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1.  QUESTIONS TO BE CONSIDERED IN THIS PAPER

When a model generates a finite population, what would lead to a
violation of that model in the sample (i.e. lead to informative
sampling)?

When analysing survey data, what are the assumed “repetitions”
when taking a frequentist approach to inference?

Why would approaches that have been developed for inferences
about fixed finite populations be appropriate for inferences about
model parameters?

2.  AN ARTIFICIAL EXAMPLE

Model and data generation

We begin with a simple modelling problem.  The following data
have been generated randomly using 100 independent and
identically distributed Bernoulli trials (M or F), where the
unknown Bernoulli parameter is :

M M M M F F M M M F F F F F M F M F M M
F M F M F M F F M F F F F F F M F M M F
F M M M M M F M M M M M M F F M M F F M
F M F M M F M F F M F M M M M M M F F M
M M M F F F M F M M F F F M F F F M M M
The data generated consist of  46 F’s and 54 M’s.

Model-based method for estimating 

The standard method for estimating , the parameter of interest,
from data generated in this manner is the following:

We let

Under the independent, identically distributed  Bernoulli model, the
loglikelihood function is:

.

Maximization of this likelihood then leads to the estimator
, where  is the number of Bernoulli trials.  Under

this assumed model, it is well known that the expectation of  is
, and the variance of  is

.

As well, the usual estimated variance of  is given by:

.

What is random here?

We are assuming that the randomness is due to repetition of
“experiments”, each consisting of 100 independent and
identically distributed Bernoulli trials, where  is the
target  parameter.  We denote this randomization as

-randomization.

A simple example of sampling theory

The finite population

We now consider a finite population consisting of these 100
observations as a starting point.  The observations have been
arranged into households using a non-random process. The
results are as follows:

(M M M M F),(F M),(M M F),(F F F F M),
(F M),(F M),(M F),(M F),(M F),(M F),(F M),
(F F F F F F M),(F M),(M F),(F M),
(M M M M F),(M M M M M M F),(F M),(M F),
(F M),(F M),(F M),(M F),(M F),(F M),
(F M),(M M M M M F),(F M),(M M M F),
(F F M),(F M),(M F),(F F M),(F F F M),(M M)
We consider persons in these 35 households as the finite
population of interest. This population contains 46 F’s and
54 M’s clustered into households that are distributed as follows:

(1M,1F)-23; (2M,0F)-1; (2M,1F)- 1; 
(3M,1F)-1; (4M,1F)-2; (5M,1F)-1; (6M,1F)-1;
(1M,2F)-2; (1M,3F)-1; (1M,4F)-1; (1M,6F)-1.
Note that even though the M’s and F’s were originally generated
from an independent and identically distributed Bernoulli model,
the larger households have more M’s or F’s than would be
expected from a purely random assignment of units to
households of given sizes.

Sampling from the finite population:

We cannot observe the complete finite population, but we are
interested in estimating , the proportion of F’s in this
population.  We now take a cluster sample by selecting m
households from the 35 households at random, with replacement,
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using selection probabilities proportional to household size, and
then enumerating all persons in the selected households.

As an example, letting m=10, we select a sample, and observe:
(1M,1F)-6;(4M,1F)-1;(1M,6F)-1;(1M,2F)-1;
(4M,1F)-1.
We use this particular sample below for illustration. 

What is random here?

Here it is assumed that the randomness is due to the repetition of
“experiments”, each consisting of selecting the m households
from the 35 households.  The number of M’s and F’s in each of
the 35 households is fixed.  The target  parameter is the finite
population quantity, .  We denote this randomization as

-randomization.

It should be noted that there is a conceptual difference between the
finite population parameter, , and the model parameter,

.  But under the Bernoulli model, .  Therefore,
if  could be observed, it would provide a model-unbiased
estimate for  since the Bernoulli model was used to generate the
finite population consisting of 100 units.  In fact, for large finite
populations, we have .  It then follows that a “good” estimate
of  would be expected to be a “good” estimate of .
 
Design-based method for estimating 
Suppose that in the i-th selected household we observe 
household members and  females. The standard probability-
weighted estimate for the proportion of females in the finite
population is 

,

where .

For our particular sample of 10 households, we have .

