an
eminent role in both the estimation and selection stages.
Typical uses are its incorporation at the estimation stage
through the use of regression, ratio or product estimators
when the study variable y is well related to the auxiliary

variable x, which is assumed to be positive. Sarndal (1982),
Sarndal, Swensson and Wretman (1992) recommended the
use of the generalized regression predictor (greg) for
estimation of the finite population total Y. Almost complete
review can be had from Singh (2003). It is well known that
the greg predictor is asymptotically design unbiased (ADU)
for Y under the Brewer (1979) approach, irrespective of the
validity of any model. Several authors including Liu (1974),
Sarndal (1982), Kott (1990), Sarndal (1996) and Zou (1999)
proposed variance estimators for the greg to facilitate the
estimation of confidence interval for the population total Y.
Chaudhuri and Roy (1997) pointed out that although the
variance estimators are ADU, under large samples, but little
is known about their efficiencies. So, Chaudhuri and Roy
(1997) provided the lower bound of the variance estimators
belonging to the class of non-homogenous quadratic
unbiased estimators for the population total under a certain
superpopulation model.  They found that the optimal
estimator attains the lower bound. The proposed optimum
estimator cannot be used in practice since it involves several
unknown model parameters. Hence, they modified the
optimum estimator by replacing the model parameters by
their estimates. In this paper, we show that the derivation of

the lower bound of mean square error, presented by
Chaudhuri and Roy (1997), is incorrect. Hence, their
optimum estimator does not attain the lower bound. So, in
our present investigation, we have proposed some alternative
estimators by using (i ) the calibration approach under a
linear superpopulation model passing through the origin and
(11 ) known population variance of the auxiliary variable x .
The efficiencies of the proposed estimators are compared
with the existing alternatives by appropriate simulation
techniques. Empirical investigations reveal that some of the
proposed estimators fare better than the existing alternatives.

1.1 NOTATION AND PRELIMINARIES

Consider a finite population U ={l,..i,.N} of N
identifiable units. Let y,;(x;)be the value of the study

(auxiliary) variable of the ith unit of the population. The
values of y;'s are unknown before survey but the values of

X;’s are assumed to be known and positive. Here we

consider the problem of estimation of the finite population
total Y= Yy, using a sample § selected by a fixed
ieU
effective size sampling design p. The inclusion
probabilities of units i and the pair of units i = j are denoted
respectively by z; and z;, and assumed to be positive.
Chaudhuri and Roy (1997) considered the following
superpopulation model
ModelM: y; = X, + €;,ieU (1.D

where A is an unknown constant, €;’s are error component,

independently distributed with E,(e;)=0and

V,(€)=0?,(cf >0, unknown). Here E,.V, denote
respectively expectation and variance with respect to the

superpopulation model M. Chaudhuri and Roy (1997)
considered the generalized regression predictor (greg) for ¥

t,= Y24 (X -y
o7 R eI (12)
o 2Oy
where I; =1if i € sand 0if i & 5, By = L———,
20Xl
ieU
0; (> 0) ’s are suitably chosen constants and X = Y x; .
ieU

The approximate expression for the variance of ¢, provided
by Sarndal (1982) is given by

E. E:
Vplt) =% 3 (Z-——LYAymy = V(y) (say)
izjelU i T;
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20X y7;

T — TT;;
where E; = y, - Bpx;» Bp —’EU— Ay = % and
leZ[:]Ql ? Tij

¥, denotes variance with respect to the sampling design p.

