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1. Introduction

Replication methods are often used in variance
estimation and are particularly appealing in sit-
uations where the design and/or the estimation
procedure are complex. In this article, we focus
on replication methods for two-phase regression
estimators, and in particular, we consider the
situation in which auxiliary information is avail-
able for both the population and the first phase
of sampling. Two-phase regression estimators
can be calibrated for the population informa-
tion, for the phase one estimates or for both
“levels” of information. For a discussion of dif-
ferent types of regression estimators in this con-
text, see Estevao and Sarndal (2002) and also
Li and Opsomer (2003).

Jackknife variance estimators in two-phase
sampling are derived by Rao and Sitter (1995)
for ratio estimation and Sitter (1997) for re-
gression estimation. These methods use the en-
tire first-phase sample. However, if the num-
ber of elements in the phase one sample is
large, these methods are computationally cum-
bersome. Fuller (1998) develops a variance es-
timator that makes it possible to compute the
full two-phase variance using only the second-
phase sample, by incorporating the phase one
variability of the phase one calibration variables
into the phase two replicates. Recently, Kim
and Sitter (2003) discuss a different approach
for avoiding the need for complete phase one
replicates for several specific designs.

In this article, we describe a variance estima-
tor closely related to that of Fuller (1998), and
discuss its implementation for variance estima-
tion of the National Resources Inventory (NRI).
The remainder of the article is organized as fol-
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lows. Section 2 reviews the sampling design and
estimation for the NRI. In Section 3, we discuss
our proposed variance estimator for two-phase
regression estimators, and Section 4 gives sim-
ulation results. In Section 5, we conclude by
describing the implementation to the NRI.

2. National Resources Inventory

The National Resources Inventory (NRI) is
a statistical survey of land use and natural
resource conditions and trends on U.S. non-
federal lands. The NRI is conducted by the Nat-
ural Resources Conservation Service (NRCS) of
the U.S. Department of Agriculture in cooper-
ation with Iowa State University’s Center for
Survey Statistics and Methodology (CSSM).
The NRI was conducted every 5 years during
the period 1982-1997. The 1997 NRI contains
approximately 300,000 areal plots (or segments)
distributed according to a spatially stratified de-
sign. While some data elements are collected for
the segments, the majority of the data elements
of interest are recorded at point locations within
these segments. The total number of 1997 NRI
points is approximately 800,000. Since 2000,
the full panel structure of the NRI has been re-
placed by a two-phase sampling design, in which
the 1997 NRI segments serve as a first phase,
and each year a partially overlapping panel is se-
lected through a stratified sampling design as a
second phase. The annual second phase samples
include approximately 42,000 “core” segments
that are to be visited every year. An additional
30,000 segments are selected from the remaining
268,000 each year to form a supplemental sam-
ple. All points in all selected segments are part
of the annual sample. See Nusser and Goebel
(1997) and Fuller (2003b) for a more complete
description of the NRI sampling design.
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Each year, the estimation procedure com-
bines information from several sources to pro-
duce a final data set composed of records con-
taining information for the years 1982, 1987,
1992, 1997, 2000, and annually thereafter.
First, the data collected at the segment level are
converted to point data. For each of these new
points (referred to as pseudo-points), a hierar-
chical hot-deck imputation procedure is used for
filling in the unobserved point data elements,
and an initial weight is assigned. The initial
weights for both observed points and pseudo-
points are adjusted during the estimation pro-
cess using ratio and small area estimation. Con-
trol totals for surface area, federal land, and
large water areas, derived from GIS databases,
are maintained throughout the process. Finally,
the weights are adjusted using iterative propor-
tional scaling (raking) so that areas estimated
for major broad coveruses for historical years in
the current survey closely match those earlier
estimates. For further details on the NRI esti-
mation procedure, see Fuller (1999) and Fuller
(2003a).

Until 1997, variance estimation for the NRI
was based on the linearized approximation ap-
proach (e.g. Sdrndal et al. 1992, Ch. 5), and
computed by an algorithm based on PC-CARP
(Fuller et al. 1986). With the introduction of
the annual NRI, this approach became imprac-
tical. In addition to the significant method-
ological difficulties in deriving estimators ap-
propriate for capturing the complete sampling
and estimation procedures described above, the
resulting procedure would almost certainly re-
quire access to both the phase one and the phase
two samples in order to compute the necessary
variance components. This was considered un-
desirable from a practical standpoint, not only
because of the obvious increase in storage re-
quirements, but also because of the potential for
confusion by the data analysts, who would be
able to compute different estimates for the same
quantity from both provided datasets. For these
reasons, it was decided to investigate replicate
variance estimation for the annual NRI surveys
as an alternative to linearized-based estimation.

