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ABSTRACT

Some investigations associated with large
government surveys typically require statistical
analysis for populations that have a complex hi-
erarchical structure. Classical analysis often fail
to account for the nature of complex sampling de-
signs and possibly result in incorrect inference for
the parameters of interest. Linear mixed models
can be used to analyze survey data collected from
such populations in order to incorporate the com-
plex hierarchical design structure. In this paper,
we develop a method for estimating the parame-
ters of the linear mixed model accounting for such
sampling designs. We obtain the pseudo best lin-
ear unbiased estimators for the fixed and ran-
dom effects by solving weighted sample estimat-
ing equations. The use of survey weights results
in design consistent estimation. We also derive
estimators for variance components for the nested
error linear regression model. We compare the
efficiency of the proposed estimators with that
of existing estimators using a simulation study.
This simulation study uses a two stage sampling
design. Several informative or non-informative
sampling schemes are considered in the simula-
tion.

1 Introduction

Many large government surveys conducted
by government agencies utilize multistage sam-
pling schema because of the nature of the multi-
level or hierarchical structure of the population
from which the sample units are selected. Conse-
quently, investigations associated with such sur-
veys typically require statistical analysis for pop-
ulations that have a complex hierarchical struc-
ture.

Classical analysis often fail to account for the
nature of complex sampling designs and possibly
result in biased estimators for the parameters of
interest. Linear mixed models (LMM) or multi-
level models (Goldstein, 1995) have been used to
analyze survey data collected from populations
with complex hierarchical design structures. Re-
lated work can be found in Henderson (1975),
Laird and Ware (1982), Battese, et.al. (1983),
Prasad and Rao (1990), and Schall (1991). Ig-
noring sampling designs might still be able to
produce unbiased estimators for the parameter
of interest in some cases, such as, when the char-
acteristics of the sampling design can be fully ex-
plained by the LMM (non-informative design).
However, when sampling designs are informative
in the sense that sampling weights depend on the
values of the response, even after conditioning on
the covariates in the LMM, the conventional es-
timators of the model parameters can be biased.
How to incorporate informative sampling designs
into the multilevel analysis has generated much
research, especially in the field of small area es-
timation (Prasad and Rao (1999), and You and
Rao (2002)). Analytical methods for estimating
model parameters incorporating informative de-
signs are desired for general LMM on complex
survey data.

In this paper, we develop a general method for
estimating the parameters of the linear mixed
model on survey data accounting for sampling
designs. In section 2, we introduce the LMM
we have considered and two special cases that
have been widely employed for analyzing survey
data. In section 3, we propose the pseudo empir-
ical best linear unbiased estimators for the fixed
and random effects by solving weighted sample
estimating equations (WSEE). In section 4, we
develop estimators for variance components for
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the nested error linear regression model. In sec-
tion 5, we discuss the model-based and design-
based properties of the estimators for variance
components. We then compare the efficiency of
the proposed estimators with that of existing es-
timators using a simulation study in section 6.
We conclude our paper in section 7.

2 Model

Suppose that a population U has a two-level
structure represented by levels 1 and 2. Using
the Goldstein (1995) terminology, level 2 has M
clusters and the ith cluster has Ni level 1 ele-
ments. Let Yij denote the response of interest
from the jth element in the ith cluster. Let z−ij =
vec{zkij}qi

k=1 denote a vector of characteristics as-
sociated with a qi×1 random effect bi for the jth

element within the ith cluster, where vec is an
operator such that vec{•k}K

k=1 = (•T
1 , . . . , •T

K)T .
Let x−ij = vec{xkij}p

k=1, with x1ij = 1, denote
the vector of characteristics associated with fixed
effect β for the jth element within the ith cluster.
Let εij be the random disturbance and the linear
mixed model we considered can be expressed as

Yij = x−T
ijβ + z−T

ij bi + εij (2.1)

for i = 1, . . . , M, j = 1, . . . , Ni.
Model (2.1) can be expressed in a matrix form.

