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1. Introduction
It is often the case that the sampling design cannot be ignored
when estimating the model parameters governing the finite
population. In other words, the model cannot be assumed to
hold for the sampled data due to selection bias. This is due to
the fact that the design covariates (these are the covariates that
drive the sample selection probabilities) cannot all be
accounted for in the model for reasons such as the desire to
have a parsimonious model, the desire to avoid instability in
parameter estimates due to over-fitting, and above all the
desire to meet the analyst’s goals. Also, some covariates may
have to be excluded from the model for practical reasons such
as unavailability of finite population totals that are needed in
constructing estimates of small area totals.

A natural way to overcome the presence of non-ignorable
sample designs in the joint design-model based estimation is
to work with transformed or aggregate-level data such as the
direct survey estimates for small areas. With aggregate level
data, one can take account of the sampling design in
specifying the likelihood of model parameters by appealing to
the central limit theorem for large samples; here it is assumed
that variances of the direct estimates can be treated as known
which, in practice, amounts to smoothing them via generalized
variance functions. If the preferred model is unit-level which
is often the case in practice, there is clearly a loss of efficiency
by using aggregate level data. However, this is the price one
pays for not knowing the likelihood for unit level sample data
from complex designs. Such an approach was used by Fay-
Herriot (FH) in their pioneering paper on small area estimation
in 1979.

The FH method uses an aggregated level mixed model for
small area estimation (SAE). It is commonly used in practice
and has several advantages: (i) it is simple and easy to
implement, (ii) SAEs produced using the FH method are
design consistent, and (iii) they are robust against non-
ignorable sample design.

However, the FH approach does have some limitations: (i)
there is a loss of information due to area level data
aggregation; (ii) unit-level covariate information cannot be
exploited, which in turn give rise to wider prediction intervals;
(iii) model depends on the level of aggregation e.g. state level
model is different from county level model so SAEs are not
internally consistent and this problem becomes more acute in
the case of nonlinear models; (iv) nonlinear extension suffers
from further data loss, e.g. when modeling a low prevalence
outcome variable at a lower level of geography such as

prevalence of heroin usage in a county, then many counties
will be discarded from the model since log (0) is undefined;
(v) the large sample assumption required to validate the
Gaussian approximation is not reasonable for direct small area
estimates; and (vi) smoothing of estimates of variances of
direct estimates may not be adequate or possible for areas with
few or no observations.

A new approach representing a generalization of the FH
method to unit-level nonlinear mixed models is presented here
which, like FH, employs data aggregation but through survey-
weighted estimating functions (EFs) rather than estimators.
Working with EFs helps to alleviate the problems associated
with the FH method because EFs can be better approximated
by a Gaussian distribution even for the modest sample sizes,
and can always be collapsed, if necessary, to improve the
Gaussian approximation and the precision of variance
estimates. Also, EFs can be based on unit-level covariate
information, and can be specified at the lowest level of
aggregation to avoid the problem of internal inconsistency.
For hierarchical Bayes (HB) SAE, the proposed approach
simply replaces the likelihood (computed under the
assumption of ignorable design) with the estimating function
based Gaussian likelihood which does not require ignorability
of the design.

The method is illustrated by means of a simple example of
fitting a HB linear mixed model with one covariate to data
obtained from a non-ignorable sample design. Both fixed and
random parameters are estimated to construct SAEs and
Markov Chain Monte Carlo (MCMC) technique is used for
HB parameter estimation.

2. Recent Advances in SAE Modeling for Nonlinear Mixed
Models
In an innovative attempt to account for the sample design,
Prasad and Rao (1999) derived an aggregate level model for
direct estimates from the unit level linear model using survey
weights, and obtained pseudo-optimal SAEs. It is pseudo in
the sense that the design was assumed to be ignorable and only
the effect of unequal selection probabilities (i.e., sampling
weights) was accounted in estimation of the joint design-
model variance. Also, for estimating variance components and
the mean square error (MSE) of SAEs, the unequal weighting
effect and the sample design was ignored. You and Rao
(2001) used a similar framework for developing pseudo HB
estimates. There method is also not robust against non-
ignorable sample design. However, it uses unit level covariate
information and is applicable to nonlinear mixed models.