Chaudhuri and Roy (1997) have given an alternative
expression for V(y) as

Viy)= La; VY T oy, =V (say) (1.3)
i# jeU
where
‘xl
1 55 s VPLEZU” sz] szx (7[72' )
a=|—-1 +(Q,-x,zr, ! 5= 20%7; < idd s
7T
Zlelzﬂ'lj [ZQZ J
ieU ieU
Vp[ Z xj]sij
Tij ieU 7T;
i —[ﬂ‘;‘ 1J+(QI Qjﬁlﬂjxin)U—z
o [ZQ,‘X?’Q]
ieU
T
5wy (1 T g
-0y AT — O PR B LI
(ZQI‘XI ﬂlj [ZQixizﬂ-iJ
ieU ieU

and 7; =7x;. Chaudhuri and Roy (1997) considered the

class H , of non-homogeneous quadratic unbiased estimator
for V(y) of the form
V_V(y)_a + zbblyl Ig+Y X b_&yylyj sij (14)
i# jeU

where a.bg; and b, are constants free from y,;’s and

s
satisfy the unbiasedness conditions as follows:

E,la))=0,E,(byl;)=c; and E, (bl )=y

Here E, denotes expectation with respect to the sampling
design p. Chaudhuri and Roy (1997) derived the lower
bound of the variance of an estimator belonging to the class
H under the super-population model M given in (1.1) and
proved that the following optimal estimator

1
Vo = Za()/ _J ,Uz)”_”*‘zzay()’zyj luzluj);lj

T (1.5)

Vi#j.

+ 2o (o- + U )+Z > a,j,u,,uj
ieU i# jeU

(where y; = E,, (y;) = Bx;) attains the lower bound.

(In the expression of v, of the Theorem 1, pagel43, of

Chaudhuri and Roy (1997)’s paper, 20:1-(0-,-2 +,u,-2)” was
ieU

wrongly written as Zaiz(ai2+ﬂ,~2)”. We presume it is
ieU

simply a typographical error). In the present note we have
shown that the result concerning the lower bound of the
variance estimators provided by Chaudhuri and Roy (1997)
is incorrect and also the proposed optimal estimator v, does

not attain the lower bound as claimed by the authors. The
estimator Vv, at (1.5) can not be used in practice since it

involves unknown parameters 4;’s and o&?’s. So,

Chaudhuri and Roy proposed the following alternative

2

estimators when ; = fx;and of =o%x8 by replacing

and o2 with their suitable estimators as follows:

Za(y —¢9x ¢x )J+¢Za,xl

. . (1.6)
+€Zal-x,»2+22aij(yiyj—9xix )—+922alj
i i ] 7
and
V2 —[Zaxj[zalyz(sz/”)j_é (w/”)
i Zax(w/ir) Zax(w/ﬂ')
S5 ayiy il /7y) (.7
l#j n ) g
[ZZ% K ]] S Xayx; (g ) +¢§alx’
i# j
where
o T | { O DY
- Y x78 (’1—1)[ PR Y278 ’
2
; T ¢ ]
¢: 1 y12 [iES ’

(n_l) iesg_ inZ—g ’

ies

2. CHAUDHURI AND ROY’S THEOREMS

The lower bound of the estimator of variance given in
Theorem 1 (page 143) by Chaudhuri and Roy (1997) has
been restated in the following theorem:

Theorem 1. (Chaudhuri and Roy, 1997) Under model M,
and ve H

M()=EE v VP 2 T af ( }/ +3 Y a,,[ 1 —l}mj
U

ieU i# jeU
=M, @.1)

2 2. 2 2, 2Y 2, 2) 22
where 77 = 5[—(0[ + 4 )z’ mij =(Ui T4 XUJ +/‘j)_f“i pj and
M = Em(yt) = ﬂxi .
The equality is attained in the above if v equals
2 2 2\ Lsij
Vo= X ai(yi —oi — 4 LY Y ay(y,y, /‘lﬂj) ~
ieU i i jeU Tij (2.2)

2 2
+ Zai(ol» + U )+Z 2 il
ieU i jeU

In the following theorem we will show that v, does not
attain the lower bound M, given in (2.1).

