Introduction
In the U.S. and throughout the world it is common to use standardized classification systems such as the Standard Industrial Classification (SIC), the International Standard Industrial Classification System (ISIC), or the North American Industry Classification (NAICS) for the coding and classification data relating to industrial production and/or enterprises. In the same way, the Classification of Individual Consumption by Purpose (COICOP) as part of the 1993 System of National Accounts (SNA) is widely used throughout the world for the classification and coding of personal consumption-related data associated with consumer expenditure surveys, personal consumption estimates for the national accounts and Consumer Price Indices (CPIs). However, neither COICOP, nor any other official standardized classification system, is presently used for the purpose of classifying and coding these official databases and statistical series in the United States.

After providing some background information on the current classification and coding structures in place for personal consumption-related data in the U.S., the concept of a Core Classification System (CCS) is presented. In generic terms, a CCS is used for standardizing the coding and classification of conceptually similar statistical data that are obtained from various sources, by various entities, and employed in diverse uses. Since personal consumption data in the U.S. are characterized by these conditions, it is natural to think of using a CCS to organize and standardize these data.

In order to illustrate the need for standardization, we present an example of the detailed classification and coding structures of several food components compared across the CE, the CPI and the PCE. This example serves to highlight a number of issues regarding the need for a CCS.

Diverse classification and coding systems presently used for the preparation of the CE, the CPI, and the PCE
For a number of years the Bureau of Labor Statistics (BLS) has had the goal of standardizing the classification and coding of personal consumption expenditures as used in the preparation of the CPI and CE publications. The creation of the Universal Classification Code (UCC) in the late 1970s represented a significant step toward the achievement of this goal. However, in spite of the existence and use of the UCC for the past 20 years, a number of different coding and classification systems (both explicit and implicit) continue to be used for survey form design, data collection, data processing and publication of the CPI and the CE results. In addition to the standardization of the coding and classification systems used for processing CE data within and between the BLS and the Census Bureau, a major issue also exists regarding standardization between the BLS/Census systems and the coding and classification systems used for processing and publishing personal consumption expenditures (PCE) and the implicit deflator by the Bureau of Economic Analysis (BEA).

While the UCC is the backbone of the current U.S. classification system for the CE and the CPI, there are a number of other coding systems, which are presently being used in the production of the CE and CPI at various intermediate stages. The current UCC is a 6 digit coding system that reflects the CPI sampling and publication structure for the 1977 CPI revision. The first two digits correspond to the Expenditure Class (EC) structure which reflects the classification of expenditures for the CPI market basket according to type of expenditure, i.e., bakery products, cereals, dairy products, etc. The next two digits represent the Item Strata for the CPI sampling frame/weighting structure/publication structure. These classifications by Strata are basically determined by the size of the expenditure or the weight in the index. In other words the Item Strata are roughly equivalent in weight except where a given item has a large expenditure weight in and of itself. The fifth digit represents the ELI (Entry Level Item). For the U.S. CPI the ELI's are generally rather broad categories of expenditures. For example, Men's Shirts would include all types of shirts such as dress shirts, knit shirts, sport shirts, T-shirts, etc. There are usually no more than a few ELI's in a given Item Stratum. For the CPI the sixth digit is used for the cluster classification below the ELI level when necessary. For the CE the sixth digit is also used for further disaggregation, but...
it may be different from that used for ELI clusters in the CPI.

In addition to the UCC there are several other coding systems used for the production of the CE and the CPI. For the Diary portion of the CE a separate 6 digit coding system is used. The first digit designates the major group of expenditure such as food, housing, clothing, medical care, etc. The second digit is used to designate sub-groups such as meat, poultry and fish or furni-ture, etc. The third digit corresponds to the CPI expenditure classes in at least certain cases, although there is no completely consistent mapping between EC’s and the first three digit groups in the Census diary codes. The fourth and fifth digits are used to identify specific items. The sixth digit is used in various ways. For food it is used to designate whether an item is fresh, frozen, canned or other. For clothing it is used to designate whether the item is for men, women, boys, girls or infants.