Folsom, Shah, and Vaish (1999) developed Survey Weighted
Hierarchical Bayes (SWHB) SAE methodology for non-linear
unit level mixed models. The SAEs obtained by SWHB
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methodology are design consistent and internally consistent.
Moreover, the SWHB methodology allows use of unit level
covariates in SAE modeling. However, the SWHB
methodology is not robust against non-ignorable sample
designs and would lead to biased posterior distributions. We
remark that the problem of SWHB-SAE arose in the context
of the National Household Survey on Drug Abuse (now
known as the National Survey on Drug Use and Health),
where it was desired to fit a mixed logistic model. This was a
daunting SAE application task with a very large data set and
many covariates for which no existing software was
applicable, and this task was addressed by Folsom et al.
(1999) and Shah et al. (2000).

Our goal is to attempt to take full account of the survey design
in unit-level modeling and to develop methods that apply to
both linear and nonlinear models. In the next section, we
describe the propose SAE methodology.

3. Proposed Methodology
The proposed methodology is based on survey weighted EFs.
Use of survey weighted EFs has been implicitly invoked by
survey statisticians for a long time in ratio and regression type
estimators, see e.g., Fuller (1975), Cassel, S@rndal, and
Wretman (1976). The pioneering work of Binder (1983)
explicitly introduced a general theoretical framework of
survey weighted EFs for deriving estimators of super
population parameters, and their asymptotic properties under a
given sample design. The optimality of survey-weighted EFs
under joint design-model randomization was, however,
established by Godambe and Thompson (1986) using the
optimality framework of Godambe (1960). To illustrate our
methodology, we first consider the framework (at the census
level) for a linear mixed model with one covariate. Let

where

0

2 2 2 2
0 1 0~ (0, ), ( , ) ~ ( ), ~ ( / 2, / 2)i N U R and IGη η ηη σ β β σ ν σ
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Note, for simplicity, we have assumed that 2
εσ is known.

Otherwise, the prior for 2
εσ can be assumed to be improper

like that of the mean parameters β ’s. In that case, we can

introduce a separate EF, 2
εσφ , for 2

εσ which treats 2
εσ as a

mean parameter. It turns out, as expected and as in the case of
FH, that 2

εσ is not a part of the variance-covariance matrix

ofφ ’s (defined below) when a suitable design-based estimate
is substituted. So we need to add an extra EF if the estimation
of 2

εσ is also of interest.

With non-ignorable sample design (small areas as strata),
define survey weighted EFs for using the
sample data as
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where are the design weights or inverse of the first order
probabilities. The EF for 0β is simply the sum of

iηφ ’s. We

propose to use the above set of EFs as the starting point for
Bayes or HB estimation, i.e., the likelihood would be defined
by the distribution of these EFs. Clearly, EFs use unit-level
information and they use it efficiently in view of their
optimality properties. It is also known that EFs can be better
approximated as a Gaussian distribution even for the modest
sample sizes (McCullagh and Nelder, 1989) because by their
very nature, they are simple sums of elementary zero
functions, although the elementary functions could be
complex by themselves. Moreover, EFs can be easily
collapsed to improve the Gaussian approximation as well as
the precision of variance estimates. Note that the serious
problem of internal inconsistency can be avoided by defining
the EFs at the lowest level of aggregation. Thus, parameters at
the higher levels of aggregation can be obtained from the
lowest level parameter estimates which serve as building
blocks. It should also be noted that, typically in practice, the
joint inclusion probabilities ( )( )i jkπ of units j and k in

stratum i are not available and therefore, survey weighted EFs
can’t be constructed if they involve cross-product terms, e.g.,
if they involve double sums within a stratum i . It is,
therefore, desirable to specify the above model so that the

error terms iε ’s are i.i.d. which, in turn, gives rise to single

sums within the strata for survey weighting.

