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Introduction
Bernoulli sampling is a method of sampling in which all
members of the population have the same probability of
selection and the inclusion variables are jointly
independent. Poisson sampling removes the restriction of
equiprobability, allowing the inclusion probabilities for
each member to be distinct. Because of the joint
independence it is easy to calculate variances for
estimators based on Bernoulli and Poisson sampling.
However, sample size is a variable under these methods
and can vary in principle from 0 to the population size N.

Ways around this difficulty are discussed here. One
of them is rejective sampling, or so-called conditional
Poisson sampling, in which Poisson sampling is
performed but the sample is rejected unless the desired
sample size is achieved. Rejective sampling can be
performed in such a way as to obtain stipulated inclusion
probabilities for each population member. Another
alternative is to reject the sample if the size is smaller
than desired and otherwise randomly trim some elements
from the obtained sample to achieve the desired size.
Another method is to adjust the inclusion probabilities,
for example, by a scale factor, to enlarge or shrink a
previously determined sample. A number of other
methods go under such names as modified Poisson,
collocated sampling, list sequential sampling, sequential
updating, and the methods of Rao and Hajek.

The object of these methods is to regularize the
sample size. But regularization disrupts joint
independence since if the sample size is at all restricted,
the inclusion variables cannot be jointly independent. The
ostensible reason for seeking joint independence is to
make variance calculations straight-forward. However,
joint independence is sufficient but not necessary.
Straight-forward variance calculations can be done with
only pairwise independence of the inclusion variables.

Thus we propose to require that the inclusion
probabilities have whatever values are stipulated but that
the inclusion variables only need be pairwise
independent. In the case of equal inclusion probabilities,
this requirement is easily satisfied, along with other
natural requirements, and yields a sampling methodology
that we call generalized Bernoulli sampling. This type of
sampling can be done with as few as two or three

permitted sample sizes. In the case of unequal inclusion
probabilities, we call our method generalized Poisson
sampling, and it too allows reduction of sample size.

Bernoulli and Poisson sampling
In Bernoulli sampling each element of the population has
the same probability of selection B and the inclusion
variables Ik, k = 1, ..., N are independent. (Ik = 1 if the k-th
element is in the sample, 0 otherwise.) Indeed, E(Ik) = P(Ik

= 1) = B. The sample size n = E Ik is itself an integer-
valued random variable. In fact it is a binomial random
variable with mean NB and variance NB(1-B).

Poisson sampling allows the inclusionprobabilities to
be variable, and thus E(Ik) = Bk for k = 1, ..., N. Then the
sample size n has mean E Bk and variance EBk(1 - Bk).
A common method of realizing a Poisson sample is to
calculate the values of N independent uniform random
variables U1, ..., UN on [0,1] and to include the k-th
population element in the sample if and only if the value
of Uk is less than or equal to Bk.

Conditional Poisson sampling
In conditional Poisson sampling, one applies the Poisson
methodology but rejects the results unless the desired
sample size is achieved. Hence this is often called
rejective sampling. If one starts with inclusion
probabilities p k and rejects the sample unless the sample
size is n (where n perhaps is the integer closest to E pk ),
then the effective inclusion probabilities are:

where sk = pk/(1 - pk) for k = 1, ..., N. The Brouwer Fixed
Point Theorem can be applied to show that there exist pi’s
yielding any desiredBi’s (the latter assumed to be between
0 and 1 and summing to n). An iterative process can be
used to find these pi’s. We start with pi

(1) = Bi . Then

Bi
(1) = fi(p1

(1), ..., pN
(1))

We compare the Bi
(1)’s with the Bi’s and make

adjustments to the pi
(1) ’s to obtain pi

(2)’s. According as Bi
(1) is greater than or less than Bi , choose pi

(2) smaller than
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or larger than pi
(1). Do this for each i. Calculate the new

Bi
(2) ’s that result and repeat the process. In general the

Bi
(j) ’s converge to the Bi’s as j increases, and the

pi
(j) ’s converge to the corresponding pi’s. The iterative

process can be performed by a computer program
developed by the authors that works well on small
populations.

Any procedure that restricts the sample size affects
the joint inclusion probabilities and makes them no longer
equal to the product of the individual inclusion
probabilities. In particular, the pairwise inclusion
probabilities Bjk = P(Ij = 1 and Ik = 1) are given by:

where sj is as above in terms of the pi’s that correspond to
the Bi’s .

Generalized Bernoulli and generalized Poisson
sampling
Generalized Bernoulli sampling is a sampling method in
which: (1) E(Ik) = B for each k, (2) the inclusion
variables are pairwise independent, (3) the conditional
mean E(Ik/n ) is independent of k, and (4) the conditional
mean E(Ik/(Ij and n)) is independent of k (k …j). It can be
shown that these four conditions are independent of each
other. In effect they constrain binary relationships
between inclusion variables to ensure the maximum
symmetry among population elements. Furthermore, it
can be shown that E(Ik/n ) = n/N and that E(Ik/(Ij and n))
= (n - Ij)/(N-1). For generalized Bernoulli sampling, E(n)
= NB and V(n)= NB(1-B). Indeed, n is a generalized
binomial random variable, i.e., a variable whose possible
values are integers in the set {0, 1, 2, ..., N} and whose
mean and variance are the same as those of a binomial
random variable.

A generalized Bernoulli sampling scheme is easily
realized. Take a generalized binomial random variable.
This assigns probabilities to each sample size from 0 to
N (and one can take the permissible sample sizes to be as
small as 2 or 3 provided |2B - 1|# [1 - (4/N)](½)). Choose
a sample size according to these probabilities, and then
given the sample size n, choose a random sample of size
n from the population.

For a generalized Poisson sampling scheme, we
require that (1) E(Ik) = Bk for k = 1, ..., N and (2) the
inclusion variables are pairwise independent. It can be
shown in this case, as in ordinary Poisson sampling, that
the sample size n has mean E Bk and variance EBk(1 -
Bk). Since generalized Bernoulli schemes are special
cases of generalized Poisson schemes, we have nontrivial

examples.
Because of pairwise independence, it follows thatBjk

= BjBk. Then the usual estimator for a population total
3 Yj, namely, 3 (YjIj)/Bj , which has zero bias, is

easily seen to have variance of the form:

If a population consists of subpopulations of sizes N1,
N2, ..., Nk and in the i-th subpopulation the inclusion
probability is Bi for each element, then generalized
Bernoulli sampling can be performed on each
subpopulation to accomplish generalized Poisson
sampling on the combined population.

Poisson Scaling
Another way to modify Poisson sampling to achieve one
sample size (but note that this also sacrifices pairwise
independence of inclusion variables) is by introduction of
a scale factor.

As noted above, one way to perform Poisson
sampling is to select a random number Uj uniformly from
[0,1] and include the j-th element of the population if and
only if Uj # Bj for j = 1, 2, ..., N.

If we record the values of U1, U2, ..., UN and discover
that our sample size is either too large or too small, we can
introduce a scale factor 8 and revisit our selections, this
time including the j-th element if and only if Uj # 8Bj,
where 8 is chosen to give us exactly the desired sample
size. Indeed 8 is an order variable and is given by:

8 = n-th smallest of U1/B1, U2/B2, ..., UN/BN.
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