A completely separate system is used for mapping the CE interview data into the UCC codes. The CE Interview Survey is conducted using a necessarily complicated form, which also serves as the instrument for collecting a great deal of collateral non-expenditure data. In particular the CE provides data on household demographics, labor force participation, income, housing characteristics, inventories of vehicles and household equipment, credit, insurance, gifts, savings, etc., in addition to the simple expenditure data. For certain types of expenditure data the format for collecting the data is also complex. For example, for clothing there is a list of items with corresponding 3 digit codes. Expenditures for these items are recorded in a generic field along with the code for the item. In addition there is also a field for entering the name of the individual in the consumer unit for which the item was purchased and the line number on which this individual is listed during the initial phase of the survey. This means that in order to compute tabulation for men's shirts it is necessary to crosstabulate clothing expenditures for the 3 digit code for shirts and all the individual numbers which are classified as men.

In order to handle the complex organization of the U.S. CE data collection form it is necessary to have an elaborate system of codes and mapping documents. Since Census collects and processes the data, they assign processing codes and develop a data base dictionary. This allows them to do the edits and preliminary tabulations. The data base dictionary consists of a series of variable names and a mapping from these variables to the specific line item responses on the data collection form. At BLS a new data base dictionary is defined that has some differences with the Census database dictionary. Also, an elaborate mapping document is prepared for documenting how the expenditure data are derived from the collection instrument and mapped into the specific UCC categories.

The UCC-classified data are then used for the construction of the CPI market basket weights and the preparation of the line item totals for the CE publication structure.

At the BEA a separate structure is used for classifying, coding and aggregating personal consumption data for the national accounts. These items are more oriented toward sources of production rather than purposes of consumption. Aggregations of the data also differ significantly for certain types of consumption and are quite similar for others such as food.

Specification of a Core Classification System

Since personal consumption data in the U.S. is collected from various sources and is used in diverse ways by different government agencies, there is a critical need for standardization at some level for these data. The first step in accomplishing this goal is the development of what will be termed the Core Classification System (CCS) that would serve as a benchmark for all classification and coding (both explicit and implicit) of all CE, CPI and PCE data from the data collection stage to publication of results and official series.

The CCS should have the following desirable characteristics:

1. Natural interpretation for the end use of the data—publication and analysis—for the CPI, CE and PCE. 2. Natural interpretation for relevant survey forms and data collection efforts—CE and Point of Purchase Surveys (TPOPS). 3. Sufficient detail so that the CCS-coded expenditure data can be mapped unambiguously into other relevant classification systems such as UCC (EC’s, strata, ELI’s, etc.), CPI market basket and publication format, EC publication format, COICOP, NAICS, ISIC, CPC, PCE.
classification structure, etc. The CCS will probably be more detailed than anything it is mapped into. It will also probably be more detailed/complete than parts of the data collection forms since it must anticipate new “variables” or expenditure aggregates that will be created in the database.

4. Branching that is intuitive, balanced and consistent across major groups, subgroups, classes, strata, etc. a. Intuitive—the BCS should seem natural. If the classification system is not intuitive, it will not survive over time. People will always be tempted to use a system that is more convenient. b. Balanced—the n (th) digit levels of aggregation across groups, subgroups, etc. should have similar interpretations and reasonable relative budget shares. E.g., using an extra digit to divide total expenditures into one group having a budget share of 2 percent and another group having a budget share of 98 percent is awkward at best. c. Consistent: i. The classification hierarchy should allow the same number of digits for similar levels of aggregation across groups, subgroups, etc. If subgroups for Food are represented by 2 digits, subgroups for clothing should be represented by 2 digits as well. ii. All codes ending in “9” could designate “other” for example. iii. Codes ending in “0” refer to a level of aggregation. E.g., “34000” is some level of aggregation; “34001” is an item within the classification “34000”; etc.