Now, the vector of EFs serves as the condensed input data
which after collapsing, if necessary, gives rise to an
approximate Gaussian likelihood, L( *y |β, η, ⋅) where *y
denotes the implicit condensing of information in y via EFs.
Thus, for the unit-level HB analysis, the original likelihood
L( y |⋅) (which would have been based on the ignorable design
assumption) is replaced by the estimating function based
Gaussian likelihood (EFGL), L( *y |⋅) which does not assume
ignorability of the design.

Let
1 1

' ( , , , ), ( )
M

and V Covη η βφ φ φ ΦΦ Φ= =K where VΦ is

design based variance-covariance matrix of .Φ Further
suppose, 1~ (0, )MN VΦΦ +&

. Due to this assumption, the
proposed method is henceforth referred to as Estimating
Function Based Gaussian Likelihood (EFGL). The EFG log-
likelihood is given by ' 11

2( ) ( )l data const VΦΦ Φ Φ−= − . It may

be noted that there is, in fact, a second component involving
2
εσ when the variance covariance matrix ofφ ’s is computed

under joint design-model randomization. However, it is
negligible in comparison to the first term,VΦ , under the usual

assumption of i in N<< . It should also be emphasized that, in

practice, some collapsing of
iηφ ’s may often be required

0 1ij ij i ijy xβ β η ε= + + +

2 2 2
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because the corresponding in ’s may be small. We may need
this collapsing to improve the Gaussian approximation, as well
as to improve the precision of the estimate VΦ . With the
specification of EFGL, estimation of parameters

2
1 0 1[ ( , , ), ( , ), ]M ηη η η β β β σK= = can proceed in the HB

setup using MCMC steps. The next section gives details of
full conditional posterior distributions needed for MCMC.

4. MCMC for the Proposed HB-SAE
For implementing Gibbs sampling, the full conditional
posterior distributions are obtained below. Note that,

Let
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Then we have

Then full conditional posterior distributions are given below
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Using the full conditional posterior distributions given above,
we can now use Gibbs sampling technique and generate
MCMC samples from the joint posterior distribution of the
model parameters as described below.

Step 0: Fix
( 0)(0) (0) (0) (0) (0) (0) 2

0 1 1( , ), ( , ), ,M ηβ β β η η η σ= = K

and obtain (0)VΦ .

Step 1: Generate a

Step 2: Repeat Step 1 for the required number of MCMC
cycles.

5. Simulation Experiment
Consider a universe of 1, ,i ML= strata (small areas) where

100M = and let iN denote the number of population

members in stratum- i . In this simulation experiment, we set
*

0 (1 exp( ))i iN N u= + where 0N is a constant and *
iu is

obtained by truncating ~ (0, 0.2)iu N at .5(0.2)± . For
simplicity, we consider a single covariate super population
linear mixed model 0 1ij ij i ijy xβ β η ε= + + + where 0 0.5β = ,

1 1β = , ~ (0, 0.2)i Nη , ~ (0, 4)ij Nε , and 1, , ij NL= . The

covariate ij i ijx υ δ= + where ~ (0, 0.1)i Nυ and ~ (0, 1)ij Nδ .

We generate 150K = population level data sets with common

ijx and iN where iN ’s are generated using 0N =3000. For

each of these population data sets, we further stratify the
stratum- i population into two substrata iΩ + with 0ijε > and

iΩ − with 0ijε ≤ . Let iN + , iN − denote the sizes of these

substrata and in + , in − denote the sizes of the simple random
samples selected without replacement from these strata,
respectively. Note that the substratum sizes vary across

populations. Let
100

1
i

i

N N
=

=∑ and
100

1
i

i

n n
=

=∑ where i i in n n− += + .