Theorem 2.1. The correct expression for the expected
variance of v, is given by
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M(v)=E,E,(vo -V (»))

:ieral- 771'( —1)+22 > a]nl]( ij lj

i#jelU
4 55 oo | dydymy 1)
i#j#£keU U “ik JTk ik” ik~
+4 ¥y aay,u]{;/l Iul(o-2+,u12j}( ) (2.3)
i#jelU

where y, =Em( ,-3)<oo
Proof. Obvious by following Arnab and Singh (2002).

Theorem 2.2. M(v) can not have lower bound given by
Chaudhuri and Roy (1997) as follows:

1 1
2 a; [——l}ﬂ 2 X a,][ —1}7,-,' 2.4)
ieU T; i# jeU 1]
Proof. Obvious by following Arnab and Singh (2002).

3. CALIBRATED ESTIMATORS OF VARIANCE

The Horvitz -Thompson type estimator of the variance V(y)
of the greg predictor is given by

vie(y)= Zaidiyizlsi + XX aydyyiy il (3.1
1 1# J

where d;=1/7z; and d;=1/z;. Now we consider a

calibrated estimator of variance of regression predictor as

A

2
ve(y) = Zaiwz'yi I+ XX aw;yiy il (3-2)
i*

where w; and w; are calibration weights obtained by

minimizing a distance function

D, =% (wye; — dya; )2

( i ”_d”a”)z
I Wi — 4 %jj
; dia;q; Wt

Iy (3.3)
i* d aqulj Y
subject to various calibration constraints given below; g¢;

and g;; are suitably chosen weights to form different kinds

of variance estimators.
Case 1: Here we choose the calibration constraints as

Enlie]= E,lV ()] (3.4)
or equlvalently

Em()/ )]514'22“1] l] Wl(ylyj)lbl]

(3.5)
= za,-Em( i )+ 220k, Enlrir;)
; i j

For the superpopulation model (1.1) with o7 =o”xf
(c>>0and g>0),
V(x)= Zax +ZZaljxx =0 3.6)

and hence (3.5) reduces to

o’ awxll; +f {Za wix?l; +ZZa Wi x,lesy}
’ (3.7)

On comparing the coefficients of o> and A on both sides
of (3.7), the system of calibration equations becomes

i jtsij i

Za wx? +ZZ(1,/W xix il =0& Y awixf I, =Y a;xf (3.8)
In order to minimize (3.3) subject to (3.8), consider

a —d.a P W —da
$= Zwln _,_zz(—a)z[”.j

i diogg; =) dyoygy

—2/1{205 le Sl+22ayw xllesy} 2#{206 WX 151}
1

(3.9)
Now
j—¢ =0=>we; = dio; + dioyg; (ﬂxiz + ,uxig) (3.10)
Wi
and
ﬂ—O:w oy =dyay + Adeq;x; (3.11)
s
On substituting (3.10) and (3.11) in (3.8) we have
2= gy - AB2 B (3.12)
AC-B? AC-B?
were

A= Za dlqlx ISl-t-ZZal/dqux par ISU ; B= Za d;q;x8 ; Iw« ;
C= za digixPely s Ay =—v(x); Ay _za,x Zad
and ¥, (x)= zadx I +zza,,d i L

Substituting (3 12)in (3.10) and (3.11) we get
CA =By ;2 Al = BAI i

w =d; + 5 4idiXi igixf =w; () (3.13)
AC-B AC-B?

and
CA| - BA

Wij :dlj +AC—B22quU WI(Z) (say) (314)

Finally putting (3.13) and (3.14) in (3.2), we get
00 =) o) 67 st

where
~ P—-B R A BP
2 =C—g and 62 = A2=8P
AC-B AC-B?
and P = Zadq,x v +X Y a;d;qyxx vyl . Here we
l¢_]

note that p*and 67 are model unbiased estimator for B>
and o2 respectively.

~Tad;x] IWJ =7v.(1) B.15)

with 0 = Said i E vl .