3. Replicate Variance Estimation

We begin by describing the two-phase regres-
sion estimator and a corresponding replicate
variance estimator in a simple setting. Let s;
and so denote the first-phase and second-phase
samples of size n1 and na, respectively, and let
w(1)s, W(2); denote the phase one and two sam-
pling weights for an element i. Let x; be a vec-
tor of J, auxiliary variables known for all i € U,
where J, > 2 since x; will be assumed to contain
an intercept. Let z; be a vector of J, variables
observed for all ¢ € s;. Finally, let y; denote
the variable of interest collected for all 7 € ss.
The target of the estimation procedure is gy,
the population mean of the yy.

The regression estimator considered here is
the same as in Fuller (1998), or

- B ~T XN = Xr(2
Yreg(2) = Un(2) + /Bylrz(Q) < z - Z(71'()2) > ’
(1)

with Fr(2) > s, W(2)iYi the two-phase ex-
pansion estimator of gy and analogously for
Xr(2)s Zr(2), and

=~ _ ~T _ _
Zreg(1) = Zr(1) T Baz) (RN — %r(r)) . (2)

the phase one regression estimator of zy where
Zr(1) = 281 w(1);2; and Xr(j) are phase one
expansion estimators. In (1) and (2), Bym(g)
is a vector of design-weighted regression coef-
ficients for the y; on x;,z; fitted on so, and
B.je(1) 1s & matrix with each column contain-
ing the design-weighted regression coefficients
for one of the variables in z; on x; fitted on s7.
Note that the estimator (1) can be expressed
as a weighted sum over the phase two sample,
/y_\reg@) =D s wz‘z)iyi, where wz‘m denotes the
phase two regression weight for element <.

Under some regularity conditions not further
discussed here, we can show that the asymptotic
variance of /y_\reg@) is equal to

AV(/y:reg(Q)) = Var (é(y|zz)7r(2))
+Bg—imz,zvar (é(z|x)7r(1)) /3y|:rz,z (3)
T _ —
28y, . COV (E(ylaz)n(2), €(zla)n(1)) -
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where 8, . is the portion of the vector of
regression coeflients for y; on x;, z; fitted on
the population that corresponds to the z; co-
variates, €(yz.)r(2) 1S the phase two expan-
sion estimator for the residuals e ;) = yi —
(Ti, 2i)By|zzs and € jz)r(1) is the vector of
phase one expansion estimators for the residu-
als e(,|,); obtained from population regressions
of each of the elements of z; on x;. This follows
from the fact that

?reg@) —Yyn = é(y|:l:z)7r(2) - é(y|aﬂz)N (4)
+ﬁ ylrz, z( (z|lz)m(1) — e

as can be checked using standard Taylor series
arguments.

To construct an estimator for AV@reg(Q)), we
start from a generic replication method that
produces design consistent variance and covari-
ance estimators for phase one and phase two
expansion estimators. We will specify the repli-
cation method further below. Suppose for now
that we have a method to construct R sets
of phase one and phase two replicate samples

(2|2)N)

based on s; and so. Let wglﬁl,w?gi represent
the phase one and two expansion weights for

the ith element in replicate r. For some vari-
able a;, let ag()l) = D w((&ai,r =1,...,R
represent the replicate estimators computed for

expansion estimator ar(;), and similarly, let

—(r) _ (r)
Ara) = 2uss W(2)i

for ar(g). Define

R
=cr Y (a;’?l)

‘a; represent the rth replicate

_%)2,

where 7R1 =5 Ly R 1a )» and similarly for
Y/}(ZLW@)). Finally, define
C(dﬂ(l)a l_)7r(2)) = (5)

R
R Zl (‘_%(:()n - %) (Eﬁj()?) - %)

for two expansion estimators a(y), b 7(2)- We as-
sume that V(@ (1)), V(@r)) and C(an (1), br(a))
are design consistent for Var( (1)) Vs ( )
and Cov(a (1),b7r(2)) respectlvely

The replicates for @reg(m are constructed as
follows:

(5

~(r) __(n )T XN~ Xﬂ'(2)

Yreg(2) = Un(2) T Bylzz(2) ( ) )]
reg(1) ~ Zn(2)

_=(m ~(mT _
Bheay = 2oty + Butaqry (R —

(")

