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Abstract:

It is straight forward to analyze data from a single
multinomial table. Specifically, for the analysis of a
two-way categorical table, the common chi-squared
test of independence between the two variables and
maximum likelihood estimators are readily available.
When the counts in the two-way categorical table
are formed from familial data (clusters of correlated
data), the common chi-squared test no longer ap-
plies. We note that there are several approximate
adjustments to the common chi-squared test. How-
ever, our main contribution is the construction and
analysis of a Bayesian model which removes all an-
alytical approximations. This is an extension of a
standard multinomial-Dirichlet model to include the
intra-class correlation associated with the individ-
uals within a cluster. This intra-class correlation
varies with the size of the cluster, but we assume
that it is the same for all clusters of the same size
for the same variable. We use Markov chain Monte
Carlo methods to fit our model, and to make poste-
rior inference about the intra-class correlations and
the cell probabilities. We use data from the National
Health Interview Survey to show how our alternative
test performs and to obtain the posterior density of
the cell probabilities. Also, using Monte Carlo inte-
gration, we obtain the Bayes factor for a test of no
association.

Key words: Bayes factor, Gibbs sampler, Monte
Carlo integration, Multinomial-Dirichlet.

1. Introduction

It is a common practice to use two-way categorical
tables to present survey data. In this situation it is
assumed that the cell counts in the r X ¢ table follow
However, because of
stratification and clustering the joint distribution of
the cell counts is no longer multinomial. Thus, the
standard chi-squared statistic no longer has a chi-
squared distribution, and therefore the test based
on the multinomial distribution may be inadequate.

a multinomial distribution.
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It is standard practice to make an adjustment to
the standard chi-squared statistic, but in general the
accuracy of this adjustment is not well understood,
and one can not estimate the cell probabilities based
on this adjustment. We propose a Bayesian alterna-
tive which is based on the Bayes factor to obtain a
test for association between the two categorical vari-
ables. Our Bayesian method also provides posterior
distributions for the cell probabilities.

Several authors have recognized inaccuracy in the
analysis when the usual chi-squared test is applied
to correlated “multinomial” data. Efforts to correct
for spurious inflation in such tests have been based
on two approaches. The design-based approach pro-
vides inference with respect to the asymptotic sam-
pling distribution of estimates over repetitions of the
sample design (Fellegi 1980, Holt, Scott and Ewings
1980, Rao and Scott 1981, 1984, Bedrick 1983, and
Fay 1985). For example, Rao and Scott (1981) inves-
tigate the effects of stratification and clustering on
the asymptotic distribution of Pearson’s chi-squared
statistic for goodness of fit and independence. They
propose new measures called generalized design ef-
fects. See also Rao and Scott (1984) who general-
ized the results of Rao and Scott (1981) to multi-
way categorical tables. The model-based approach
postulates a probability distribution to model the
sample data (Altham 1976, Cohen 1976, Brier 1980,
Fienberg 1979, and Choi and McHugh 1989). For
example, Choi and McHugh (1989), applying the
probabilistic development in Altham (1976), shows
how to adjust the standard chi-squared test statistic
when there is an intra-class correlation and data are
weighted. Of less relevance, we also note a recent
activity on the adjustment of the chi-squared test
statistic when there is missing data under stratified
random sampling.

Let n;; denote the number of individuals in the
j** row and k** column of the r x ¢ categorical
table. Also let n;. = > ;_,njx, § = 1,...,7,
ng = Z;:l Njk, k= 1,...,C, n = Z;Zl 22:1 Njk
and ejx = njng/n, j = 1,...,r, k = 1,...,c
Then, Pearson’s chi-squared statistic, under inde-
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pendence of the row and column classification, is

Xu=) ) (njr —en)/ejn.