Case II. Using the relation V(x)= Zax +XYayxx; =0,

i# j
we set the calibration constrain assuming 7;(x) is known as:

(i.)ZWiOll itsi zale - Tl(x)

and (3.16)
(ii )ZZanyxl xilg= ZZaUx X =1 (x) =-T1(x)

i j
The equation (3.16) satlsﬁes
V. (x) = Zawx L + X2 aywyxix ;1

i# j

=V (x)=0
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Minimization of (3.3) subject to (3.16) yields calibrated
weights

d.q.x2

w; =d,; .,_#{Za[xiz _Zdixizlsi:| =w;(2) (3.17)
Zdaqz Xl Li i

and

W, =dU.+L[ZZ% XX j sz”xlxllm} (3.18)
x4, Qg X xj[w #J ’
i#

:Wv[j(z)

On putting the values of w;(2) and w;(2) in (3.2.), we get

an alternative calibrated estimator of the variance of the
regression predictor as

90(2) = ‘A}Izt(y)+bl|:Tl(x)_Zd a1x12151:|

(3.19)
+b2[T2( )- ZZdch xllesy}
where
Zdiaiqixizyizlsi XX dyeyqixix iy il
blzl—4 and b27z¢/
2diiqix; Ly ZZdUaquUx x5 1?11
1

Case I11. Here we assume that 7;(x) is unknown and use a
constraint of calibration

(%) = Sawll +ZZawxxI =V(x)=0

iViM Lsi l]l]ljéy

(3.20)

In this situation cahbratlon weights obtained by minimizing
(3.3) subject to (3.15) come out as

d"]z‘ iz{_{;ht( )}

Zd a; q,x, o+ Z‘,Zd,]cxyqux, lew

i# j

wp=d; + =w()  (3.21)

and

dijqijxix j {— Vit (x)} _
wy = dyj + 2, i (3 (3.22)
Zdiaiqixi ISI+ZZdljayqux, XJISU
1

(where ¥, (x)= Zadx I+ Y Y aydyxx ;1 ). The resultant

i j
calibrated estimator of variance of the regression predictor is

A A

ve(3) = Vi (y) +

—vie(x)

Zd Q; f]ly, xz si + szuazquyxzxjyzyjlsu [ A ]
Zd a; qlx, o+ ZZdljaUqUx, lew
(3.23)

4. SIMULATION STUDIES

In this section, we present results of simulation studies to
compare performances of the proposed estimators
v.(1),v.(2) andv.(3) of the variance of the generalized

regression predictor );g with the conventional estimator

v, (v) (given in (3.1)) and ¥ and v, proposed by Chaudhuri
and Roy (1997). It should be noted that the estimators

v.(1), and le* are of the similar form where ,5’2, 0 and 62, ¢

are respectively model unbiased estimators for > and o?.

Both the estimators B2 and 6 involve g which is

generally unknown. So, we propose the following alternative
variance estimator:

Ve(®) =V (¥) - bvht(X)+¢(Za,x Zad ) .1
Zza,,y,y,d,,lw

l;ﬁj

ZZaUxx dljlsy
l¢]

where b= is model unbiased for >

free of g, and 4 is as given in (1.7). For the present
simulation studies, we generate three populations, each of
size 200 (= N). First we select x;’s (i = /,..., 200) as a

random sample from a gamma population with parameters
a=15 and p=1 (Mathematika with seed no: 19491000).

From each x;, we generate y; using the model: y; = fx; + ¢;
for i=1,...
sample selected independently from a normal population

,200 where for a given x;, €; is a random

with mean zero and variance ox?. Three populations viz.
Population 1, Population 2 and Population 3 are generated
with =8 o=2and g=12; pB=4,c0=1land g=1.5 and
p =4, oc=1and g=1.8, respectively. From each of the three
populations, we draw two sets of R (=2000) independent
samples, each of sizes 25 and 40 following ( i ) Simple
random sampling without replacement (SRSWOR) where
M=) and (i ) Midzuno-Sen (1952-
N(N -1)

