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Introduction

Bernoulli sampling isamethod of sampling in which all
members of the population have the same probability of
selection and the inclusion variables are jointly
independent. Poisson sampling removestherestriction of
equiprobability, alowing the inclusion probabilities for
each member to be distinct. Because of the joint
independence it is easy to calculate variances for
estimators based on Bernoulli and Poisson sampling.
However, sample size is a variable under these methods
and canvary in principlefrom O to the population size N.

Ways around this difficulty are discussed here. One
of them is rejective sampling, or so-called conditional
Poisson sampling, in which Poisson sampling is
performed but the sample is rejected unless the desired
sample size is achieved. Rejective sampling can be
performed in such away asto obtain stipulated inclusion
probabilities for each population member. Another
dternative is to reject the sample if the size is smaller
than desired and otherwiserandomly trim some elements
from the obtained sample to achieve the desired size.
Another method is to adjust the inclusion probabilities,
for example, by a scale factor, to enlarge or shrink a
previoudy determined sample. A number of other
methods go under such names as modified Poisson,
collocated sampling, list sequential sampling, sequential
updating, and the methods of Rao and Hajek.

The object of these methods is to regularize the
sample size. But regularization disrupts joint
independence since if the sample sizeisat all restricted,
theinclusion variablescannot bejointly independent. The
ostensible reason for seeking joint independence is to
make variance calculations straight-forward. However,
joint independence is sufficient but not necessary.
Straight-forward variance calculations can be done with
only pairwise independence of theinclusion variables.

Thus we propose to require that the inclusion
probabilities have whatever values are stipul ated but that
the inclusion variables only need be pairwise
independent. Inthe case of equal inclusion probabilities,
this requirement is easily satisfied, along with other
natural requirements, and yiel dsasampling methodology
that we call generalized Bernoulli sampling. Thistype of
sampling can be done with as few as two or three
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permitted sample sizes. In the case of unegual inclusion
probabilities, we call our method generalized Poisson
sampling, and it too allows reduction of sample size.

Bernoulli and Poisson sampling

In Bernoulli sampling each element of the population has
the same probability of selection 1t and the inclusion
variablesl,, k=1, ..., N areindependent. (I, = 1if thek-th
element isinthe sample, 0 otherwise.) Indeed, E(l,) = P(l,
=1) = 7. The sample sizen = X |, isitself an integer-
vaued random variable. In fact it is a binomial random
variable with mean Nt and variance N7t (1-T).

Poisson sampling alowstheinclusion probabilitiesto
bevariable, and thusE(l,) = t, fork=1, ..., N. Thenthe
sample size n has mean X T, and variance 27, (1 - T,).
A common method of realizing a Poisson sample is to
calculate the values of N independent uniform random
variables U,, ..., Uy on [0,1] and to include the k-th
population element in the sample if and only if the value
of U, islessthan or equa to T,.

Conditional Poisson sampling

In conditional Poisson sampling, one applies the Poisson
methodology but rejects the results unless the desired
sample size is achieved. Hence this is often caled
regective sampling. If one starts with inclusion
probabilities p, and rejects the sample unless the sample
sizeisn (where n perhapsisthe integer closest to 2 p, ),
then the effective inclusion probabilities are:
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wheres, =pJ/(1-p,)fork=1, ..., N. TheBrouwer Fixed
Point Theorem can be applied to show that thereexist p’'s
yieldingany desired T, s(thelatter assumed to be between
0 and 1 and summing to n). An iterative process can be
used to find these p;’s. We start with p® = T, . Then

T 9=, .., py)
We compare the m®'s with the ©s and make

adjustmentsto the p.Y)’ sto obtain p®’s. According as T,
@ isgreater than or lessthan 7; choose p,® smaller than
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or larger than p®. Do thisfor eachi. Calculate the new
7, @ s that result and repeat the process. In general the
7,9’ s converge to the ;s asj increases, and the

p, 9 ’'s converge to the corresponding p;’s. The iterative
process can be performed by a computer program
developed by the authors that works well on small
populations.

Any procedure that restricts the sample size affects
thejointinclusion probabilitiesand makesthem no longer
equa to the product of the individua inclusion
probabilities.  In particular, the pairwise inclusion
probabilities 1, = P(I; = 1 and I, = 1) are given by:
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where s isasaboveintermsof thep;’sthat correspond to
them/s.

Generalized Bernoulli and generalized Poisson
sampling

Generalized Bernoulli sampling isasampling method in
which: (1) E(I,) = 7 for each k, (2) the inclusion
variables are pairwise independent, (3) the conditional
mean E(I,/n) isindependent of k, and (4) the conditional
mean E(l,/(1; and n)) isindependent of k (k #j). It can be
shown that these four conditions areindependent of each
other. In effect they constrain binary relationships
between inclusion variables to ensure the maximum
symmetry among population elements. Furthermore, it
can be shown that E(l,/n) = n/N and that E(I,/(l; and n))
=(n-1;)/(N-1). For generalized Bernoulli sampling, E(n)
= N7 and V(n)= N1t(1-). Indeed, n is a generalized
binomial randomvariable, i.e., avariablewhosepossible
values are integersin the set {0, 1, 2, ..., N} and whose
mean and variance are the same as those of a binomial
random variable.

A generalized Bernoulli sampling scheme is easily
realized. Take a generalized binomial random variable.
This assigns probabilities to each sample size from 0 to
N (and one can take the permissible sample sizesto be as
small as2 or 3 provided |27 - 1| < [1 - (4/N)]*). Choose
a sample size according to these probahilities, and then
given the sample size n, choose arandom sample of size
n from the population.

For a generalized Poisson sampling scheme, we
require that (1) E(l,) = m, fork =1, ..., N and (2) the
inclusion variables are pairwise independent. It can be
shown in this case, asin ordinary Poisson sampling, that
the sample size n has mean X T, and variance X1, (1 -
T,). Since generalized Bernoulli schemes are special
cases of generalized Poisson schemes, we have nontrivial

examples.
Because of pairwiseindependence, it followsthat 7t;,
= m;,. Then the usua estimator for a population total
Y, Yj, namely, Y (Yjlj)/m; , which has zero bias, is
easily seen to have variance of the form:

N Y (1-7p)

L

j=1 i

If apopulation consistsof subpopulationsof sizesN,,
N,, ..., N, and in the i-th subpopulation the inclusion
probability is 7, for each element, then generalized
Bernoulli sampling can be peformed on each
subpopulation to accomplish generalized Poisson
sampling on the combined population.

Poisson Scaling

Another way to modify Poisson sampling to achieve one
sample size (but note that this aso sacrifices pairwise
independence of inclusion variables) is by introduction of
ascale factor.

As noted above, one way to perform Poisson
sampling isto select arandom number U; uniformly from
[0,1] and include the j-th element of the population if and
onlyif U < m;forj=1,2, .., N.

If werecord thevaluesof U,, U,, ..., Uy and discover
that our sample sizeiseither too large or too small, we can
introduce a scale factor A and revisit our selections, this
time including the j-th element if and only if U; < )LTEJ-,
where A is chosen to give us exactly the desired sample
size. Indeed A is an order variable and is given by:

A =n-th smallest of U,/Tt;, U,/TT,, ..., Uy/Ty.
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