We generate 150 populations and corresponding 150 samples.
In our simulation experiment, 628897N = ,

60 and 20.i in n− += =

For each sample ( 1, ,150s L= ), using Gibbs sampling
technique, we generate 10,000 MCMC samples for each of the
model parameters, namely 2

0 1 1 M, , , , and ηβ β η η σK . These

MCMC samples are tested for convergence criterion using
CODA (Convergence Output Data Analysis software). First
1000 MCMC samples are deleted for “burn-in” period and
from the rest of the 9000 MCMC samples we selected every
ninth sample to minimize any auto-correlation among
samples, yielding a final MCMC sample of size 1000.

Let 2
0 1( , , , )sc sc sc isc scηθ β β η σ= denote the parameter values

from the c -th MCMC cycle corresponding to the s -th
sample. In Table 1, the average posterior mean of θ is defined
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θ
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standard deviation of each element of scθ is defined as the

square root of
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denotes the small area estimate from the s -th sample for the
i -th area using the c -th MCMC cycle

where
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where isη is the true value of iη for the s -th population. Let

isL and isU denote 2.5 and 97.5 percentiles of the posterior

distribution of isΘ obtained from 1000 MCMC samples of
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The coverage probability distribution characteristics given in
Tables 2 are obtained from the distribution of 100 area-

i specific values of
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1

( ) 150is
s

ψ
=
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6. Simulation Results
Tables 1 and 2 given at the end of Section 10 summarize the
simulation results. In Table 1, average posterior means and
standard deviations for the EFGL method are compared with
solutions from the HB version of the FH model and with the
unweighted solution. The average posterior means from the
FH and EFGL solutions are very close to each other. The
average posterior mean for 0β from the unweighted solution
is negatively biased (-0.2953) due to the fact that we over
sample the iΩ − substrata. The average posterior standard

deviations from the EFGL and FH solutions for β0 and 2
ησ are

also very close to each other whereas the average posterior
standard deviation for β1 from the EFGL model is more than 6
times smaller than the solution from the FH model. The
average posterior standard deviations from the EFGL model
are very close to the average posterior standard deviation from
the unweighted solution.

In Table 2, coverage probabilities for the EFGL solution are
compared with the FH solution coverage probabilities. The
coverage probabilities for both solutions are very close.
However prediction intervals for the EFGL solution are 20%
narrower than the FH solution, which is expected, since the
EFGL solution utilizes unit level covariate information
whereas the FH solution uses aggregated level covariate
information.

7. Unit Level Nonlinear Mixed Models
The EFGL method introduced in Section 3 for finding HB-
SAEs in the context of mixed linear models can be easily
applied to mixed nonlinear models, the only difference being
that full conditional posteriors of the β ’s and η ’s no longer
have analytic solutions. Therefore, as expected, the method

gets more computationally intensive. To illustrate the ideas,
we consider the following mixed logistic model:

( )
( ) ( ) ( )
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where ~Bernoulli( ),
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The EFs in this case remain similar to the linear case except
that the elementary zero functions (or the residuals) ij ijy µ− ,

are complex due to the nonlinear form of ijµ ’s. Observe that

the EFs continue to be simple linear functions of elementary
zero functions, and hence they behave well in terms of
Gaussian approximation. The EFs for the logistic case (when
small areas are strata) are given by
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We can orthogonalize βϕ with respect to
iηϕ ’s. Also, when

β includes an intercept, βϕ element corresponding to the

intercept should be dropped because of its linear dependence
on the

iηϕ ’s. Now, the likelihood, ( )* | ,L y β η can be

approximately specified as before, but the MCMC steps are
modified as follows:

Step 1. [ ]| *,yβ η

Since the full sample is typically very large, the full
conditional posterior can be well approximated by

[ ] ( )1
mode

ˆ| *, ~ ,y N
βψβ η β Σ−

&
(1)

where modeβ̂ solves 0βψ = , and

( ) ( ) ( )log * | , , .L y E
ββ ψ βψ β β η ψ βΣ  = ∂ ∂ = − ∂ ∂ 

Note that unlike the linear case, modeβ̂ does not have an
analytic form. Also note that instead of the approximate
posterior distribution (1), one can get realizations from an
exact posterior distribution by using the Metropolis-Hastings
(MH) step within MCMC in which (1) can be used as a
proposal distribution.