53), (M-S for brief) sampling scheme using x;’s as the
measure of size. The first two order inclusion probabilities
for M-S sampling schemes are

n
T =— and ”lj =
N

g=¥n 2L ind
TN PN

(n—1)(N-n) N, (n=D(n-2)
P NS (N 2)(p +pf)+(N—1)(N—2)

respectively where p; =x;/X and X =Yx;. It is already
i

mentioned that for SRSWOR, ?g reduces to a ratio
estimator and a regression estimator when Q, =1/x; and
0; =1, respectively. The estimators for the variance of the
ratio and regression estimators are obtained by substituting
q; =1/x;, q; =1(x;x;)and ¢; =1, g; =1, respectively in

the proposed variance estimators v.(j)’s,j = 1,2,3,4. For the
M-S sampling scheme, };g reduces to the ratio estimator and
al’ld Qi = 1/71'1 5

respectively. We take ¢; =1 and g; =lin v.(j)’s, j =

regression estimator when O, =1/(x;x;)

1,2,3,4 for estimating variance for both the ratio and
regression  estimators. The relative efficiency of
v.(j) compared with the conventional estimator v, (y) is

E.())= —V —x100  for j= 1234 (4.2)
Ve())
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7= L SO0, 5 Tal) =L S0, 10—V, 12
_Rk:lhtyk y ’ CJ_R,cjk y

Vi (v | s;) = value of v, () computed from the sample 5,

v.(j|s,) = value of v.(j)computed from the sample s, .
Similarly, the efficiency of Chaudhuri and Roy’s (1997)
estimators ¥ and v, are computed as follows:

« 7 )
Ej=—x100 for j=12 (4.3)

—x

Vi

—x% 1 R Ak Ak A%
where 7 :EZ[vj(sk)_Vy]z and v;(s;) = value of v,

omputed from the sample s, . Relative efficiencies E.(j) and

E;"’s for SRSWOR and M-S sampling schemes for the three
populations are presented in Tablel, Table-2 and Table-3.

From the tables, we note, with the exception of v, (1) and

v.(3), that the proposed alternative estimators, including the

two by Chaudhuri and Roy (1977), provide remarkable gains
in efficiency over the conventional estimator v, (y),

irrespective of g values and the sampling design used. The
estimator v,(4) performs the best around the true value of g

for both the sampling designs (SRSWOR and M-S) except
for the Population-1 for estimating the variance of the ratio
predictor under SRSWOR sampling with n = 40 and for g<
1.2. Only this situation \31* performs the best. However, for
g> 1.2, v.(4)is the best. The second best is v,.(2) except for

estimating variance for the ratio predictor under SRSWOR
for the Population-1. v.(2) has an additional advantage as it

does not require any knowledge of g. There is no definite
ordering among v.(l), v andv, in general. It appears that

\3; performs better than v, for estimating variance of the
regression predictor around the true value of g. The
estimator v.(1) does not perform well for estimating the
variance of the ratio predictor for SRSWOR sampling with
smaller value of g. But for M-S sampling, it performs
reasonably well. The estimator v, (3) does not perform well
for estimating variance of the regression predictor of all

populations, however, it works less efficiently for ratio
predictors of all populations.

The non-negativity properties of the estimators are also
studied (details are not given to save space). It is found that
the conventional estimator v, (y)can take very often

negative values up to 40%; v.(1) and v.(3) take up to 20%;
while ¥/ andv, and 7.(2)take nonnegative values with

negligible frequency. The estimator v.(4) does not take any

negative values, as determined in this study.

The percentage relative bias (= B;;S x100) of the estimators

are also investigated (details not presented here). It is found
that the conventional estimator v, (») has up to 40% relative

bias. The estimators vy , v, , v.(2) and v,(4) have negligible
relative bias in all situations whereas v.(1) and v,(3) have

very high bias whenever they have low efficiency but in
other cases they also have small bias.