j=1k=1

If the responses from the individual members are in-
dependent and identically distributed, then asymp-
totically (as n — o0) X, — X?r—l)(c—l)’ a chi-
squared random variable with (r — 1)(c — 1) degrees
of freedom. In practice, the validity of the chi-
squared test depends on (a) the magnitude of the
expected values e;; and (b) whether the cell counts
(njx, 5=1,...,7 k=1,...,c) follow a multinomial
distribution given the sample size n (i.e., the indi-
vidual responses are independent and identically dis-
tributed). In (a) the test is valid if the e are larger
than 5, and clearly the only way to achieve this is to
increase the sample size subject to cost. In (b) when
there is correlation among the members (e.g., famil-
ial correlation), the asymtotic distribution of X,, is
no longer X?r—l)ﬁ;—l)’ and the estimates of the cell
proportions can be inaccurate. The problem about
the asymtotic distribution has received much atten-
tion, but the problem about the inaccuracy of the
estimates of the cell proportions has received virtu-
ally no attention. We address both problems simul-
taneously within a Bayesian framework in this paper
when there are familial count data.

We describe one solution that has been proposed
for the problem about the asymptotic distribution.
Let n; denote the number of members in all fam-
ilies of the same size t = 1,...,T, and let 6, de-
note the intra-class correlation for clusters of size ¢
(8; = 0). Motivated by Rao and Scott (1981), Choi
and McHugh (1989) derive the following adjusted
chi-squared statistic

T
Xo =X {14071 (t—1)nb} "

t=1

which is more accurately x?r_l)(c_l). The p-value
corresponding to the adjusted chi-squared statistic
will be larger.

We provide a Bayesian analysis of this problem.
This is a direct extension of the probabilistic devel-
opment in Altham (1976) which is used to provide
a likelihood function. Then proper but noninforma-
tive priors are assigned to the parameters to provide
a full Bayesian approach. The model includes a non-
negative intra-class correlation which varies accord-
ing to the number of individuals in a cluster (i.e., all
clusters of the same size have the same intra-class
correlation). In this framework we can provide (a)
the posterior densities of the cell probabilities and

(b) a test of association between the two categori-
cal variables. For weighted data they further adjust
X?T—l)(c—l) appromiately by the average weight.

In (b) we use the Bayes factor to quantify the
difference between a model with association and one
without. This is the ratio of the prior odds of one
model to the other to their posterior odds (obtained
through the use of Bayes’ theorem), and it is the
same as the ratio of the marginal likelihoods of the
data under two models, one without association and
the other with association. See Kass and Raftery
(1995) for a very informative discussion about the
Bayes factor and a rule of thumb for quantifying the
degree of evidence. There are several methods to
compute the marginal likelihood (e.g., see Section 1
of Chib and Jeliazkov 2001), and we note that one
standard method is Monte Carlo integration using
an importance function.

In this paper, we introduce a Bayesian method to
analyze data from an r X c categorical table. We
consider the situation in which there are no missing
data, but one in which the table is built up by aggre-
gating clustered multinomial data. In Section 2, we
describe the methodology to obtain estimates of the
cell probabilities, and to obtain the Bayes factor for
a test of no association between the two categorical
variables. We also show how to use Markov chain
Monte Carlo methods to fit the models. We show
how to use Monte Carlo integration with an impor-
tance function to compute the marginal likelihoods
under different models. In Section 3 we illustrate
our method using data from the National Health In-
terview Survey. In Section 4, we perform several
simulated examples to compare inference using our
model with another model which does not incorpo-
rate the intra-class correlation. Finally, Section 5
has concluding remarks.

2. Bayesian Methodology

We describe the methodology to fit “multinomial”
data when there is an intra-class correlation. We

build our model based on the work of Altham (1976).
2.1 Model

Suppose that there are s; individuals in the 3**
cluster, s = 1,...,£, and s;;; individuals fall in the
7** row and k** column in the r x c table, j=1,...,
k:l,...,c. Here E;:l 22:1 Sijk = Si, Sijk Z 0. Al-
tham (1976) shows that the probability that all s;
individuals fall in the j** row and k** column is

Os;mjk + (1 — 05, )73 (1)

and the probability that the individuals are in dif-
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ferent specified cells is

(1—6,,

I IT ="

j=1lk=1

(2)

where we allow the intraclass correlation 6,,, 0 <
0s; < 1, to depend on the cluster size s;. Note that
(1) can be interpreted as a mixture of two distribu-
tions. Let ws, be the latent variable

_ L,
Wy, = 0,

where p(w,;, =1 |6;,) =1 —p(w,, =0 85,) = b5,
and dependence/independence refers to the intra-
class correlation. Note also that the notation in Choi
and McHugh (1989) is slightly different.