Let Yi = vec{Yij}Ni

j=1 and Y = vec{Yi}M
i=1, a

N × 1 vector, where N =
∑M

i=1 Ni. Similarly, let
εi = vec{εij}Ni

j=1, and ε = vec{εi}M
i=1. Denote

vec{bi}M
i=1 as b−. Let Z−i = vec{z−T

ij}Ni

j=1 and Z− =⊕{Z−i}M
i=1, where

⊕
denotes the direct sum.

Matrix Z− is block diagonal with Z−i, i = 1, . . . , M
as its diagonal blocks. Let X−i = vec{x−T

ij}Ni

j=1 and
X− = vec{X−i}M

i=1. The matrix expression of (2.1)
is then:

Y = X− β + Z− b− +ε (2.2)

The random effects bi and the disturbance
εi are assumed to have mean 0 and variance-
covariance matrices D−i and R−i, respectively. We
assume that bi and εi are independent. The
variance-covariance matrix R− = cov(Y|b−) is
normally made up of diagonal blocks, R− =⊕{R−i}M

i=1. The random effects bi, i = 1, . . . , M
are usually independent from one another, which
implies that the variance-covariance matrix of
b− is D− =

⊕{D−i}M
i=1. The resulting variance-

covariance matrix of responses Y is V− = R− +

Z−D−Z−T , where V− =
⊕{V−i}M

i=1 with blocks V−i =
R−i + Z−iD−iZ−T

i , i = 1, . . . , M .

2.1 Nested error linear regression
model

The nested error linear regression model is
a special case of model (2.1). Battese, Harter
and Fuller (1988), Prasad and Rao (1990), etc.,
used the nested error linear regression model to
estimate the mean of small areas. In the nested
error linear regression model, random effects in
the model are essentially the area effects. Thus,
bi becomes a scalar denoted as bi with covariates
z−ij = 1. For each observation Yij , we have

Yij = x−T
ijβ + bi + εij (2.3)

Random area effects bi, i = 1, . . . , M are inde-
pendent to one another with mean 0 and a com-
mon variance σ2

b , i.e., D− = cov(b−) = σ2
bIM . Ran-

dom errors εij , i = 1, . . . , M, j = 1, . . . , Ni are as-
sumed to be independent with a mean 0 and a
common variance σ2

e , i.e., R− = cov(ε) = σ2
eIN .

2.2 Simple random effects model

In a simple random effects model, all ele-
ments share a common mean, i.e., the fixed ef-
fects β reduces to a scalar µ. Consequently, co-
variate x−ij = 1. Random effects are essentially
the cluster effects. Vector bi becomes a scalar
denoted as bi with covariates z−ij = 1, which are
the same as in the nested error linear regression
model (2.3). The simple random effects model
can be expressed as

Yij = µ + bi + εij , (2.4)

which is also known as a one-way classification
model in ANOVA.

3 Estimation

3.1 Sampling design set-up

Given the population model (2.2), we can
obtain a corresponding census estimating equa-
tion (CEE). Since population data are usually
not available in practice, we estimate parameters
in the CEE using a sample. We assume a two-
stage sampling design. At stage 1, m level 2 clus-
ters are selected from the M population clusters
with inclusion probability πi, i = 1, . . . , m. At
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stage 2, ni elements are selected with inclusion
probability πj|i from the Ni elements within the
ith selected cluster. Totally, n =

∑
i ni units are

sampled from the population. The weight associ-
ated with the ith cluster is wi = π−1

i , whereas the
one associated with the jth selected element in
the ith selected cluster is wj|i = π−1

j|i . Hence, the
inclusion probability associated with the ijth unit
is πij = πiπj|i and its weight is wij = wiwj|i. Let
W.|i =

⊕{wj|i}ni

j=1 and W =
⊕{wiW.|i}m

i=1

be the matrices of second stage weights and final
weights, respectively.

We further assume that the sample data y fol-
low the same model as the population data,

y = Xβ + Zb + e. (3.1)

The random effects b and the disturbance e
are assumed to have mean 0 and variance-
covariance matrices D and R, respectively. The
variance-covariance matrix R = cov(y|b) =⊕{Ri}m

i=1, where Ri is a sub-matrix of R−i =
cov(Yi|bi), D =

⊕{Di}m
i=1. The resulting

variance-covariance matrix of responses y is V =
R + ZDZT , where V =

⊕{Vi}m
i=1 with blocks

Vi = Ri + ZiDiZT
i , i = 1, . . . , m.