5. CONCLUDING REMARKS

The lower bound of the mean-square error of the variance of
the regression predictor, provided by Chaudhuri and Roy
(1997), is incorrect and consequently the estimator v, given
in (1.5) does not attain the lower bound as originally claimed
by those workers. The conventional estimator v, (y) should
not be used for estimating variance of the greg because (1 )
it can take very often negative values ( ii ) it is of low
efficiency and ( iii ) of high bias. The use of 7v.(4) is
recommended when some rough idea about the magnitude of
g is available. If nothing is known about g, we can safely use
v.(2) for the estimation of variance.

REFERENCES

Arnab, R and Singh, S. (2002). Calibrated estimators of the variance of the
regression predictor. Working paper. (complete proofs of the theorems are
available on request from the authors)

Brewer, K.R.W. (1979). A class of robust sampling designs for large-scale
surveys. J.Amer. Statist. Assoc., 74, 991-915.

Chaudhuri, A. and Roy, D (1997). Optimal variance estimation for
generalized regression predictor. Jour. Statist. Planning and Inference, 60,
139-151.

Horvitz, D.G. and Thompson, D.J. (1952). A generalisation of sampling
without replacement from a finite universe. J. Amer. Statist. Assoc., 47,
663-685.

Kott, P.S. (1990). Estimating the conditional variances of a design
consistent regression estimator. J. Statist. Plann. Inference, 24, 287-296.

Liu, T.P. (1974). Bayes estimation for variance of a finite population.
Metrika, 21,127-132

Midzuno, J. (1952). On the estimating system with probabilities
proportional to sum of sizes. Ann. Ins. Statist. Math., 3, 99-107

Sérndal, C.E. (1982). Implications of survey designs for generalized
regression estimators of linear functions. J. Statist. Plann. Inference, 7, 155-
170.

Sarndal, C.E., Swensson, B.E. and Wretman, J.H. (1992). Model Assisted
Survey Sampling. Springer-Verlag, NY.

Sérndal, C.E. (1996). Efficient estimators with simple variance in unequal
probability sampling. Jour. Amer. Statist. Assoc., 91, 1289-1300.

Sen, A.R. (1953). On the estimator of the variance in sampling with varying
probabilities. J..Ind. Soc. Agri. Statist. 5, 119-127.

Sengupta, S. (1988). Optimality of design unbiased strategy for estimating
finite population variance. Sankhyd, Series B, 50, 149-152.

Singh, S. (2003). Advanced Sampling theory with applications: How
Michael “Selected” Amy. pp 1-1220 (Vol. 1 and Vol. 2). Kluwer Academic
Publishers, The Netherlands. (http://www.wkap.nl/prod/b/1-4020-1689-1)



American Association for Public Opinion Resear ch - Section on Survey Resear ch Methods

Singh, S., Horn, S. and Yu, F. (1998). Estimation of variance of the
regression estimator: Higher level calibration approach. Survey
Methodology, 24,41-50.

Zou, G. (1999). Variance estimation for unequal probability sampling.
Metrika, 50,71-82

APPENDIX

Relative Efficiencies of the Variance Estimators for the
Population 1 (true value of g = 1.2) for sample size n = 25.

(i ) SRSWOR Sampling:

¢ |EE Ey  E() E.2) E.(3) E.4
RATIO PREDICTOR

0.0| 251723| 242446 8863| 258864 148959 266498|
0.5] 283719 246970 84| 258864 148959| 273022
0.8 287309 249365 258864| 148959 275436
0.9 285275| 250187 258864| 148959 275969
1.0] 281605 251015 258864 148959 276344
1.1 276354] 251835 258864| 148959 276545
1.2| 269619| 252623 258864| 148959 276546|
1.3 261538| 253346 258864| 148959 276319
1.4] 252275 253961 258864 148959 275829
1.5| 242016 254411 682 258864 148959 275033
1.6 230961| 254624 3277 258864 148959 273883
1.7| 219309| 254516 8939 258864| 148959 272322
1.8 207257 253981 21242| 258864] 148959 270285
1.9 194986 252900, 63820] 258864] 148959 267700
2.0| 182662 251134] 258864| 258864 148959 264489
2.2 158423| 244935 25966 258864 148959 255847
2.5 124630 226653 1038 258864 148959 236100