Xw(l)) ’
and the ,By‘xz ,/B\Zi(l) are regression coeffi-
cients computed for each of the R replicates.
We define

2
V yreg =CR Z (yreg yreg(Q)) (6)

as the replicate variance estimator for the two-
phase regression estimator ﬁreg(g). Note that
the replicates for the regression estimator can

(r)

be written as ?/J_\reg(Q) =D s wz;(;)yz for a set of

replicate regression weights w*gz) Hence, it is
sufficient to have access to a ﬁie containing the
phase two data and replicate regression weights
to be able to compute variance estimator (6).
Under some regularity conditions not fur-
ther explored here, it is possible to show that
V(yreg@)) is design consistent for AV(yreg(Q))
in (3). We briefly motivate this result

here. Assuming that the replication regres-

~

sion coefficients ,3y|u 2)» ﬁ;i(l) are consistent
for Byjuz(2)s Byjaz(2), respectively, it follows from
(4) that

=(r) =R 7(7“) ek
reg(2) ~ Yreg(2) ¥ C(ylaz)n(2) T Clylaz)m(2)
(r) _ 2R
+Byjaz € ym(1) ~ €lioyme)
and hence,
V(/ﬁreg@)) ~ ?(é(y|xz)7r(2)) (7)

T -
+16y\xzz (e(z\x)ﬂ‘( ))By\xz,z
+284. .C €y fo2)n(2): clain():
Since each of the replication estimators on
the right-hand side are assumed consistent for

their respective variance term, we conclude that
V@reg@)) is also consistent for AV@reg(Q)).

3125



2003 Joint Statistical M eetings - Section on Survey Research M ethods

As shown in (3), the asymptotic variance of
freg@) contains a covariance term between the
residuals of both regressions, and hence a gen-
eral replication method for two-phase regression
estimators needs to be able to estimate this
covariance term. By assuming that our cho-
sen variance replication method is able to es-
timate covariances of expansion estimators be-
tween phases as in (5), the method indeed sat-
isfies this requirement. In many regression esti-
mation situations (see Fuller, 1998), the covari-
ance term in (3) will be equal to 0, so that the
replication method does not need to be able to
estimate covariances for variables across phases.

4. Simulation Results

We conducted a simulation to study the per-
formance of the proposed variance estimator.
For this purpose, finite populations of size N =
10,000 were created using the model

Yi = 10 + bx; — bz; + Ey.is

where €,; ~ N(0,07), and we will investigate
two levels for 05. We also consider three cases
for the relationship between z; and z;. In the
first two cases, z; and x; are linearly related
through the model

zi =1 —mi+ ez,

with x; ~ U(0,1) and €,,; ~ N(0,02), for two
levels of 03. In the third case, z; and xz; are
linearly independent and are both generated as
U(0,1).

By crossing the cases for the model for y; with
those for the model for z;, we obtain six differ-
ent scenarios for the overall population model,
which we will identify by the coefficients of de-
termination of both models, R; and R2. Specif-
ically, we varied the model for z; and the model
variances so that the six cases correspond to the
combinations (R;,RE) with RZZJ = 0.25 or 0.75,
and R% = 0,0.25 or 0.75.

Two-phase samples were drawn from each of
the populations, with simple random sampling
without replacement in both phases. The sam-
ple sizes were ny = 2,000 for phase one, and
ng = 20 or 200 for phase two.

For each sample, the regression estimator (1)
was computed, as well as two “delete-a-group”
jackknife variance estimators for R = 8 and 16.
These jackknife estimators were constructed by
first deleting a 1/R fraction of the sample obser-
vations in each phase for each replicate, comput-
ing the replicate sample means and regressions
based on the remaining (R—1)/R fraction of the
sample, and then proceeding as in Section 3 (see
Kott, 2001). For comparison purposes, we also
computed the linearized variance estimator cor-
responding to AV@Tmreg(Q)) in (3) but with all
unknown quantities replaced by sample-based
estimators.

Table 1 displays the simulated bias of the
jackknife variance estimators Vg g and Vg 16
and the linearized variance estimator \7L, as
a percentage of the true (simulated) variance
Var@/reg(g)), for the six populations and two
phase two sample sizes considered.  Both
the jackknife and the linearized estimators are
severely biased for the smallest sample size, with
the former overestimating and the latter under-
estimating the true variance. At the larger sam-
ple size, the same pattern of over and underes-
timating is still visible, but the magnitude of
the bias is reduced to less than six percent in
all cases. Increasing the number of replicates
improves the bias properties of the jackknife es-
timator, and at the larger phase two sample size
considered, the bias appears to be at an accept-
able level for most practical applications.