The codes should be easy to work with and easy to remember. In general, alphabetic codes are confusing. They are perhaps OK for designating major groups, but they should be avoided for subgroups, etc.

Following are suggestions for implementation of the production of the CPI, CE and PCE using the CCS:

1. To the extent possible the structure of the data collection instruments (survey forms for the diary and recall portions of the CE and the TPOPS, etc.) should reflect the structure of the CCS. Where possible, the numbering of the sections and subsections should be the same as the corresponding numbers in the CCS codes. 2. All coding for processing and tabulation should correspond to the CCS. The database dictionary should reflect the CCS coding system. The number codes and the names assigned to each line item of the survey tabulation should be consistent with the number codes and names assigned to the codes of the CCS. The use of abbreviated names should be avoided. It is understood that certain databases require abbreviated names. 3. All explicit coding and implicit coding in publication formats should reflect and be reflected in the CCS. If new aggregations are developed, new CCS codes should be created. 4. Consideration should be given to making the CCS consistent with, and/or easily mapable to, COICOP.

Developing a national classification system based on an international classification system

The use of an international classification system by any country requires the development of an extended version of that system that is consistent with the international system and meets the needs of the specific country. A classification system is extended by the use of additional digits to account for the specific needs of the country. For example, COICOP-HBS, a version of COICOP that was designed for use with household budget surveys, has five digits. If tabulations for the CE, CPI and PCE were available at the five-digit level of COICOP-HBS, the requirement for consistency with COICOP is met. However, more digits would be needed to account for the detail associated with the processing of primitive data and to provide flexibility for tabulation and publication needs.

To illustrate the process of extending an international classification system for use in a given country we reference work that has been done by BLS1 to map detailed CE diary data into COICOP-HBS. Table 2 presents a sample of the results of this work. It will be noted that the six-digit CE Diary item codes were recoded using a nine-digit extended COICOP coding system. The additional four digits of this nine-digit extended COICOP coding system provide sufficient detail for the preservation of the current mapping of these diary codes to UCC codes for use in publishing the CE results and for use in estimating weights for the CPI. At the same time, the first five digits are used to present the structure for aggregating the detailed CE diary data to the five-digit level of COICOP-HBS. It should be noted that COICOP-HBS is used extensively throughout the world for consumer expenditure surveys and consumer price indices.

For personal consumption data for the national accounts most countries use the traditional four-digit version of COICOP recommended in the 1993 SNA.

In general, many-to-one mappings of primary data to different classification system do not provide a link between the two target classification systems. It is not enough to simply have a number of concordances available. The mappings generally do not have inverses and are generally not transitive.

Consistency of classification systems for production and consumption

With the introduction of NAICS there is an interest in developing a product classification system that is consistent with the economic activities specified by NAICS. This new product classification system would be similar to the Classification of Products by Economic Activity (CPA) that is related to the economic activities specified by the General Industrial Classification of Economic Activities within the European Communities (NACE).

Interest has also been expressed in using this new system (being developed for classifying production goods) for personal consumption data as well. However, personal consumption data is more naturally classified by purpose of consumption than by considerations relating to production. For example, if production data for clothing were classified by the type of inputs and/or process of production, knit goods such as sweaters and underwear might well be combined with knit shirts. On the other hand, if purpose of consumption were the standard of classification, knit shirts would be combined with shirts made of woven fabric. The solution, of course, is to develop both a production-based and a consumption-based classification system with a CCS for each that takes into account the other.