— =l |o|l—=|lo|~

(ii ) Midzuno-Sen Sampling Scheme

¢ |EE E,  E() E.() E.(3) E.4
RATIO PREDICTOR
0.0 270262 258334| 159329| 276725 142| 282462
0.5 295143| 262604 189814| 276725 142| 288648
0.8 294347 264949 208034| 276725 142| 290610
0.9 291060 265774] 2143501 276725 142| 290942
1.0] 286289 266611| 220784 276725 142 291089
1.1| 280107 267446| 227311 276725 142 291030
1.2 272618 268253| 233887 276725 142| 290737
1.3] 263957 268996| 240449| 276725 142| 290180
1.4) 254277 269627 246915| 276725 142| 289319
1.5] 243749 270085 253181| 276725 142| 288109
1.6| 232549 270292 259127 276725 142 286500
1.7 220852 270155 264612| 276725 142| 284430
1.8 208829 269561| 269483| 276725 142| 281834
1.9 196639 268378 273576| 276725 142| 278640
2.0 184426| 266455 276725 276725 142| 274768
2.2| 160427 259723| 279574| 276725 142| 264666
2.5 126878 239894| 273553| 276725 142| 242496
3.00 80760 176756 236335| 276725 142| 185314
REGRESSION PREDICTOR

0.0]{264970/201110{108247|227800 13256664
0.5|243602(202612|136977|227800 13/259375
0.8]|221801{203117| 153882/ 227800 131259072
0.9/[213706|203254(159802|227800 131258621
1.0/|205365/203366| 165887(227800, 13257977
1.1/1196868(203442|172134{227800, 131257122
1.2||188293|203463|178525|227800 13/256036,
1.3||179706(203406| 185029227800, 131254695
1.4/171166/203241|191602(227800, 131253073
1.5|162720[202931|198182(227800, 131251138
1.6|| 154409,202431/204689)227800 13248854
1.7||146263/201687/211026| 227800 13/246181
1.8/ 138309(200637|217080[227800, 131243078
1.9|1130565[199211|222719(227800, 13239498
2.0(1123045/197327|227800(227800 131235394
2.2||108717|191840[235680|227800 13(225419
2.5 89074|177976(239644|227800 13/205418
3.0 61292/136849/220507|227800 131158126

3.00 78652 168191 0] 258864] 148959| 182611
REGRESSION PREDICTOR
0.0]258725/195054| 10616221941 7/251598
0.5/|241534{195900, 97720/221941 71254184
0.8]220310| 196026| 128768 221941 71253984
0.9]212186|196038| 137822221941 7/253599
1.0]203744]196026| 146563221941 71253037
1.1)/195090/ 195978| 155093 221941 71252280
1.2) 186320/ 195876| 163469 221941 71251309
1.3)|177518/195697|171713/221941 71250100
1.4 168754]195413/179818/221941 71248627,
1.5]160087)194987)187748/221941 7/246857|
1.6]151565/ 194377195443 221941 71244755
1.7)|143225/193531/ 202821221941 71242281
1.8]| 135099 192392209779 221941 71239390
1.9]127208/190891/216197/221941 71236036
2.0] 119569188954 221941/ 221941 7/232168
2.2/ 105091 183448230848 221941 71222686
2.5| 85442169891|235823 221941 7203413
3.0 58149 130552218002 221941 7156989

(iii ) Remark: Note that similar results for different true
values of model parameter g =1.5, 1.8 and different sample

sizes n =25, 40 are available from the authors, but are not
cited due to space limit of six pages.
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