Under model (3.1), the unweighted sample es-
timating equation (UWSEE) Φ0 is

Φ0(β,b) =
[

Φ01

Φ02

]
+

[
0

Φ03

]
= 0 (3.2)

where Φ01(y, β,b) = XT R−1(y − Xβ − Zb),
Φ02(y, β,b) = vec{Φ02i(yi, β,bi)}m

i=1,
Φ02i(yi, β,bi) = ZT

i R−1
i (yi − Xiβ − Zibi)

and Φ03(b) = vec{Φ03i(bi)}m
i=1, and

Φ03i(bi) = −D−1
i bi for i = 1, . . . , m.

Investigations (e.g. Pfeffermann, et al. (1998))
showed that estimates obtained by solving the
UWSEE can be biased when sampling is informa-
tive. Incorporating design weights, we construct
a WSEE as

Φ∗(β,b) =
[

Φ̂1

Φ̂2

]
+

[
0

Ω−1Φ3

]
= 0 (3.3)

where Φ̂1 = XT R−1W(y − Xβ − Zb), Φ̂2i =
ZT

i R−1
i W.|i(yi − Xiβ − Zibi), i = 1 . . . , m. De-

fine Ω =
⊕{Ωi}m

i=1 as a matrix of the first
order inclusion probabilities πi, i = 1, . . . , m,
with Ωi = πiIqi . Let Φ̂2 = vec{π−1

i Φ̂2i}m
i=1 =

ZT R−1W(y − Xβ − Zb). It can be shown that

when the variance-covariance matrix cov(Y|b) =
R is diagonal, Φ̂1 is the optimal estimator for
Φ1 in the CEE by Theorem 1 in Godambe and
Thompson (1986). A similar argument fits for
Φ̂2i.

Solving the WSEE (3.2), we obtain the pseudo
BLUP for β and b as

β̂ = {XT [V∗]−1X}−XT [V∗]−1y (3.4)

and

b̂i = ΩiDiZT
i [V∗

i ]−1(yi − Xiβ̂) (3.5)

where V∗ =
⊕{V∗

i }m
i=1 with V∗

i = πi[W−1
.|i Ri +

ZiDiZT
i ].

When the variance components are known, the
covariances of β̂ and b̂i are

cov(β̂) = {XT [V∗]−1X}−{XT [V∗]−1V

[V∗]−1X}{XT [V∗]−1X}− (3.6)

and

cov(b̂i) = {ΩiDiZT
i [V∗

i ]
−1}C

{ΩiDiZT
i [V∗

i ]−1}T (3.7)

where C = cov(yi −Xiβ̂) = Vi +Xicov(β̂)XT
i −

2Vi[V∗
i ]−1Xi[XT [V∗]−1X]−XT

i .
The function Φ̂2i + Φ̂3i in WSEE (3.3) does

not reduce to Φ02i + Φ03i in simple SEE (3.2)
for simple random sampling (SRS) design. To

adjust for SRS design, we define Ω†
i =

∑
j

wij∑
j

w2
ij

Iqi

and Ω† =
⊕{Ω†

i}m
i=1. The WSEE adjusted for

SRS is Φ†

Φ†(β,b) =
[

Φ̂1

Φ̂2

]
+

[
0

[Ω†]
−1

Φ3

]
= 0. (3.8)

In the case of SRS at cluster level and element
level, W.|i = Ni

ni
Ini and W = M

m

⊕{Ni

ni
Ini}m

i=1.
The matrix Ω†

i = M
m

Ni

ni
Ini . The ith component

of equation Φ̂2 + [Ω†]
−1

Φ3 = 0 in (3.7) reduces
Φ02i + Φ03i = 0 as in the simple SEE (3.2).