Comparison of the Dairy Products and the Fats and Oils components of the CE, CPI and PCE

It is reasonable to assume that it would be straightforward to compare major food components across the CE, the CPI and the PCE. However, Table 1 illustrates that this is not the case for the Dairy Products and the Fats and Oils components of these series. The classification and coding structure of these components for the CE, the CPI and the PCE along with the corresponding structures for the UCC and COICOP-HBS are included. In order to demonstrate the differences in these components across the different series it is necessary to use a very detailed item structure. Since two of the series being considered are based on BLS data, it is convenient to carry out the analysis at the level of the detailed CE Diary items rather than the detailed PCE items.

In Table 2 the detailed CE Diary items found in the last three columns of Table 1 are classified into five-digit COICOP-HBS Categories. It will be noted that for certain items the classification structure of COICOP is quite different from those of the PCE, the CE and the CPI, even at the four-digit Class level. For example, salad dressings and even mayonnaise (not separated out for the CE at any level) are classified with the five-digit Category Sauces, Condiments under the four-digit Class Food Products n.e.c. rather than with Fats and Oils.

Conclusions

1. The internationally recommended COICOP classification system is not presently employed for any official U.S. statistics relating to personal consumption.

2. Not only is it difficult to compare U.S. personal consumption-related data and statistical series with corresponding data from other countries, it is also difficult to compare personal consumption-related data across the PCE, the CE and the CPI.

3. While a limited amount of work has been done to map various classification systems, relating to personal consumption, to one another and to COICOP, this work is far from exhaustive, and will not serve as functional substitute for a CCS.