This model of clustering permits only positive
association or independence among the individuals
within a cluster, and this is typically the case for
many demographic, social and economic character-
istics.

Note that 8,75 + (1 — Gsi)ﬂ;;'c is strictly increas-
ing in 6;;. When 6,, = 0, the probability that all
individuals in the ** cluster belong to cell (j, k)
is ﬂ;;;, and when 6,, = 1, the probability that all
individuals in the i** cluster belong to cell (j,k)
is 7T]k, which can be much larger. In addition,
(1 - )H] oy 5“” is a strictly decreasing
function in 0,,. When 0 = 0, the probability that
the individuals in the i”” cluster belong to different
specified cells is 7} k, and when 6,, = 1, the proba-
bility that the 1nd1v1duals in the i** cluster belong
to different specified cells is 0. Thus, the intra-class
correlation has an important role when inference is
made about the m;; and the association between the
two categorical variables.

Let C denote the set of clusters in which all indi-
viduals fall in a single cell of the r x ¢ table. Then
letting 8§; = {si]-k},

perfect dependence
perfect independence

01I']k—|—(1 )]k’ 1€C

p(fi | 81,9“,71') =

(1—65,)s:! Hﬂs”k/s”k
(3)

Assuming independence over clusters, we have

II H{Gs,m +(1-

1€C 3.k

p(f | sl,...,sl,g,ﬂ )”;ic}

x JT{(L - 6s.)s:! Hfr““/s”k }

i¢C

i¢c.

Observe that if6,, =0, : =1,...,¢,

H{51 H swk/swk 3

which is a product of multinomial probability func-
tions and the statistics Zle sijr = nyx are suffi-
cient as in regular multinomial sampling (i.e., ob-
servations are from a simple random sample) and
each individual belongs to cell (j,k) with probability
mik > 0, 3oiog Dogoy Mk = L.

Suppose that each cluster has size t, t=1,...,T; in
applications T is typically 2 to 4 or so. Then let-
ting g:j% denote the number of clusters in C of size
t with all individuals in cell (j,k) and §; the number
of clusters of size t in C (i-e., outside C),

p(f | S1y ey sbga m

T,r,c
p(f | S1y ey slaga 71-) & H (etﬂ-]'k—i_(l_et)ﬂ-;k)gtjk
t=1,7=1,k=1
X {H 1 - gt gt} H{Sl H H ﬂ-]”k /S’L]k
i¢C j=1lk=1

Finally for a full Bayesian approach, noting that
6, = 0, we assume

8, % Uniform(0,1), t=2,...,T

and independently
m ~ Dirichlet(1).

These are noninformative but proper prior densities.
Observe that

(Bemjn + (1 — 8y)mjy )7 =

gtk
Z gtjk
25k

z4x=0

) (etﬂ']'k)ltjk{(l _ et)ﬂ;k}ggjk—ztjk'

The latent variables z;;; simplify the computation
because they replace the mixture with a product and
they provide more accessible conditional densities
(see Robert and Casella 1999 for the demarginaliza-
tion trick). Thus, incorporating the latent variables
into our model, the joint posterior density of 4, , z
given s is p(6,m, 2z | s) to T

1— 9 gt < gtjk )
H( ) H H
X (@rmjx)**{(1 - 9t)7T g pIrir TR Hﬂ'sjk
5k
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where §j; = Zigc Sijk-

2.2 Computation

The joint posterior density is complex, so we use
the Gibbs sampler to draw samples which are used
to make inference about 7 and 6.