Solving Φ†, we obtain another set of pseudo
BLUP β̂

†
, b̂†

i and their variance-covariance ma-
trices by substituting V∗ by V† and Ω by Ω†

in 3.4-3.7, where V† = W−1R + Ω†ZDZT ,
C† = cov(yi − Xiβ̂) = Vi + Xicov(β̂)XT

i −
2Vi[V

†
i ]

−1
Xi[XT [V†]−1

X]−XT
i .
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When the variance components are unknown,
we obtain the pseudo EBLUP for β and b and
their covariances by plugging in the consistent
estimates of variance components as discussed in
section 4.

3.2 Nested error linear regression
model

The variance-covariance matrix for the ran-
dom effects vector b is D = σ2

b Im, for the random
errors is R = σ2

eIn, and the covariate matrix is
Zi = 1ni . Consequently, the covariance of yi is
Vi = σ2

bJni + σ2
eIni , where Jni = 1ni1

T
ni

. Us-
ing (3.4) and (3.5), we obtain the pseudo BLUP
estimator for fixed effects as

β̂ = [
∑
ij

xijdT
ij ]

−1[
∑
ij

yijdij ] (3.9)

and that for random effects bi as

b̂i = γi(yiw − xT
iwβ̂) (3.10)

where dij = wij(xij − γixiw) and γi =
σ2

b /(σ2
e/

∑
j wj|i +σ2

b ), yiw =
∑

j wj|iyij/
∑

j wj|i
and xiw =

∑
j wj|ixij/

∑
j wj|i. The estimators

(3.9) agrees with that obtained by Pfeffermann,
et al. (1998). It is straightforward to obtain the
corresponding variance-covariance matrices of β̂
and b̂i, i = 1, . . . , m.

The pseudo BLUP adjusted for SRS can be
obtained by solving the WSEE (3.8). Resulting

estimators β̂
†

and b̂†i have the same expression
as (3.9) and (3.10), respectively, with γi replaced

by γ†
i = σ2

b/(σ2
e

∑
j

w2
ij

(
∑

j
wij)2

+ σ2
b ). Estimators β̂

†

and b̂†i we obtained for the nested error linear
regression model are in coincidence with those
by You and Rao (2002).

3.3 Simple random effects model

Substituting xij = 1 into (3.9) and (3.10), we
obtain the pseudo BLUP estimator of the mean
as

µ̂ =

∑
ij wij(1 − γi)yiw∑

ij wij(1 − γi)
(3.11)

and that for the random effects

bi = γi(yiw − µ̂). (3.12)

The respective variances of µ̂ and b̂i can be
obtained when σ2

e and σ2
b are known.

Replacing γi by γ†
i in (3.11) and (3.12) results

in the pseudo BLUP µ̂† and b̂†i , respectively. Note

that estimator µ̂† reduces to µ̂0 =
∑

i
ni(1−γ̃i)yi∑
i
ni(1−γ̃i)

in the case of SRS, where γ̃i = σ2
b /(σ2

e/ni + σ2
b ).

The estimator µ̂0 coincides with the one ob-
tained by applying the Prasad and Rao (1990)
procedure on the simple random effects model.
Note that the method of Prasad and Rao (1990)
does not account for sampling weights. Estima-
tors µ̂ and µ̂† result from using both individ-
ual level and aggregated level models. Prasad
and Rao (1999) proposed an additional estima-
tor µ̂∗ =

∑
i γ†

i yiw/
∑

i γ†
i for µ using only an

aggregated level model. We compare these four
estimators for µ (µ̂, µ̂†, µ̂0, µ̂∗) with a simulation
study in Section 6.

4 Estimation of variance

components

Maximum likelihood (ML) method, restricted
maximum likelihood (REML) method and the
EM algorithm have been used for estimating the
variance-covariance of response vector y. Pfeffer-
mann et al. (1998) proposed an iterative process
for estimating the variance-covariance matrix in
model (2.2) using only first-order selection prob-
abilities.

For the special case of the nested error lin-
ear regression model, Prasad and Rao (1990)
and You and Rao (2002) adopted Henderson’s
method III to estimate the variance components
σ2

b and σ2
e . However, the accuracy of these esti-

mated variances is not known in the design based
context. Furthermore, they do not take into ac-
count the sampling design.