Table 2 displays the simulated mean squared
error (MSE) of the variance estimators. To
make comparison easier, these results were
scaled by the MSE of the design variance es-
timators of Y (). These results show that the
jackknife estimators are more variable than the
linearized estimator by an order of magnitude.
This is not surprising, since the former are based
on much smaller degrees of freedom than the
latter. Nevertheless, it is a cause for concern
for group-based replication methods and indi-
cates that the number of replicates should not
be chosen too small to avoid unduly variable
estimators.
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Vikie 1 Viks 1 Vi 1
Var(g,(2) Var(g,(2) Var(g,(2))

Population | ng =200 | ng =20 || ng =200 [ ny =20 | ng =200 | ny =20
R; =0.75

R2 =0.75 2.62 26.76 3.01 29.58 -2.78 -18.32
R =0.75

R?=10.25 5.16 24.95 5.84 25.15 -1.39 -19.30
R2 =0.75

R% =0 5.75 22.34 5.08 27.32 -2.61 -20.95
R? =10.25

R2 =0.75 4.03 25.66 4.90 26.86 -1.33 -19.01
RZ=0.25

R? =0.25 4.54 22.41 5.45 25.23 -1.06 -20.42
R? =025

R% =0 4.42 23.31 4.52 23.13 -1.71 -20.60

Table 1: Simulated relative bias of “delete-a-group”jackknife variance estimators for R = 8 and 16
groups and of linearized variance estimator (in percent).

5. Jackknife Variance Estimation for
the NRI

The replication method used in NRI variance es-
timation is a form of “delete-a-group jackknife”
(Kott, 2001). The 1997 NRI is the phase one
sample, and we will discuss the 2001 NRI as
the phase two sample, but the same procedure
is to be used in all subsequent years. For both
the 1997 and the 2001 NRI, we suppose that
we have completed the estimation process de-
scribed in Section 2, so that all the necessary
pseudo-points have been created and the esti-
mation weights are calibrated for the auxiliary
information at the population level and, in the
case of the 2001 NRI, for a set of estimates in
the 1997 NRI.

Let w(1);, w(a); represent the original design
weights for a point ¢ in phase one (1997 NRI)
or phase two (2001 NRI), respectively, and let
wzkl)i’ wE"z)i represent its fully calibrated weights.
Hence, for any variable y;, estimates for its
1997 and 2001 totals are computed as ?y(l) =

o Wy and tyg) = >, wiyi, respec-
tively (NRI weights are designed for totals, not
means). The goal of the variance estimation
procedure for the 2001 NRI is to construct R

new sets of weights wz;(;), from which a user of

the NRI data is able to compute replicate es-
timates 2(2)2 =D s w?z(;l)yz for any variable ;.
The user can then calculate a variance estimate
for fy@) by applying the Z?ST()Q),T =1,...,R in
variance formula (6).

Our procedure has a few unique features that
distinguish it from other “delete-a-group” jack-
knife implementations. In most implementa-
tions, a weight of zero (“delete”) is assigned to
the points in a group in each replicate. In our
approach, we are giving those points a small
but non-zero weight. This is done to preserve
the full set of pseudo-points in each replicate,
and avoid the risk of obtaining empty calibra-
tion cells for rare control categories for some
replicate samples. We will also start from the
calibrated weights wz‘l)i, wE‘Z)i instead of the de-
sign weights, in order to minimize the computa-
tion burden of the procedure. The major steps
in the construction of the replicate weights wa(;)
are summarized here. For full details, see Fuller
et al. (2003).

As a first step, R replicate sets of phase one
weights w?l(;) are constructed for the 1997 NRI.
The sample is divided into non-overlapping
groups G1,,7 = 1,..., R by ordering the seg-
ments geographically and then using system-
atic sampling to create groups of approximately
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MSE(AVJKJG) MSEEVJK,S) MSE(\A/L)
Population MSE(V (4(2))) MSE(V (7,(2))) MSE( (4(2)))
ny =200 | ng =20 [ ng =200 | ny = 20 || ng =200 | ny = 20

R§ =0.75

R2=0.75 1.41 0.78 2.94 1.14 0.10 0.12
R§ =0.75

R2=10.25 1.32 0.54 2.82 0.92 0.08 0.10
RZ=0.75

R2=0 1.68 0.66 3.32 1.05 0.09 0.11
Ri, =0.25

R2=0.75 9.07 4.82 19.01 7.74 0.61 0.76
Rg =0.25

R?=10.25 9.05 4.29 18.41 7.61 0.58 0.81
R =0.25

R2=0 8.94 5.13 19.09 6.76 0.60 0.83

Table 2: Simulated mean squared error of “delete-a-group”jackknife variance estimators for R = 8
and 16 groups and of linearized variance estimator, scaled by the mean squared error of the design

variance of the expansion estimator.

equal size. The geographic ordering is used to
reflect the stratification of the original sample.
We define the constant ap = /(R —1)/R.