4. The CCS would also facilitate the development of consistent classification systems for products relating to production and consumption.
<p>| Table 1: Comparison of the Structure of the Dairy Products and the Fats and Oils Components of the PCE, the CE, and the CPI |
|---|---|---|---|---|---|---|
| PCE Line Number: 110: Eggs | CPI Index Code: CPI Item Code | CPI Titles | CPI EU Code | UCC Code: UCC Title | CE Dairy Item Title | Extended COICOP Code (9 digits) |
| Meats, poultry, fish, and eggs | SEFH | Eggs | FH01 | FH011 | 080110: Eggs | 110120: Eggs | 011471010 |
| Dairy products | SEFU | Dairy and related products | FJ | 090110: Fresh milk, all types | 110060: Milk, fresh, whole, all grades | 011411010 |
| Fresh milk, all types | SEFJ01 | Milk | FJ01 | FJ011 | 090110: Fresh milk, all types | 110060: Milk, fresh, whole, all grades | 011421010 |
| Cream | SEFJ04 | Cream and related products | FJ04 | FJ041 | 110051: Fresh yogurt | 011441011 |
| Other dairy products | SEFJ03 | Ice cream and related products | FJ03 | FJ031 | 110052: Frozen yogurt | 011851012 |
| Burger and margarine | SEFJ02 | Cheese and related products | FJ02 | FJ021 | 110053: Butter | 011511001 |
| Cheese | SEFJ02 | Cheese and related products | FJ02 | FJ021 | 110020: Cheese | 011451010 |
| Ice cream and related products | SEFJ03 | Ice cream and related products | FJ03 | FJ031 | 110040: Ice cream and related products | 011851020 |
| Other dairy products | SEFJ04 | Ice cream and related products | FJ04 | FJ041 | 110054: Other yogurt | 011441034 |
| Misc. dairy products | SEFJ04 | Cream and related products | FJ04 | FJ041 | 110054: Other yogurt | 011431010 |
| Fats and oils | SEFS | Fats and oils | FS | FS01 | 160310: Non-dairy cream substitutes | 011461010 |
| (Butter inc. in Other Dairy Prod. For CE) | SEFS01 | (Butter inc. in Other Dairy Prod. For CE) | FS01 | FS011 | 100110: Butter | 011511010 |
| Margarine | SEFS01 | Margarine | FS01 | FS011 | 100100: Butter | 011511010 |
| Non-dairy cream and imitation milk | SEFS02 | Salad dressings | FS02 | FS021 | 160310: Non-dairy cream substitutes | 011461020 |
| Salad dressings | SEFS02 | Salad dressings | FS02 | FS021 | 160310: Non-dairy cream substitutes | 011461020 |
| Peanut butter | SEFS03 | Peanut butter | FS03 | FS031 | 160310: Peanut butter | 011521020 |
| Fats and oils | SEFS03 | Fats and oils | FS03 | FS031 | 160310: Peanut butter | 011521020 |</p>
<table>
<thead>
<tr>
<th>COICOP CODE</th>
<th>COICOP TITLE/ UCC CODE AND TITLE</th>
<th>COICOP CODE</th>
<th>COICOP TITLE/ UCC CODE AND TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.1.4.0</td>
<td>Milk, cheese and eggs (ND)</td>
<td>01.1.4.0</td>
<td>Milk, cheese and eggs (ND)</td>
</tr>
<tr>
<td>01.1.4.1</td>
<td>Whole milk</td>
<td>01.1.4.1</td>
<td>Whole milk</td>
</tr>
<tr>
<td>011411010</td>
<td>110060*MILK FRESH WHOLE ALL GRADES</td>
<td>011411010</td>
<td>090110 FRESH MILK ALL TYPES</td>
</tr>
<tr>
<td>011411020</td>
<td>110090*MILK FRESH N/SPEC. (part)</td>
<td>011411020</td>
<td>090110 FRESH MILK ALL TYPES</td>
</tr>
<tr>
<td>01.1.4.2</td>
<td>Low fat milk</td>
<td>01.1.4.2</td>
<td>Low fat milk</td>
</tr>
<tr>
<td>011421010</td>
<td>110070*MILK FRESH EXC. WHOLE SPEC.</td>
<td>011421010</td>
<td>090110 FRESH MILK ALL TYPES</td>
</tr>
<tr>
<td>011411020</td>
<td>110090*MILK FRESH N/SPEC.(part)</td>
<td>011411020</td>
<td>090110 FRESH MILK ALL TYPES</td>
</tr>
<tr>
<td>01.1.4.3</td>
<td>Preserved milk</td>
<td>01.1.4.3</td>
<td>Preserved milk</td>
</tr>
