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Abstract:

The paper presents a new weighted jackknife method
to estimate the mean squared prediction error
(MSPE) of an empirical best linear unbiased pre-
dictor (EBLUP) of a general mixed effect in the
context of a mixed linear normal model. This new
MSPE estimator has the same second order asymp-
totic property of the Taylor series method. However,
unlike the Taylor series method, our simulation re-
sults demonstrate that the proposed weighted jack-
knife method performs well for small samples and
departure from various assumptions required to ob-
tain the second order asymptotic properties.

1. Introduction

For effective planning of health, social and other ser-
vices, and for apportioning government funds, there
is a growing demand to produce reliable estimates
for smaller geographic areas and sub-populations,
called small-areas, for which adequate samples are
not available. The usual design-based small-area es-
timators are unreliable since they are based on a
very few observations that are available from the
area. An empirical best linear prediction (EBLUP)
approach has been found suitable in many small-
area estimation problems. The method essentially
uses an appropriate mixed linear model which cap-
tures various salient features of the sampling design
and combines information from censuses or adminis-
trative records in conjunction with the survey data.
For a review of small-area estimation, see Ghosh and
Rao (1994), Lahiri and Meza (2002), among others.

The estimation of MSPE of EBLUP is a challeng-
ing problem. The naive MSPE estimator, i.e., the
MSPE of the BLUP with estimated model parame-
ters, usually underestimates the true MSPE. There
are two reasons for this underestimation problem.
First, it fails to incorporate the extra variabilities
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incurred due to the estimation of various model pa-
rameters and the order of this underestimation is
O(m−1), where m is the number of the small-areas.
Secondly, the naive MSPE estimator even underesti-
mates the true MSPE of the BLUP, the order of un-
derestimation being O(m−1). Several attempts have
been made in the literature to account for these two
sources of underestimation and to produce MSPE
estimators that are correct up to the order O(m−1).
These are called second order correct MSPE estima-
tors. See Prasad and Rao (1990), Datta and Lahiri
(2000), Butar and Lahiri (2002), Jiang et al. (2002),
among others, for various approaches.

This paper is a follow-up of the recent jackknife
method of Jiang et al. (2002) in the following new
directions:

(i) Unlike Jiang et al. (2002), our method covers
the important method of moments method of
variance component estimation.

(ii) In case of normality our proposed method ex-
ploits normality to do more exact calculations
and thereby increases the efficiency if the data
indeed follow normal distribution. When the
distribution is not normal, weighted jackknife
version of Jiang et al (2002) is also suggested in
the concluding remarks section.

(iii) Our method uses weights using leverage values
allowing smaller weights to small-areas with ex-
treme covariate values.

(iv) Special attention has been given to achieve
good properties of our weighted jackknife es-
pecially when m is small. This ensures non-
negative estimates of MSPE estimators, a prob-
lem with the method proposed by Jiang et al.
(2002). See Bell (2001).

In section 2, we define the BLUP and EBLUP of a
general mixed effect. The weighted jackknife method
is proposed in section 3. The proposed weighted
jackknife estimator is second order accurate. In sec-
tion 4, the method is illustrated using the simple
but important Fay-Herriot model (see Fay and Her-
riot 1979). To demonstrate the efficiency of our pro-
posed method, results from a Monte carlo simulation
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study are reported in section 5. Unlike other meth-
ods available in the literature, our proposed method
turns out to be amazingly robust against departures
from a variety of model assumptions needed to prove
the second order asymptotic property.

2. The BLUP and EBLUP

Consider the following general normal mixed linear
model in small area estimation considered in Prasad
and Rao (1990) and Datta and Lahiri (2000) :

yi = Xiβ + Zivi + ei, i = 1, ...,m, (1)

where Xi (ni × p) and Zi (ni × bi) are known ma-
trices, vi and ei are independently distributed with
vi

ind∼ Nbi
(0, Gi) and ei

ind∼ Nni
(0, Ri), i = 1, ...,m.

We assume that Gi = Gi(ψ) (bi × bi) and Ri =
Ri (ψ) (ni×ni) possibly depend on ψ = (ψ1, ..., ψq)′,
a q × 1 vector of fixed variance components. Write
y = col1≤i≤myi, e = col1≤i≤mei, X = col1≤i≤m(Xi),
Z = diag1≤i≤m(Zi), G(ψ) = diag1≤i≤mGi, v =
col1≤i≤mvi and R(ψ) = diag1≤i≤mRi. We assume
that X has full column rank p. Let Σ(ψ) = R(ψ) +
ZG(ψ)Z ′, the variance-covariance matrix of y. With
these notation we can write (1) as

y = Xβ + Zv + e,

where v and e are independently distributed with
v ∼ Nb(0, G), e ∼ Nn(0, R), n =

∑m
i=1 ni and b =∑m

i=1 bi.
As in Datta and Lahiri (2000), we are interested

in predicting a general mixed effect of θ = h′β +
λ′v, where h and λ are known vectors of order p ×
1 and b × 1 respectively. When ψ is known, the
BLUP of θ is given by θ̂(y;ψ) = h′β̂(ψ) + s′(ψ)[y −
Xβ̂(ψ)], where s(ψ) = Σ−1(ψ)ZG(ψ)λ and β̂(ψ) =
[X ′Σ−1(ψ)X]−1[X ′ Σ−1(ψ)y].