To run the Gibbs sampler we need starting values
for 0 and m, and these are easy to obtain. Letting
njg = Zf 1 8ijk and n = E] 1 > r_1 Mk, we take
fjx = njg/nand 6, = 1/t, t = 2, ..., T. We also take
zejk = Gejr[Oemin/{Bemjx + (1 — 9t)ﬂ§-k}]-

The conditional posterior densities (cpd’s) of each
parameter given the others are needed to implement
the Gibbs sampler. Note that z;; = 6, = 0. Specif-
ically, the cpd for 8 is

O | 7, 2,8 8 Beta { 1 + Zzt]k,
5k
1+§t+2(gtjk_ztjk)a t= 2a" aTa
5k
the cpd for 7 is
T
7 | 6,2, s ~ Dirichlet {1 + 9%+ Z[ztjk—}—
t=1
t(gt]-k—ztjk)]—l—éjk, i=1...,7 k= 1,...,6}
and the cpd for zis, t=2,...,T, j=1,...,r, k=
1,...,¢ i

n . . 0
Zk | 0,7, 8 nd B1nom1a1{gt]k, - +t(71T]k - ) } -
T — 6

We “burn in” 1000 iterates, and took every tenth
to get 1000 iterates which we use for inference.
These choices are very conservative, and the algo-
rithm runs very quickly.

2.3 Inference

To test for association between the two categorical
variables, we use the Bayes factor, the ratio of the
two marginal likelihoods. A problem of the slightly
less interest is to test for no intra-class correlation.

Consider our problem with intra-class correlation.
For the model with association, taking #; = 0, the
marginal likelihood is

T,r,c

Pas(s) = (rc —1)! //H{Gﬂmﬁ—(l 6, )t 9
X{H 1—6. ”‘}H{sz'H ;;“Jk 7 ydbdr
i¢C ]k

and for the model without association the marginal

likelihood is

T,r,c

pnas(s) = (r — 1)l(c — 1)! ///H{otq] o2

t.j,k

(1 - 6)(g" }M{H (1— 6,7}
2) s,Jk
x T {s: 'H }dg{"dg{ a6

i¢C ik

Ek 1‘1k =

where mj; = q]( )q,(c ) and E] 1q]
1.

Then, it is easy to show that

(TC - 1 H{sl'/ H 31]k

i¢C

Pas( )

T T,C
x HB{thjk +1,8¢ + 1} D(a)

t=2 7.k
Trc
—0: s _1i,..
/ / T 17
7I' t=2,7, k t
T T,C
x [T{67+ (1 = )7 /B(Y_ gujr + 1, §¢ + 1)}
t=2 5k
x Hﬂ]“ﬂ Y/ D(a)dbdr, (4)
T
where aj; = th]-k—i—z:si]-k—}—l,j =1,...,7, k=
t=1 i¢c
1,...,¢, and gy = E;’Z gtjk- 1t is also easy to

show that and

(r— 1) — D[ {s:/ T T 5i5x3

igc j=1k=1

Pnas(f) =

T T,C
x [T BLY. gtk + 1,3 + +1} D1(a!))Da(a®)

t=2 5k
T e L=0 ) @yt
X IT [+ ——(gMg®y1es
g g(l)g(Z) t=2,5,k t
T 99t++(1 6 )g,

x [[{—=+ — }
=2 B(thjk +1,4:+1)
ik
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, @W@P-1) (2@ -1
( QIO

i E (1) gg2)
<11 Dam) D) 44 ()

j=1

where ag-l) = Zajk and a,iz) = Zajk, Dl(?) =
k=1 j=1

D(a1. + 1,...,a,. + 1) and Dz(a) = D(a;i +
L...,ax +1). i

We use Monte Carlo integration to execute (4) and
(5) with previous importance functions.

We have chosen the Monte Carlo sample size to
M=10,000. Numerical standard error can be ob-

tained in an obvious manner.

3. Examples from the NHIS

The National Health Interview Survey (NHIS) has
been conducted every year since 1957 by the Na-
tional Center for Health Statistics (NCHS) to mea-
sure an aspect of health status of the U.S. population
(see Adams and Marano 1995). Through this sample
survey, NCHS conducts surveys on chronic and acute
conditions, doctor visits, hospital episodes, disabil-
ity, household and personal information, and other
special aspects of health of the U.S. population. One
of the variables we use in the NHIS is activity limi-
tation status, and the relation between age and ac-
tivity limitation status is of interest.