Expectations and Variances

Expectations of design-based estimate, :
The estimator, , provides a design-unbiased estimate for the
finite population proportion, under the random sampling plan used
to select households and individuals; that is, 

.

Under the assumption that the Bernoulli model is valid for the
sample, the model-based expectation of  is , so
that  would be model-unbiased for .

Expectations of model-based estimate, :

If we assume that the sample is generated from independent,
identically distributed Bernoulli trials, then the standard estimator
of  based on this model is the unweighted estimator given by

,

since  is the number of females in all the sampled
households and  is the number of persons in all the sampled
households.

For our particular sample of 10 households, we have .

This estimator would be model-unbiased; that is, , if
the assumed model were correct for the sample.

However, it can be shown that for large m, we have
, so that  is asymptotically design-biased as an

estimate of  .  The asymptotic design bias of  as an estimate
of   is , which is relatively
small.

Since the selection probabilities are directly related to the
household size,   would be design-unbiased for  if the
household size were uncorrelated with the number of females in
the household.  If the correlation is small - as is the case in this
example - the design bias would be small.

The following table summarizes many of the statements made
above.

Estimates of Expectation: Observed values from our sample of
10 households, and model-based and design-based expectations

Estimate Sample of 10
households  

.500 .445 .51

.492 .46 .51

*Note that because the number of females within each household
is not binomially distributed (with  constant), the -model is
false for the sample.  (It is, however, valid for the finite
population of 100 units, before the households were constructed.)

Variance Estimation

Under the assumed Bernoulli model, the usual estimate of the
variance of  is

In the case of , we consider both model-based and design-
based variance estimates:
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Model-based:

Design-based: ,

where .

The following table provides these estimates for our particular
sample, and the large-sample expectations.

Estimates of Variance: Observed values from our sample of 10
households, and model-based and design-based expectations

Estimate Sample of
m=10

households  
(For large m) (For large m)

.0081 .068/m .069/m

.0119 .114/m .069/m

.0010 .087/m .088/m

.0056 .049/m .087/m

*We include  for the sake of completeness only, even
though it is seldom calculated, as  is generally design-biased.

Phases of randomization

So far we have discussed the notions of model-based randomness
and design-based randomness separately.  These two notions can
be combined into one framework, comprising both the model and
the design randomizations.

Randomization over both phases

We denote by -randomization the situation where the
randomness is due to repetition of “experiments” as follows:

First, we have 100 Bernoulli trials where .  Next we
arrange these outcomes into households.  Finally, we select m
households at random with replacement with probabilities
proportional to household size.

When the target parameters are defined by a model that generated
the finite population, but these parameters are estimated from data
from a survey, it would seem reasonable and desirable for the
estimates to have good properties under this -randomization.
This framework has been examined by Hartley and Sielken (1975),
Molina, Smith and Sugden (2001), and others.

Under this randomization, we have that , so that
is -unbiased for .

We define the total variance to be the variance over the two
phases of sampling.  Confidence intervals and tests of hypotheses
using this total variance are then valid with respect to the double
sampling described above; that is, on repetitions of both the
generation of the finite population using the Bernoulli trials, and
the sampling of households by selecting the households with
probabilities proportional to household size.

We now examine how the properties of the variances of
estimates under this -randomization can be used to assess
whether the model holds for the observed units.

Non-robustness of the model-based approach

• Taking into account the randomization due to both the
model and the design, if the assumed model is true for
the observed units, then it can be shown that the
design-based variance of  should be close to
the model-based variance of  for large samples
and large populations.

• If the design-based and the model-based variances are
not close, then the variances implied by the assumed
model are wrong! Using an estimate of an incorrect
model-based variance in analyses can result in poor
coverage properties for confidence intervals and
misleading tests of hypotheses.

In our example, we have that, for large values of m,

 and .

 and ,

Therefore, we can surmise that the assumed the model is not true
for the observed units!

In practice, it is not possible to compute the theoretical values of
the variances given above, since the processes leading to the
ultimate sample are not known.  However, the estimates of the
variances can be computed from the sample data.  For large
samples, the estimates will be approximately equal to their
design expectations.  Therefore, we consider the design
expectations of the estimates of the variances of . The
results are similar to those above, for our example.  We have
that, for large values of m,

 and .