In practice ψ is unknown and is estimated from
the data. Let ψ̂ be a consistent estimator of ψ con-
sidered in Prasad and Rao (1990) and Datta and
Lahiri (2000). Then an EBLUP of θ is θ̂(y; ψ̂) which
is obtained from θ̂(y;ψ) with ψ replaced by ψ̂.

3. A weighted jackknife MSPE esti-
mator

The MSPE of θ̂(y; ψ̂) is defined as MSPE[θ̂(y; ψ̂)] =
E[θ̂(y; ψ̂) − θ]2, where E denotes the expectation
with respect to model (1). Using the well-known
identity due to Kackar and Harville (1984):

MSPE[θ̂(y; ψ̂)] = g1i(ψ) + g2i(ψ)

+E[θ̂(y; ψ̂)− θ̂(y;ψ)]2, (2)

where g1(ψ) = λ′G(ψ)λ−s′(ψ)ZG(ψ)λ, and g2(ψ) =
[h−X ′s(ψ)]′(X ′Σ−1(ψ)X)−1[h−X ′s(ψ)]. We pro-
pose to use a weighted jackknife method twice - once
to estimate the first two terms of (2) by correcting
the bias of g1i(ψ̂) + g2i(ψ̂) and then to estimate the
third term involving uncertainty due to the estima-
tion of ψ. The weighted jackknife MSPE estimator
is then given by:

mseWJ

= g1(ψ̂) + g2(ψ̂)

−
m∑
u=1

wu

(
g1(ψ̂−u) + g2(ψ̂−u)− [g1(ψ̂) + g2(ψ̂)]

)
+

m∑
u=1

wu[θ̂(y; ψ̂−u)− θ̂(y; ψ̂)]2. (3)

The weights wu’s satisfy certain regularity condi-
tions (see Chen and Lahiri 2002). A possible choice
of wu is wu = 1−X ′

u(X
′X)−1Xu which gives smaller

weights to unusual observations depending on their
leverage values.

Under the regularity conditions of Prasad and Rao
(1990) and Jiang et al. (2002), it can be shown
that mseWJ is second order correct as an estima-
tor of MSPE[θ̂(y; ψ̂)]. See Chen and Lahiri (2002)
for details. Notice that because of the weighted
jackknife bias adjustment of g1(ψ̂) + g2(ψ̂) it pos-
sible for mseWJ to yield negative estimates, espe-
cially when m is small and the regularity conditions
are violated. The same problem arises for the un-
weighted jackknife method considered in Jiang et al.
(2002). We now discuss a remedy for this situa-
tion. To this end, we borrow notation from Datta
and Lahiri (2000). Let bψ̂(ψ) be the bias of ψ̂, i.e.,
E(ψ̂) − ψ, correct up to the order O(m−1). Let
∇g1(ψ) = ( ∂

∂ψ1
g1(ψ), ..., ∂

∂ψq
g1(ψ))′ be the gradient

of g1(ψ) [see Datta and Lahiri (2000) for an expres-
sion of the gradient]. In case mseWJ yields a nega-
tive estimate we approximate the bias correction in
the weighted jackknife formula by

m∑
u=1

wu

(
g1(ψ̂−u) + g2(ψ̂−u)− [g1(ψ̂) + g2(ψ̂)]

)
.= b′

ψ̂
(ψ̂)∇g1(ψ̂)− tr[L(ψ̂)Σ(ψ̂)L′(ψ̂)vWJ ], (4)

where L(ψ) = col1≤d≤qL
′
d(ψ), Ld(ψ) =

∂
∂ψd

s(ψ)(d = 1, · · · , q), vWJ =
∑m
u=1 wu(ψ̂−u −

ψ̂)(ψ̂−u − ψ̂)′, a weighted jackknife estimator of
the covariance matrix of ψ̂ and .= means that
the neglected terms are of the order op(m−1).
Following the arguments in Datta and Lahiri (2000)
it can be shown that for the ANOVA and REML
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method the first term of the right hand side of
(4) is of the order op(m−1) and hence can be
neglected. For the maximum likelihood estimator
of ψ this is, however, of the order Op(m−1) and
needs to be kept in order to be second order
accurate. We shall use the following expression:
bψ̂ML

(ψ) .= 1
2vWJcol1≤d≤qtr[I−1

β (ψ) ∂
∂ψd

Iβ(ψ)],
where Iβ(ψ) is the part of the information matrix
corresponding to β.