One way to account for the sampling design
is to duplicate the sample data using sample
weights to obtain a pseudo population. The
resulting pseudo population resembles the true
population in so far as that the sampled cluster
i can be considered to have been selected with
probability πi and that the sampled element j
within cluster i can be considered to have been
selected with probability πj|i from this pseudo
population.

The duplication occurs in two steps. We
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assume that sampling weights {wi}’s and
{wj|i}’s are integers. First, the response
yij and the covariates xij and zij ob-
served on the ijth element are duplicated wj|i
times. The inflated response vector is ỹi =
vec{1wj|i

⊗
yij}ni

j=1. Similarly, the inflated co-
variate matrix is X̃i = vec{1wj|i

⊗
xT

ij}ni

j=1 and
Z̃i = vec{1wj|i

⊗
zT

ij}ni

j=1.
Second, the inflated vector ỹi, the covariate

matrices X̃i and Z̃i are duplicated wi times to
form the response vector ỹ, covariate matrices X̃
and Z̃ of the pseudo population. This results in
ỹ = vec{1wi

⊗
ỹi}m

i=1, X̃ = vec{1wi

⊗
X̃i}m

i=1,
and Z̃ =

⊕{Iwi

⊗
Z̃i}m

i=1.
Denote inflated random disturbances as ε̃ and

inflated random effects as b̃. Their respective
variance-covariance matrices are R̃ and D̃. Here,
we assume that the components of ε̃, {ε̃ij}’s, are
independent. Also, the components of b̃, {b̃i}’s,
are independent.

The resulting model for this pseudo population
is

ỹ = X̃β + Z̃b̃ + ε̃ (4.1)

and the variance-covariance matrix of ỹ is Ṽ =
R̃ + Z̃D̃Z̃T .

Using Henderson’s method III on the pseudo
population, the sum of square errors (SSE)
for fitting a nested error linear regression
model (4.1) on the pseudo population is
SSE =

∑
ij wij(yij − yiw)2 − ∑

ij wij(yij −
yiw)(xij − xiw)T [

∑
ij wij(xij − xiw)(xij −

xiw)T ]−1
∑

ij wij(yij − yiw)(xij − xiw) and the
estimator for σ2

e is

σ̂2
ew = SSE/(

∑
ij

wij −
∑

i

wi − p + 1). (4.2)

Denote the difference between the reduction
of sum of squares due to fitting model (4.1)
and that due to fitting model ỹ = X̃β + ε̃
as S(b|β), where S(b|β) =

∑
ij wijy

2
ij −

(
∑

ij wijyijxT
ij)(

∑
ij wijxijxT

ij)
−1(

∑
ij wijyijxij)−

SSE. Consequently, the variance component σ2
b

can be estimated by

σ̂2
bw = [S(b|β) − (

∑
i

wi − 1)σ̂2
ew]/(

∑
ij

wij − t1),

(4.3)
where t1 = tr[(

∑
ij wijxijxT

ij)
−1

∑
i wi(

∑
j wj|i)2

xiwxT
iw].

For the simple random effects model, by substi-
tuting xij = 1 and p = 1 into (4.2) and (4.3), the
estimators for variance components are obtained
as

σ̂2
e0w =

∑
ij

wij(yij − yiw)2/(
∑
ij

wij −
∑

i

wi)

(4.4)
and

σ̂2
b0w =

∑
ij wij(yiw − yw)2 − (

∑
i wi − 1)σ̂2

e∑
ij wij −

∑
i wi(

∑
j wj|i)2/

∑
ij wij

(4.5)
where yw =

∑
ij wijyij/

∑
ij wij .

Estimators (4.4) and (4.5) are identical to
those obtained by Graubard and Korn (1996)
(σ̂2

eC and σ̂2
aC ), respectively. As noted by

Graubard and Korn, estimators (4.4) and (4.5)
do not reduce to simple sample estimators σ̂2

e0u =∑
ij(yij −yi)

2/
∑

i(ni−1) and σ̂2
b0u = [

∑
ij(yij −

y)2 − (n − 1)σ̂2
e ]/(n − ∑

i n2
i /n) (denoted as

σ̂2
eA and σ̂2

bA in Graubard and Korn (1996))
for some non-informative sample designs, where
yi =

∑
j yij/ni.

