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1. INTRODUCTION 
 

State or substate estimates are often required to inform 
critical policy decisions or administer important public 
programs.  However, national surveys and even national samples 
of administrative records can typically support only imprecise 
direct estimates for states or substate areas because state sample 
sizes are small.  Borrowing strength with an empirical Bayes or 
similar indirect estimator is a common solution to the problem of 
imprecise direct estimates, and has been used successfully in 
many applications.  For example, an indirect estimator has been 
used for several years to derive state estimates for allocating 
federal funds under the Special Supplemental Nutrition Program 
for Women, Infants, and Children (WIC).  Similar estimators 
have also been used to obtain state and county estimates of poor 
school-aged children for allocating federal Title I funds for 
compensatory education in elementary and secondary schools.  
The difference between these indirect estimators and a direct 
estimator is that the direct estimator uses data from only the 
domain of interest—as defined, typically, by geography and 
time—whereas an indirect estimator uses data from other areas 
or other time periods to derive an estimate for the domain.  
Using data from many domains and, often, from multiple data 
sources enables an indirect estimator to borrow strength and 
improve the precision of estimates for each domain. 

The estimators used in the WIC and Title I applications are 
suitable for deriving a single estimate or a few closely related 
estimates for each geographic area.  However, they are not 
suitable for deriving large numbers of estimates—for example, 
filling in a large table—for each area.  The problem is that the 
modeling undertaken for empirical Bayes or similar estimation is 
specific to the estimates being produced, and it would not be 
practical to develop a model for each cell of a large table. 

To address this problem, Schirm and Zaslavsky (1997) 
proposed a method for reweighting a national survey or 
administrative records database to borrow strength and improve 
precision.  A Poisson regression model is fitted to obtain an 
estimated prevalence in each state (or other small area) of every 
household type in the database, where types are defined by 
households’ characteristics.  This model is specified to control 
important aggregates at the state level, and the prevalences are 
expressed as a matrix of weights, with each household having a 
weight for every state.  After this Poisson regression model is 
estimated, no further modeling is required.  Any estimates 
sought for a state are obtained using all the households in the 
database, not just the households actually in that state.  By 
applying the appropriate weight for each household, the database 
is weighted to look like the state, rather than the whole country.  
This reweighting method can be combined with empirical Bayes 
methods by using empirical Bayes estimates as control totals in 
the reweighting. 

Schirm and Zaslavsky (2001) describe two previous 
applications of reweighting: (1) estimating the numbers and 
characteristics of children without health insurance and (2) 
microsimulation of proposed food stamp and welfare program 

reforms.  In both of these applications, the reweighting method 
was appropriate because of the need to develop large tables of 
estimates for each state from databases with small state samples. 

We describe the reweighting method in detail in the next 
section.  In Section 3, we describe the design of the evaluation 
that we have conducted to determine, principally, whether 
indirect estimates from a reweighted database are more accurate 
than direct estimates.  Then, in Section 4, we present results 
from the evaluation.  Throughout this paper, we will assume that 
our objective is to obtain estimates for states, although the 
reweighting method could also be used to derive estimates for 
other subnational areas. 

 
2. REWEIGHTING TO BORROW STRENGTH 

 
2.1 Basic Ideas 
 

The basic idea of the reweighting approach is to use—that 
is, give weight to—households from many states when deriving 
estimates for any one state.  How reweighting can be used to 
borrow strength is illustrated by comparing (1) the direct 
estimator that uses the original sample weights and does not 
borrow strength with (2) the indirect estimator that uses 
reweighted data and does borrow strength. 

To calculate an estimate for Virginia, for example, the 
direct estimator uses only the sample households for Virginia 
and their original sample weights.  Observations for other states 
are ignored.  This is equivalent to using all the observations in 
the database weighted by “Virginia weights” that equal the 
original sample weights for households in Virginia but are zero 
for households in all other states. 