For small m, it is possible that some components
of ψ̂ may go out of the range. In such a case, we trun-
cate those components by the boundary values. In
the weighted jackknife method, we shall not change
these estimates for sub-samples. This point is illus-
trated in the next section.

4. An Example: The Fay-Herriot
Model

In order to estimate per-capita income for small ar-
eas (population less than 1,000), Fay and Herriot
(1979) considered an aggregate level model and used
an empirical Bayes method which combines survey
data from the U.S. Current Population Survey with
various administrative and census records. Their
empirical Bayes estimator worked well when com-
pared to the direct survey estimator and a synthetic
estimator used earlier by the Census Bureau. The
model can be written as:

yi = x′iβ + vi + ei, i = 1, · · · ,m,

where vi’s and ei’s are independent with vi
iid∼

N(0, A) and ei
ind∼ N(0, Di), Di (i = 1, ...,m) being

known. Here, ni = bi = 1, Zi = 1, ψ = A, Ri(ψ) =
Di and Gi(ψ) = A (i = 1, · · · ,m).

For the Fay-Herriot model, an EBLUP, say
θ̂i(yi; Â), of θi = x′iβ + vi is given by:

θ̂i(yi; Â) =
Di

A+Di
x′iβ̂ +

A

A+Di
yi,

where Â is a consistent estimator of A and β̂ are
consistent estimators of A and β respectively.

The weighted jackknife MSPE estimator of
θ̂i(yi; Â) described given by (3) reduces to:

mse1WJ
i

= g1i(Â) + g2i(Â)

−
m∑
u=1

wu(g1i(Â−u) + g2i(Â−u)− (g1i(Â) + g2i(Â)))

+
m∑
u=1

wu[θ̂i(yi; Â−u)− θ̂i(yi; Â)]2, (5)

where wu = 1
Du
x′u

(∑m
j=1

xjx
′
j

Dj

)
xu, g1i(Â) =

ÂDi

Â+Di
, g2i(Â) = D2

i

(Â+Di)2
x′i

(∑m
j=1

1
Â+Dj

xjx
′
j

)−1

xi.

If Â = 0, we estimate MSPE by g2i(Â).
It can be checked that for the Fay-Herriot

model the bias of ÂML is bÂML
(A) =

−tr{[
∑m
u=1(A + Du)−1xux

′
u]
−1[

∑m
u=1(A +

Du)−2xux
′
u]}/

∑m
u=1(A+Du)−2 and ∇g1(A) =

( Di

A+Di
)2 > 0. Note that the right hand side of (4)

is given by −g∗3i(Â) = −D2
i (Â + Di)−3vWJ

for ANOVA and REML method, where
vWJ =

∑m
u=1 wu(Âu − Â)2. For the ML method,

this is given by: bÂML
(ÂML)∇g1(ÂML)−g∗3i(ÂML).

5. Monte Carlo Simulations

In this section, we investigate the performances
of different MSPE estimators for small m through
Monte Carlo simulations. For this purpose, we con-
sider the Fay-Herriot model and consider the follow-
ing four MSPE estimators for the EBLUP (with A
estimated by the method of moments) given in sec-
tion 4:

(i) Naive MSPE estimator given by mseNi =
g1i(Â) + g2i(Â);

(ii) The Prasad-Rao MSPE estimator given by
msePRi = g1i(Â) + g2i(Â) + 2g3i(Â), where the
expressions for g1i and g2i are given in section
4 and g3i = 2D2

i

m2(Â+Di)3

∑m
j=1(Â + Dj)2. When

Â = 0, we use g2i(Â) in order to achieve better
simulation results.

(iii) The proposed weighted jackknife mseWJ
i de-

fined in (5).

We consider m = 12, p = 1, β = 1,
and A = 10. For the first eleven areas,
we consider the following combinations of
the sampling variance and covariate values:
(D,x) : (10, 1); (9, 1.5); (14, 2); (14, 2.5); (11, 3);
(10, 3.5); (10, 4); (13, 5); (4, , 6); (3, 7); (14, 8). To
study the effect of the covariate on the accuracies
of different MSPE estimators, we change x = x12

for the last area, keeping D = D12 fixed. Similarly,
to study the effect of the sampling variance on the
accuracies of different MSPE estimators, we change
the sampling variance D for the last area keeping
x = x12 fixed.