Step 2. 2| , , *, , ' and 1, ..., .i i y i i i Mηη η β σ′  ≠ = 
As mentioned earlier, this again does not have an analytic
solution. We could use MH with mle/prior for the proposed
distribution. In other words, solve 2 0

i iη ηψ σ η−− = to get

,mle-adjˆiη , where ( ) ( )log * | ,
i i L yηψ η β η= ∂ ∂ , and use

( ) 1
2 2

,mle-adjˆ ,
i

iN
ηψ ηη σ σ

−
− + 

 
as the proposal distribution where

2

ii
iE

ηψ ησ ψ η = − ∂ ∂  .
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Step 3. 2 |ησ η  

We get the same result as in the linear case. Note that Step 4

for 2 |εσ ⋅  is not needed because 2
εσ is a known function of

µij in the logistic case.

8. Conclusion
The EFGL method was developed to exploit unit-level
covariate information, to take full account of the survey
design, and to have a valid (approximate) likelihood for HB-
SAE methodology applied to generalized linear/nonlinear
mixed models. It generalizes the aggregate-level model of
Fay-Herriot (1979), and the pseudo-likelihood approach of
Folsom, Shah and Vaish (1999). There are essentially two
main ideas in EFGL, namely, the data aggregation via EFs and
EF-collapsing. The main reason for EF-collapsing is to
improve Gaussian approximation, and the secondary purpose
is to improve the variance estimate’s precision. In practice, it
may be preferable to use separate modeling to make variance
estimates more stable. However, even if variance estimates are
not precise, it is often of interest, in practice, to see how much
variance reduction can be realized through SAE modeling.

The other idea of data aggregation in EFGL is somewhat
similar to that of the FH method except it tries to take
advantage of the unit-level information as much as possible.
Hence, the resulting estimates from the EFGL method are
expected to be more efficient than those from the FH method.
In particular, for the case of simple linear mixed models with
known variance components, it can be easily shown
analytically that precision of the estimates of fixed effects
( β ) can be improved substantially in the case of unit level

models if the covariates ( ijx ) have sufficient variability within

areas. There is also some gain in efficiency of random effect
( iη ’s) estimates. However, if iη ’s are also defined as

coefficients of suitable covariates ( ijz ’s) as in the case of

random regression coefficients, then high efficiency gains in
estimating random effects can also be realized if there is
sufficient variability in ijz ’s within areas.

The ideas underlying the proposed method of EFGL are quite
general, and the method is applicable to general nonlinear
mixed models for survey data. However, it does have some
limitations which the user should keep in mind. Some loss of
efficiency is inevitable due to data aggregation and EF-
collapsing. This is the price we pay for not having enough
information about the likelihood of the sampled data, and by
not being able to ignore the sample design. EF-collapsing may
be needed for the Gaussian approximation. In practice, it is
better to avoid it if possible as it doesn’t distinguish much
between the areas involved in collapsing. At the design stage,
one can take measures to ensure a sufficient number of
observations in each small area in order to avoid EF-
collapsing.
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Table 1: Average Posterior Mean and Standard Deviation for Model Parameters

Average Posterior Mean
Average Posterior
Standard Deviation

Parameter
True
Value Fay-

Herriot EFGL Unweighted
Fay-

Herriot EFGL Unweighted

β0 0.5 0.5024 0.5007 -0.2953 0.0488 0.0469 0.0460
β1 1.0 1.0012 1.0011 0.9999 0.1696 0.0258 0.0206

2
ησ 0.2 0.1971 0.1976 0.1703 0.0341 0.0317 0.0304

Table 2: Coverage Probability and Ratio of Predication Interval Widths

Coverage ProbabilityDistributional
Characteristics Fay-Herriot EFGL

Ratio of CI Width
(EFGL/Fay-Herriot)

95% 0.973 0.973 0.808
75% 0.953 0.953 0.802
50% 0.940 0.933 0.798
Mean 0.941 0.934 0.797
25% 0.927 0.913 0.792
5% 0.910 0.900 0.785
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