<tr>
<td>011431010</td>
<td>110100*POWDERED MILK</td>
<td>011431010</td>
<td>100510 OTHER DAIRY PRODUCTS</td>
</tr>
<tr>
<td>01.1.4.4</td>
<td>Yoghurt</td>
<td>01.1.4.4</td>
<td>Yoghurt</td>
</tr>
<tr>
<td>011441011</td>
<td>110051*FRESH YOGURT</td>
<td>011441011</td>
<td>100510 OTHER DAIRY PRODUCTS</td>
</tr>
<tr>
<td>011441023</td>
<td>110053*CANNED YOGURT</td>
<td>011441023</td>
<td>100510 OTHER DAIRY PRODUCTS</td>
</tr>
<tr>
<td>011441034</td>
<td>110054*OTHER YOGURT</td>
<td>011441034</td>
<td>100510 OTHER DAIRY PRODUCTS</td>
</tr>
<tr>
<td>01.1.4.5</td>
<td>Cheese and curd</td>
<td>01.1.4.5</td>
<td>Cheese and curd</td>
</tr>
<tr>
<td>011451010</td>
<td>110020*CHEESE</td>
<td>011451010</td>
<td>100210 CHEESE</td>
</tr>
<tr>
<td>01.1.4.6</td>
<td>Other milk products</td>
<td>01.1.4.6</td>
<td>Other milk products</td>
</tr>
<tr>
<td>011461010</td>
<td>163010*NONDAIRY SUBSTITUTE</td>
<td>011461010</td>
<td>180310 NON-DIARY CREAM SUBSTITUTE</td>
</tr>
<tr>
<td>011461020</td>
<td>110110*OTHER DAIRY PRODUCTS</td>
<td>011461020</td>
<td>100510 OTHER DAIRY PRODUCTS</td>
</tr>
<tr>
<td>011461030</td>
<td>110030*FRESH CREAM EXC. NONDAIRY SUBST</td>
<td>011461030</td>
<td>090210 CREAM</td>
</tr>
<tr>
<td>01.1.4.7</td>
<td>Eggs</td>
<td>01.1.4.7</td>
<td>Eggs</td>
</tr>
<tr>
<td>011471010</td>
<td>110120*EGGS</td>
<td>011471010</td>
<td>080110 EGGS</td>
</tr>
<tr>
<td>01.1.5</td>
<td>Oils and fats (ND)</td>
<td>01.1.5</td>
<td>Oils and fats (ND)</td>
</tr>
<tr>
<td>01.1.5.1</td>
<td>Butter</td>
<td>01.1.5.1</td>
<td>Butter</td>
</tr>
<tr>
<td>011511010</td>
<td>110010*BUTTER</td>
<td>011511010</td>
<td>100110 BUTTER</td>
</tr>
<tr>
<td>011511020</td>
<td>163300*MARGARINE</td>
<td>011521010</td>
<td>180510 SAUCES AND GRAVIES</td>
</tr>
<tr>
<td>011521020</td>
<td>163110*PEANUT BUTTER</td>
<td>011521020</td>
<td>160320 PEANUT BUTTER</td>
</tr>
<tr>
<td>011541010</td>
<td>163100*SALAD & COOKING OIL</td>
<td>011541010</td>
<td>160211 FATS & OILS</td>
</tr>
<tr>
<td>01.1.5.5</td>
<td>Other edible animal fats</td>
<td>01.1.5.5</td>
<td>Other edible animal fats</td>
</tr>
<tr>
<td>011591980</td>
<td>163990*FATS & OILS/ SPEC.</td>
<td>011591980</td>
<td>160211 FATS & OILS</td>
</tr>
<tr>
<td>011591990</td>
<td>163030*LARD & VEG SHORTENING</td>
<td>011591990</td>
<td>160211 FATS & OILS</td>
</tr>
<tr>
<td>01.1.8</td>
<td>Sugar, jam, honey, syrups, chocolate and confectionery (ND)</td>
<td>01.1.8</td>
<td>Sugar, jam, honey, syrups, chocolate and confectionery (ND)</td>
</tr>
<tr>
<td>011851012</td>
<td>110040*FROZEN YOGURT</td>
<td>011851012</td>
<td>180410 ICE CREAM AND RELATED PRODUCTS</td>
</tr>
<tr>
<td>011851020</td>
<td>110040*ICE CREAM & RELATED PRODUCTS</td>
<td>011851020</td>
<td>180410 ICE CREAM AND RELATED PRODUCTS</td>
</tr>
<tr>
<td>01191010</td>
<td>164040*SAUCES & GRAVIES</td>
<td>01191010</td>
<td>180510 SAUCES AND GRAVIES</td>
</tr>
<tr>
<td>01191020</td>
<td>163040*COOKED DRESSING</td>
<td>01191020</td>
<td>160212 SALAD DRESSINGS</td>
</tr>
<tr>
<td>01191030</td>
<td>163050*DRESSINGS FOR SALAD READY MADE</td>
<td>01191030</td>
<td>160212 SALAD DRESSINGS</td>
</tr>
<tr>
<td>01191040</td>
<td>163090*SAUD DRESSING N/SPEC.</td>
<td>01191040</td>
<td>160212 SALAD DRESSINGS</td>
</tr>
<tr>
<td>01191050</td>
<td>164020*OLIVES/PICKLES/RELIBIES</td>
<td>01191050</td>
<td>180420 OLIVES, PICKLES, RELIBIES</td>
</tr>
<tr>
<td>01191060</td>
<td>164050*CONDIMENTS MISC.</td>
<td>01191060</td>
<td>180520 OTHER CONDIMENTS</td>
</tr>
</tbody>
</table>