Activity limitation status (ALS) is a measure of
long-term disability resulting from chronic condi-
tions. It is defined as inability to carry out the ma-
jor activity for one’s age-sex group such as working,
keeping house or going to school; restriction in the
amount or kind of major activity; or restriction in re-
lation to other activities such as recreational, church
and civic interests. ALS has served as a measure of
long-term disability since the inception of the Health
Interview Survey in 1957. ALS is typically classified
into three categories: “unable to perform major ac-
tivity”, “limited in kind/amount major activity and
in other activities” and “not limited (includes un-
knowns)” ranging from severe individuals to indi-
viduals unnecessary to classify.

In the health interview survey, information (i.e.,
chronic disease and impairment) for each household
member about the major activity he usually per-
formed during the 12 months prior to interview is
requested by the interviewer. Age is an important
determinant of ALS; there is a positive association
between ALS and age. To study the relation between
age and ALS three age groups (under 56 years, 56-70
years and more than 70 years) are used.

The households are poststratified by states and
there are data from all 51 states (including the Dis-
trict of Columbia). For some states there are ex-
tremely small numbers of sampled households (e.g.,

Iowa, Idaho, Wyoming) and for some states there
are extremely large numbers of sampled households
(e.g., California, New York, Texas). We study these
states individually and we report results for Iowa,
Maryland (medium size state) and California to il-
lustrate how our procedure performs. It is of general
interest to test the hypothesis that age and ALS are
independent and to estimate the proportion of indi-
viduals in each cell of the 3 x 3 table. We present
the 3 x 3 tables for Iowa, Maryland and California
in Table 1.

In Table 2 we compare the correlations. We can
see that the 6; are moderately large and the 95%
credible intervals narrow down from Iowa to Califor-
nia (i.e., inference is much sharper for California).
At least for Maryland and California one needs to
evaluate the impact of these 6.

In Table 3, there is very strong evidence of a posi-
tive association between age and ALS for Maryland
and California using both the Bayes factor and the
chi-squared tests. However, the difference between
the two models does not matter for California, but
there is a small difference for Maryland. For Iowa it
appears that there is no association between age and
ALS; the chi-squared test shows the contrary with
some expected cell counts smaller than 5 (defective
chi-squared test).

In Table 5 we present summaries of the posterior
distribution of the m;;. In general, inference is very
sharp even for Iowa. It is very interesting that infer-
ence about the m;; can differ under the model with
intra-class correlation and the one without. For ex-
ample, the 95% credible intervals of m3; are (.32,
.39) versus (.63, .72) for Iowa, (.32, .36) versus (.67,
.73) for Maryland and (.64, .66) versus (.75, .77) for

California.
4. Simulated Example

We have simulated data from our model to assess
how changes in the intra-class correlation affect (a)
inference about the ;.

We have chosen the 7, to represent association
between the categorical variables in a 3 x 3 table.
Specifically, we choose m1; = .05, m2 = .10, m3 =
.15, m21 = .15, T2 = .10, T3 = 05, m31 = .20,
w32 = .15, and w33 = .05. Letting cx denote the
number of clusters of size k, k = 1,...,T = 5, we
take ¢; = 50, ¢ = 150, ¢c3 = 100, ¢4 = 50 and
cs = b0 to get a total of 1100 observations. We
have taken 6y = 6, k = 2,...,T(T = 5), and we
study 5 values of 6 (.1, .3, .5, .7, .9). Thus, we
study the effect of our choice of 8 on inference about
m;x and the association between the two categorical
variables. We note that when 6 is small (large), there
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is a tendency for the simulated individuals to be in
different (same) cell(s) of the r x ¢ table.

We have simulated a single data set of size 1100
for each value of §. We fit our model to each data
set using the Gibbs sampler as described in Section
2.2.

We have presented results for our simulated ex-
amples in Tables 6 and 4. As for the m;; the pos-
terior summaries indicate that the model with the
intra-class correlation is more in concordant with the
design values than the regular multinomial, and the
regular multinomial degrades as 6 increases. We also
note that apart from 8 = 10, the posterior sumaries
are concordant with the design values for §; and 5.

5. Concluding Remarks

We have shown how to analyze multinomial data
from r X ¢ categorical tables when there is an intra-
class correlation. We have also shown that by using
the Bayes factor (ratio of the marginally likelihoods
of two models) we can test for association between
the two categories.