For a specific simulation, R = 10, 000 independent
samples of (vi, ei), i = 1, · · · , 12, are generated from
the Fay-Herriot model. We then calculate the rela-
tive bias (RB) of each of the three MSPE estimators
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for all the 12 areas using the Monte Carlo method
as follows:

RBi = 100
E(mspei)−MSPEi

MSPEi
, i = 1, · · · , 12,

where mspei denotes an estimator of MSPEi, the
MSPE of EBLUP θ̂i(yi; Â) of the true small-area
mean θi (i = 1, · · · , 12), and the expectation “E”
is approximated by the Monte Carlo method. We
report RB’s for the last area and summary statistics
(mean and the standard deviation) of the RB’s for
the rest of 11 areas.

We illustrate the effect of x through leverage value
defined as h = h12 = x2∑12

j=1
x2

j

. Note that h is an in-

creasing function of x > 0. We increase h from 0 to
1 by increasing x. Table 1 displays RB’s of different
MSPE estimators for different x. The naive esti-
mator underestimates MSPE in general, the magni-
tude of the underestimation being severe when h ap-
proaches 1. While the adjusted Prasad-Rao estima-
tors performs well for small to moderate h, it tends
to overestimate for outlying small-areas, i.e., when
h approaches 1. Our weighted jackknife estimator is
very robust for different x’s - it does extremely well
in protecting against outlying x. Table 2 presents
the means and the standard deviations of the RB’s
for the rest of the 11 components. Here again our
weighted jackknife method is usually the winner. It
is interesting to note that the adjusted Prasad-Rao
method performs slightly better than the weighted
jackknife method in this table when h is close to 1.

Table 3 displays RB’s of different MSPE estima-
tors for different D/A for the last small-area. Here
again, the naive estimator generally underestimates
the true MSPE, the underestimation being severe for
large D/A. The RB’s for the adjusted Prasad-Rao
and the weighted jackknife methods exhibit an inter-
esting pattern for varying D/A. The absolute RB’s
generally increases with increasing |D/A − 1|. Both
the methods usually overestimate when D/A < 1
and underestimate when D/A > 1. Small values of
D/A cause severe overestimation for the adjusted
Prasad-Rao method. In comparison, our weighted
jackknife MSPE estimator is quite robust.

In Table 4 we display the means and the stan-
dard deviations for the rest of the 11 components
for different values of D/A. In this table also, the
robustness of our weighted jackknife method in com-
parison with the naive and the adjusted Prasad-Rao
method is clearly demonstrated.

6. Concluding Remarks

The paper brings out usefulness of weighted jack-
knife method for mixed linear normal models. The
extension of the method to cover nonlinear nornor-
mal model as given in Jiang et al. (2002) is cur-
rently under investigation. Our preliminary results
indicate that an adjustment of the method proposed
by Jiang et al. (2002) with weight of the form
wu = 1+O(m−1) yields a weighted jackknife method
which enjoys the desirable second order asymptotic
property.
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Table 1: Relative Biases (%) of MSE Estimators for area=12

h Naive P-R W.J.
0 -21.17 3.99 3.46

0.3 -17.18 2.58 0.73
0.5 -13.90 3.49 -0.61
0.8 -7.92 6.76 -2.81

0.98 -2.36 11.28 -3.07

Table 2: Summary statistics of RB’s for the first 11 areas

h Naive P-R W.J.
MEAN 0 -18.7997 6.93240 5.04580

0.3 -19.2918 6.86435 5.31373
0.5 -19.8263 6.80661 5.51134
0.8 -20.6288 6.45830 5.81070

0.98 -21.3220 6.05728 6.67634
STD 0 2.77507 7.29355 2.91998

0.3 2.14786 6.72557 3.00014
0.5 1.62392 6.27256 3.20507
0.8 1.08782 5.03241 3.75387

0.98 1.45733 3.95403 4.80431

Table 3: Relative Biases (%) of MSE Estimators for area=12

D Naive P-R W.J.
0.1 -6.0128 64.7182 11.0703
0.5 -11.1043 14.4996 3.8854

1 -13.6912 4.4930 -0.1128
2 -15.1193 -2.0299 -3.3317

10 -16.7781 -7.3950 -7.6992

Table 4: Summary statistics of RB’s for the first 11 areas

D Naive P-R W.J.
MEAN 0.1 -24.3902 2.3620 6.38752

0.5 -20.1185 5.2909 5.84857
1 -19.8493 6.5309 5.60050
2 -19.7484 9.6408 5.23917

10 -22.6196 89.6253 3.58639
STD 0.1 2.00918 2.5557 3.67880

0.5 1.15896 4.9565 3.67170
1 1.53662 6.0253 3.30198
2 2.03694 7.8697 2.92664

10 2.97276 47.7501 3.87454
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