Furthermore, under model (2.3) for sample
data, estimators (4.2) and (4.3), and thus (4.4)
and (4.5) are not model unbiased. To adjust for
the bias, we calculate the expectation of SSE and
S(b|β) under model (2.3). Unbiased estimators
for σ2

e and σ2
b are obtained as

σ̂2
eadj

= SSE/[
∑
ij

wij −
∑

i

∑
j w2

ij∑
j wij

− t2)] (4.6)

and

σ̂2
badj

=[
∑
ij

wijy
2
ij−(

∑
ij

wijyijxT
ij)(

∑
ij

wijxijxT
ij)

−1

∑
ij

wijyijxij)−(
∑
ij

wij−t3)σ̂2
e ]/(

∑
ij

wij−t4), (4.7)

where t2 = tr{[∑ij wij(xij − xiw)(xij −
xiw)T ]−

∑
ij w2

ij(xij − xiw)(xij − xiw)T }, t3 =
tr{[∑ij wijxijxT

ij ]
− ∑

ij w2
ijxijxT

ij}, and t4 =
tr{∑ij wijxijxT

ij ]
−1

∑
i(

∑
j wij)2xiwxT

iw}.
Estimators (4.6) and (4.7) reduce to simple

sample estimators resulting from Henderson’s
method III that were used by Prasad and Rao
(1990) and You and Rao (2002) for some non-
informative sampling designs.
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For the simple random effects model (2.4), the
model unbiased estimators for σ2

e and σ2
b are ob-

tained by substituting xij = 1 into (4.6) and (4.7)

σ̂2
e0adj

=

∑
ij wij(yij − yiw)2∑

ij wij −
∑

i

∑
j

w2
ij∑

j
wij

(4.8)

and

σ̂2
b0adj

=

∑
ij wij(yiw − yw)2 − cσ̂2

e∑
ij wij −

∑
i
(
∑

j
wij)2∑

ij
wij

, (4.9)

where c =
∑

i

∑
j w2

ij/
∑

j wij −∑
ij w2

ij/
∑

ij wij .
Estimators σ̂2

e0adj
and σ̂2

b0adj
reduce to σ̂2

e0u

and σ̂2
b0u for some non-informative sample de-

signs considered by Graubard and Korn (1996)
(e.g. SRS with wi = M/m and wj|i = N/n).

5 Model and Design-based

properties of variance
components

In this section, we will investigate the model
and design based properties of variance compo-
nents for the simple random effects model (2.4)
as well as others discussed in Korn and Graubard
(2003).

Given that the population values Yij are as-
sumed to satisfy the simple random effects model
(2.4), we are interested in estimating the vari-
ances of the {bi}’s and {εij}’s, namely σ2

b and
σ2

e . The model-based variance components S2
e

and S2
b are estimated via the methods of mo-

ments (Searle et al. (1992), page 106). Let

S2
e =

1∑M
i=1(Ni − 1)

M∑
i=1

Ni∑
j=1

(Yij − Ȳi)2 (5.1)

and

S2
b =

1
N0

(M − 1)
M∑
i=1

Ni(Ȳi − Ȳ )2 − S2
e

N0
(5.2)

where N0 = 1
M−1 (

∑M
i=1Ni −

∑M

i=1
N2

i∑M

i=1
Ni

), Y i is the

mean of the population observations in the ith

cluster and Y is the overall mean. The two-stage

sampling design given in section 3.2 is used to
draw the sample. As noted in section 4, estima-
tors (4.4) and (4.5) are identical to the σ̂2

ec and
σ̂2

bc in Graubard and Korn (1996).
We provide the design-based and model-based

properties of the following variance component
estimators given in section 4, as well as those
provided in Graubard and Korn (1996), and Korn
and Graubard (2003).