We have analyzed 3 x 3 categorical data of age and
activation limitation status from the 1996 National
Health Interview Survey. We have found moderately
large intra-class correlations, and these correlations
have small effects on tests of hypothesis (both the
standard chi-squared test and our Bayesian alterna-
tive). We have reported results for Iowa, Maryland
and California, and shown that inference for Iowa is
problematic due to the sparseness of the data.

In future we can extend our methodology to ac-
commodate (a) small areas (b) nonresponse and (c)
an intra-class correlation coefficient corresponding
to each categorical variable. In (a) we can consider
the states (including the District of Columbia) as
small areas. There are very sparse data from some
of the states (e.g., Iowa, Idaho, Wyoming), and to
make reliable inference about one of these states, one
needs to “borrow strength” across the states. In (b)
there is a non-negligible number of nonrespondents
from each state, and one would need to construct a
model that can adjust for nonignorable nonresponse.
Finally, in (c) we can replace 5, in Altham’s formula
by L(ks; + 1)8s,, 0<8,, <1, 0 <k, <O, 0=

1,...,£ with an appropriate joint prior density on
(Bs:5 £s;)-
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Table 1: Classification of sampled individuals in
1996 NHIS for Iowa, Maryland and California by
age and activity limitation status (ALS)

Table 3: Comparison of the Bayes factors (BF) and
chi-squared tests with or without intra-class corre-
lation for Iowa, Maryland and California

Test BFy BF; x2 X2

IA 35 2 27(0.00)  19(0.00)

MD 7 16 67(0.00)  46(0.00)

CA 205 218 606(0.00) 425(0.00)
NOTE: The Bayes factors are on the log-scale. The
p-value of the chi-squared tests are in parentheses.

BF (1=with intra-class correlation; 2=without
intra-class correlation) and x?(u=unadjusted;
a=adjusted).

ALS
State Age 1 2 3 Total
Iowa 1 7 21 264 292
2 6 3 42 51
3 4 10 27 41
Total 17 34 333 384
Maryland 1 13 60 633 706
2 13 20 81 114
3 3 23 51 77
Total 29 103 765 897
California 1 176 378 5638 6192
2 106 123 490 719
3 51 120 278 449

Total 333 621 6406 7360

NOTE: Age (1: under 56 years; 2: 56-70 years; 3:
over 70 years) and ALS (1: unable to perform
major activity; 2: limited in kind/amount major
activity and limited in other activities; 3: not
limited (includes unknowns).

Table 2: Comparison of the posterior mean (PM),
and 95% credible intervals (CI) for the intra-class

correlations (i.e., 0, k = 2,...,5) for Iowa, Mary-
land and California
IA MD CA

k PM(CI)  PM(CI) _ PM(CI)

2 43(.2,.6) .46(.3, .6) .33(.3,.4)

3 .58(.4,.8) .61(.5,.7) .37(.3,.4)

4 .56(.4,.7) .63(.5,.8) .60(.5,.7)

5 .82(.6,1) .44(.2,.7) .58(.5,.6)

Table 4: Logarithm of Bayes factors under two mod-
els, the model with intra-class correlation and the
regular multinomial model, and the adjusted chi-
squared statistic for five values of intra-class corre-

lation (.1, .3, .5, .7, .9)

Log Bayes Factor

0 IC NoIC xZ 2

0.1 30 76 169 165

0.3 28 101 208 183

0.5 31 101 212 159

0.7 20 66 145 102

0.9 22 48 111 72
NOTE: The Bayes factor is the ratio of the

marginal likelihood for a model with association
(i.e., no restriction on m;;, E;:1 Sroimie=1) to
the marginal likelihood for a model with no
association (i.e.,mj; = m; mg,

Yi=1mi = Xg=1 ™ = 1). X3 and xg are
respectively the unadjusted and adjusted x? tests.
The p-values are zeros for both x2 and xZ.
IC=Intra-cluster correlation.
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Table 5: Comparison of the posterior means (PM),
and 95% credible intervals (CI) for mj; with and
without intra-class correlation for Iowa, Maryland
and California