If the assumed model is true for the observed units, then it can be
shown that these design-based expectations should be close.
This does not seem to be the case here, so again we conclude that
assumed model is not true for the observed units.  We see that,
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for a particular sample, comparing  and  can be a
useful diagnostic for determining if the sampling is possibly
informative.

We also have a similar result for :

 and .

Our conclusions about the informativeness of the sample design
would, therefore, be similar if we were to compare  and

.  However, this comparison is not as useful as a diagnostic

tool since  is not commonly computed.

What does all this mean for the practitioner?

Comparing the design-based and model-based point estimates can
be useful.  If they are quite different, this is an indication that the
assumption that the model for generating the finite population holds
for the sample is incorrect.

Even if the point estimates are similar, if for large samples, 
is not close to  the sampling may be “informative”.

Pure modelers may prefer to account for the sample design in this
example by modelling the process for creating the household
structure, given the finite population.  However, when the full
model is hard to specify,  the probability sampling mechanism must
play an important role to avoid biases (Little and Rubin, 1987,
p. 246).

What do we mean by “informative” sampling?

Informativeness of a sample is a model concept.  

If, on repetitions of the -randomization “experiments” described
earlier, the distribution of the sampled units is different from the
distribution that would be obtained by sampling directly from the
model, then the sampling is said to be informative; see Binder and
Roberts (2001).

3.  PARAMETRIC MODEL ANALYSES FROM SURVEYS

In the example above, we generated our sample through a two-
phase process.  This artificial case can be generalized to most
situations where an analyst is fitting models to survey data as
follows:

Phases to Generate the Sample of Available Data

• First, the complete finite population is generated from a
model.

• Then, conditional on these outcomes, design variables
(e.g. household composition, geography, etc.) are  added

to the units of the population according to some
possibly unspecified process.

• A sample of units is selected under a known probability
design.

Other randomizations to allow for non-response, measurement
error, etc. could also be added to this framework.

The case where the assumed model for generating the finite
population is incorrect can also be incorporated into this
framework, with  the model generating the finite population in
the first phase being specified as not being the same as the
assumed model.

Design-based Approach to Inference for Target (Model)
Parameters

A design-based approach is most useful when the sample sizes
are large and the sampling fractions small.  In this case, the
design-based properties of the estimates will be close to those
obtained under the -randomization.  Also, the design-based
variances may be close to the true model-based variances even
when the assumed model is incorrectly specified; see Binder and
Roberts (2003) for details.

The procedure for implementing this approach is as follows:
• Define estimating equations (EE’s) using a model-

based procedure such as maximum likelihood
estimation based on the complete finite population.
Solutions to these EE’s become the finite population
“descriptive” quantities of interest.

• Determine finite population estimates for these
quantities, using appropriate design-based methods.

• Use design-based randomization to provide measures of
accuracy.

Warning: For mixed effects models such as hierarchical
linear models and multilevel models, the usual asymptotic
theory does  not extend to some parameters.  It is generally
valid for the fixed effects, but not for the random effects; see,
for example, Pfeffermann et al. (1998).

4.  CONCLUSIONS

For the analysis of survey data where a model has generated the
finite population and where the target parameters are based on
this model:
• Typical complex survey designs often lead to

informative samples.
• Weighted and unweighted point estimates may or may

not be similar. If they are not, think about augmenting
the model to incorporate the fact that the sampling is
informative, so that the model better explains the
sampling distribution.

• Even if the point estimates are similar, consider an
augmented model that accounts for reasons why the
sampling could be informative. 

• Standard errors based on a design-based approach will
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tend to be more robust because they account for the
informativeness of the sampling design.  For large
samples and small sampling fractions, the design-based
approach will still give correct inferences for the target
parameters of the model, even when the sampling is
informative.

• Care must be exercised when augmenting the model with
design variables to ensure that the parameters being
estimated are those of analytic interest.

• The model used to generate the finite population may be
incorrectly specified and it is important to perform
diagnostics on both the model means and the model
variances and covariances.

• If a pure model-based approach is used to analyse
complex survey data, caveats about the fact that the
design information has been ignored should be
included in the analysis report.
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