The various variance components estimators
for σ2

e are

σ̂2
eA =

∑m
i=1

∑ni

j=1(yij − yi)
2∑m

i=1(ni − 1)
, (5.3)

σ̂2
eB =

∑m
i=1

∑ni

j=1 wij(yij − yiw)2∑m
i=1

∑ni

j=1(wij − 1)
, (5.4)

σ̂2
eC =

∑m
i=1 wi

∑ni

j=1 wj|i(yij − yiw)2∑m
i=1 wi(

∑ni

j=1 wj|i − 1)
, and

(5.5)

σ̂2
eD =

∑m
i=1 wi

∑ni

j=1(yij − yi)2∑m
i=1 wi(ni − 1)

, (5.6)

where wi =
∑ni

j=1 wij/ni is the within cluster i
sample mean of the weights wij , and

σ̂2
eKG =

1
2

∑m
i=1

(Ni−1)I(ni>1)
πi

∑ni

k<j

(yik−yij)2

π
(2)
(kj)|i∑

ni

k<j

1

π
(2)
(kj)|i∑m

i=1
(Ni−1)I(ni>1)

πi

(5.7)
where π

(2)
(kj)|i denotes the conditional joint inclu-

sion probability for units k and j within the ith

sampled cluster.
Graubard and Korn (1996) reported on the

various weaknesses (biases) of estimators (5.3) -
(5.6), and favored σ̂2

eD (5.6). Estimator (5.7),
proposed by Korn and Graubard (2003) is ap-
proximately design unbiased. The design un-
biasedness, however, requires the computation
of the second-stage joint inclusion probabilities
π

(2)
(kj)|i for units k and j within each sampled clus-

ter i.
It should be noted that an alternative esti-

mator to S2
e that bypasses the estimation of

Ni(Ni−1)
2 is:

σ̂2
eHH =

∑m
i=1

1
πiNi

∑
k<j

(yik−yij)
2

π
(2)
(kj)|i∑m

i=1
Ni−1

πi

. (5.8)
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This estimator should be less variable than σ̂2
eKG

because it uses more information (namely the in-
corporation of the {Ni}’s).

The design-based expectation (Ep(θ̂)) of the
above sample estimators of σ2

e then follows. De-
note the universe of clusters as U , the first-stage
sample of clusters as s1, the set of elements within
ith sampled cluster as s1i (i = 1, ..., m), and the
set of elements sampled within the elements of
the ith sampled cluster s1i as s2i.

The design based expectation of σ̂2
eA is

given by Ep(σ̂2
eA) = Ep1Ep2(σ̂2

eA|s1), where
Epi(i = 1, 2) denotes the design expectation
for each sampling stage. It can be shown that
Ep(σ̂2

eA) = {∑M
i=1

πi

ni
[(ni − 1)

∑Ni

j=1 πj|iy2
ij −

2
∑∑Ni

j<k π
(2)
jk|iyijyik]}/ ∑M

i=1(ni − 1)πij �= S2
E .

This bias still holds in the case of SRS at both
stages.

The design-based expectations of σ̂2
eB , σ̂2

eC ,
σ̂2

eD, σ̂2
eKG, σ̂2

eHH , and σ̂2
e0adj

, are obtained us-
ing similar derivations.

Model-based expectations are also of inter-
est. For example, using model (2.4) it can be
seen that the model-based expectation of σ̂2

eA is

σ̂2
eA =

∑
m

i=1

∑
ni

j=1
Eξ(yij−yi)

2∑
m

i=1
(ni−1)

= σ2
e . The design-

based and model-based expectations of the vari-
ance estimators of S2

e are summarized in Table 1
for without replacement and arbitrary sampling
schemes at both stages.