Table 6: Posterior means (PM) of cell probabilities,
and 95% credible intervals (CI) for m;; under two
models: with and without intra-class correlation for
three values of intra-class correlation (0.1, 0.5, 0.9)

Intra-class No intra-class . .
IC correlation  NIC correlation
Cell PM __CI PM CI § Cel x PM__ CI___PM__ CI
lowa
(1, 1) .082 (.06, .10) .020 (.01, .04) 1 05 .05 (04,.07) .04 (.03,.06)
(1, 2) .044 (.03, .06) .017 (.01, .03)
2 .10 .11 (.09,.13) .11 (.09, .12)
(1, 3) .038 (.03,.05) .012 (.00, .02)
3 150 .14 (\12,.17) .16 (.04, .18)
(2, 1) .119 (.10, .14) .056 (.04, .08)
4 A5 .15 (\13,.17) .15 (.13, .17)
(2, 2) .065 (.05,.08) .010 (.00, .02)
1 5 .10 .09 (.07,.11) .10 (.08, .12)
(2, 3) .060 (.05,.08) .028 (.01, .05)
6 .05 .05 (.04,.07) .05 (.04, .06)
(3, 1) 351 (.32,.39) .674 (.63, .72)
7 20 .21 (.18,.23) .21 (.19, .24)
(3, 2) 139 (.12, .17)  .110 (.08, .14)
(3, 3) .100 (.08, .12) .072 (.05, .10) 8 1515 (13,.17) .14 (12, .16)
! ! ! 9 .05 .05 (.04,.07) .04 (.03, .06)
Maryland
(1, 1) .092 (.08, .10) .015 (.01, .02) L 05 .05 (.04,.06) .06 (.04,.07)
2 .10 .11 (.10,.13) .11 (.09, .13)
(1, 2) .059 (.05,.07) .016 (.01, .03)
3 150 .14 (\12,.15) .14 (.12, .16)
(1, 3) .030 (.02, .04) .004 (.00, .01)
4 150 .14 (.13,.16) .15 (.13,.17)
(2, 1) 128 (.11, .14) .067 (.05, .08)
5 5 .10 .11 (.09,.12) .11 (.09, .12)
(2, 2) .070 (.06, .08) .023 (.01, .03)
6 .05 .06 (.05,.07) .06 (.04,.07)
(2, 3) .062 (.05,.07) .027 (.02, .04)
7 20 .19 (.17,.21) .18 (.16, .20)
(3, 1) .340 (.32,.36) .700 (.67, .73)
8 150 .15 (\13,.17) .16 (.13, .18)
(3, 2) 135 (.12, .15) .090 (.07, .11) 9 05 .06 (.05,.07) 06  (.05,.07)
(3, 3) .084 (.07,.10) .058 (.04, .07) ) ) ) ) )
1 .05 .07 (.05,.09) .05 (.04, .07)
California
(1, 1) .041 (.04, .05) .024 (.02, .03) 2 10.08  (.06,.11) .08  (.07,.10)
3 150 .14 (11, .17 .13 (.11, .1B)
(1, 2) .023 (.02,.03) .015 (.01, .02)
4 15 .13 (.10,.16) .15 (.12,.17)
(1, 3) .013 (.01,.02) .007 (.005, .009)
9 5 .10 .09 (.07,.12) .10 (.08, .12)
(2, 1) .083 (.08,.09) .051 (.05, .06)
6 .05 .06 (.04,.08) .04 (.03, .06)
(2, 2) .029 (.02,.03) .017 (.01, .02)
7 20 .23 (.19,.26) .22 (.19, .24)
(2, 3) .026 (.02,.03) .016 (.01, .02)
8 15 .15 (L11,.18) .17 (.15, .19)
(3, 1) .650 (.64, .66) .765 (.75, .77)
9 .05 .07 (.05,.09) .07 (.05, .08)
(3, 2) 090 (.08,.10) .067 (.06, .07) NOTE: No intra-class correlation (NIC) refers to
(3, 3) .046 (.04, .05) .038 (.03, .04) )

the standard Multinomial-Dirichlet model.

NOTE: For 9 cells
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