Initial weights w(l( " for jackknife replicate r
are obtained as folfows For i € G,

W' =) Wy T AR
L O

and for ¢ ¢ G,

#(r)
Wyio = { (1 (—i)—

However, in order to account for the calibration
of phase one estimates to population controls,
we set w(l()l)o (1)2 for all the replicates if the
point ¢ is in a category with external controls,
regardless of their group. In the 1997 NRI, this
includes points with a federal ownership clas-
sification and those located in Census Water.
Note that data are not collected for federal and
Census Water points, but they are kept in the
dataset so that the surface area of the country
is fully represented.

For points that fall in those control categories,
the final replicate weight is kept the same as

if wzkl)i Z Wi

otherwise,

o] w(1)¢

) otherwise.

Q+

the initial replicate weight, w*l(ri) = w?l(;l.{o, since

that weight is already fully caiibrated. For the
points that do not fall in one of the control
categories, the initial replicate weights are cal-
ibrated (through a raking procedure) for a set
of additional control acreages available for the
previous years, resulting in the final replicate

*(r)

weights W)

Next, initial 2001 NRI replicate weights

(2()2 are constructed using a procedure sim-
ilar to that described for the 1997 NRI. Since
the 2001 NRI sample was selected through an
unequal-probability stratified sample from the
1997 NRI, the 2001 NRI sample is sorted by its
selection strata and by geography within each
stratum. The groups Go,,7 =1,..., R are then
again selected by systematic sampling. The ini-
tial replicate weights are obtained by setting

o) ] Wl ar e iy, > we),
(2)i,0 (1— aR)w?Q)i otherwise

for i € G, and

*(r) ( )i + R 1 w(g)l if 'Uf(kz)z > w(2)z
Y(2)i0 = (1+ 75wy, (2)i otherwise

for i ¢ Ga,, except if point ¢ is in one of the
categories with the same external controls as for
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the the 1997 NRI. In the latter case, wEFQ(QO =
wa)i as before, and we let the final replicate

weight wa(;) = w&)z‘ as well.

For the points that do not fall in one of
the categories with external controls, the initial
2001 NRI replicate weights wé;ﬂio for each r are
raked to a set of state-level estimates obtained
using the corresponding final 1997 NRI repli-
cate weights w?l(;) The categories for which the
phase two estimates are calibrated to the phase
one are the same as those used in the construc-
tion of the original weights wa)i, and include
several broad landuse categories as well as a
wetland classification. At the end of this raking
step, we obtain the final replicate weights w*érg,
which are appended to the NRI 2001 dataset f)or
the purpose of variance calculation.

In this procedure, no attempt is made to
“nest” the 2001 replicates inside the 1997 repli-
cates, which significantly simplifies the con-
struction of the replicate samples. By calibrat-
ing each phase two replicate to a phase one
replicate, the procedure successfully incorpo-
rates both phase one and phase two variability
into the resulting phase two replicates. How-
ever, it fails to capture any covariances across
phases. This is reasonable in this case, since by
construction of the calibration steps in the NRI,
the cross-phase covariance term in the variances
(see (3) above) are expected to be close to 0.

6. Conclusion

In this article, we have proposed a replica-
tion variance estimation procedure for fully cal-
ibrated two-phase regression estimators. The
procedure is quite general, and can be used in
many multi-phase survey context in which com-
plex estimation procedures are used. Simula-
tion results show that the procedure has low
bias but the number of replicate samples should
not be taken too low. One of the main advan-
tages of this procedure is that, once replicate
weights have been generated, variance estimates
can be computed using only the phase two sam-
ple data.

The procedure is being implemented for the

variance estimation of the annual NRI surveys,
and initial investigation of the resulting esti-
mates is promising. We are currently using
R = 30 replicates, which represents a trade-
off between the computational burden and the
need to achieve sufficiently stable estimates.
On-going research focuses on trying to simplify
the calibration and raking computations for the
replicate samples.
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