Table 1: Design and Model based expectations of
the various estimators of S2

e

Estimators Design-based Model-based
σ̂2

eA Biased Unbiased
σ̂2

eB Biased Biased
σ̂2

eC Biased Biased
σ̂2

eD Biased Unbiased
σ̂2

eKG Unbiased Unbiased
σ̂2

eHH Unbiased Unbiased
σ̂2

e0adj
Unbiased Unbiased

It should be noted that the design-based bias
properties of the various estimators of S2

e , dis-
played in Table 1, hold for two-stage sampling de-
signs using unequal probability without replace-
ment sampling schemes at each stage. How-
ever, there are some exceptions to this. For in-
stance, σ̂2

eC is design unbiased whenever π
(2)
(jk)|i =

πj|iπk|i, and for arbitrary sampling schemes at
the first-stage. Three sampling schemes that sat-
isfy this condition at the second-stage are: (i)

simple random sampling without replacement;
(ii) pps without replacement; and (iii) Poisson
sampling.

6 Simulation

6.1 Procedure

We conducted a simulation study that is sim-
ilar to the one in Pfeffermann, et al. (1998) to
evaluate the performance of the proposed estima-
tors. Estimators for the fixed effects considered
in this simulation study are µ̂, µ̂†, µ̂0 and µ̂∗

as stated in Section 3. Estimators for variance
components we considered are the weighted esti-
mators (4.4) and (4.5), the adjusted estimators
(4.8) and (4.9), and the unweighted estimators
(σ̂2

e0u, σ̂2
b0u). We generated population values Yij

using a simple random effects model (2.4), where
µ = 1, σ2

e = 1 and σ2
b/σ2

e = 0.25, i = 1, . . . , M
and j = 1, . . . , Ni. We set the number of clus-
ters in the population, M , to 300. Sample clus-
ter sizes studied were m = 30, 75. The number
of elements in the population, Ni, i = 1, . . . , M
were determined as exp(ri), where ri is a ran-
dom number generated from N(0, σ2

b ), truncated
by −1.5σb below and 1.5σb above.

Three sampling schemes were considered: (i)
informative at both levels, (ii) informative only
at level 2 and (iii) non-informative at both lev-
els. For the informative sampling at both levels,
m clusters were selected with probability πi pro-
portional to some defined ‘measure of size’ vari-
able Si, where Si is defined in the same way as
Ni except that random effect bi was used instead
of ri. The elements were divided into two strata.
Stratum 1 included elements whose residue eij

was positive and stratum 2 included the remain-
ing elements. Simple random samples of sizes
.25ni and .75ni are selected from strata 1 and 2,
respectively.

For the informative sampling strictly at level 2,
clusters were selected in the same way as in the
informative sampling at both levels. Elements
were selected by SRSWOR. For non-informative
sampling at both levels, clusters were selected us-
ing PPS where the measure of size variable Si

was taken as Ni, and elements were selected by
SRSWOR.

Five hundred different samples were drawn for
each sampling scheme and parameter values. The
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size of elements, ni, was either proportional to
Ni, ni = rNi or fixed as n0, where n0 is deter-
mined as the average of rNi, i = 1, . . . , M, r =
0.1, 0.4. For each sample, estimators for fixed ef-
fect and variance components are computed.

6.2 Results

Table 2 summarizes the simulation results for
estimating the mean and variance components
for the various sampling schemes. Estimators
that are recommended appear along the rows as-
sociated with each sampling scheme. However,
all estimators that are enclosed in the shaded
area are unbiased, whereas the unshaded ones
are biased. These results hold for the two cluster
sizes (m = 30, 75) that were used in the simula-
tion.

Table 2. Recommended estimators for mean and
variance components.

7 Conclusion

In this paper, we proposed a method for esti-
mating fixed effects and random effects involved
in a linear mixed model. The proposed estima-
tors are model-unbiased and design consistent. A
simulation study shows that the proposed estima-
tors are very competitive for all sampling schema
we considered.

For estimating variance components in a
nested error regression model, we developed esti-
mators using Henderson’s method III incorporat-
ing sampling weights. We further derived another
set of estimators (4.8) and (4.9) by adjusting the
estimators we developed, such that, these esti-
mators would reduce to unweighted estimators
for some ignorable sampling design.

A simulation study leads us to recommend us-
ing unweighted estimators or adjusted estimators
when sampling schema is non-informative. In the
case of informative sampling, weighted estima-
tors without adjustment are the best choice.
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