In contrast, for indirect estimation, nonzero Virginia 
weights would be assigned to households in not only Virginia 
but also other states.  Taking a specific example, suppose that 
the only two states in our database are Virginia and Maryland.  
Suppose also that each state has a sample household with similar 
income and other characteristics, but the only child in the 
Virginia household is age 4, while the only child in the 
Maryland household is age 5.  If the age distributions in the two 
states are similar, each of the households (or ones like them) 
could about equally well have appeared in the other state’s 
sample.  In other words, the presence of the household with the 4 
year old in Virginia’s sample rather than Maryland’s sample 
reflects sampling variability.  Thus, if a count of the number of 
households with children under age 5 is needed or if some 
program provision being simulated with a microsimulation 
model is triggered by the presence of a child under age 5, better 
estimates could be obtained for both states by giving each state a 
copy of each of the two households but with half as much 
weight.  On the other hand, if we have evidence that the age 
distribution of children in Maryland is shifted upward relative to 
the age distribution in Virginia, we might want to give the 
household with the older child slightly more weight in Maryland 
and slightly less weight in Virginia. 

Giving weight to out-of-state households introduces some 
bias—that is, persistent error across samples attributable to 
modeling—because these households may differ from 
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households in the state of interest in ways that are not captured 
by the reweighting model.  However, using many more 
observations that are similar except for state of residence should 
substantially improve precision, that is, reduce variance, which 
is nonpersistent error attributable to purely random sampling 
fluctuations.  The objective of reweighting and, more generally, 
indirect estimation is to enhance accuracy as measured by a 
standard like mean squared error (MSE) that reflects the tradeoff 
between bias and variance. 

Under our proposed approach, we derive a matrix of state 
weights.  Every household in the database gets as many weights 
as there are states (51 counting the District of Columbia as a 
state, as we will throughout this paper).  For every state, there is 
a weight for each household in the database, although some 
weights may be small or (by design) zero.  To derive estimates 
for any one state, we use all households in the database—
regardless of actual state of residence—and apply the 
appropriate set of weights.  Virginia weights are used to derive 
estimates for Virginia, Maryland weights are used to derive 
estimates for Maryland, and so forth.  Thus, Virginia borrows 
strength from other states that have households with nonzero 
Virginia weights. 

Using a Poisson regression model, our reweighting method 
assigns a Virginia weight to a household according to how 
prevalent that “type” of household is in Virginia.  The more 
prevalent it is, the more Virginia weight it gets.  A household’s 
type is defined by all the characteristics in the database, some of 
which are measured directly while others are calculated or 
simulated.  A household’s prevalence is determined, under the 
model, by a set of household characteristics that (1) are policy-
relevant (e.g., those determining program eligibility and 
benefits), (2) capture the key dimensions along which 
households in different states are different, and (3) have about 
the same meanings across states.  This third property has 
important implications when a characteristic—such as an 
indicator of cash welfare receipt—is highly relevant to the 
estimates being produced, but means something different in 
different states because of differences in state policies. In Schirm 
and Zaslavsky (2001), we discuss how our reweighting approach 
needs to be modified when this third property is seriously 
violated because state welfare programs differ substantially. 

The variables included in the reweighting model serve as 
control variables, and households are reweighted so that 
weighted sums (indirect estimates) equal specified control totals.  
These totals can be direct estimates, indirect estimates smoothed 
using empirical Bayes methods, or administrative totals.  For 
example, if the number of children in the household is a control 
variable, the total state child population is a control total.  
Similarly, if the number of poor people in the household is a 
control variable, the total number of poor people in the state is a 
control total.  If a zero-one indicator that the household has 
earned income is a control variable, the number of households 
with earnings in the state is a control total. 

With the original (national) weights, the database looks like 
the entire United States.  With Virginia weights, the database 
looks like Virginia in terms of some key aggregates (the control 
totals).  We then conjecture that the reweighted database 
resembles Virginia in terms of many other relevant aggregates 
for which we cannot control, including, for example, the main 
estimands of a microsimulation model.  Our evaluation 
addresses the extent to which this is accomplished. 

 

2.2 The Formal Model 
 
The reweighting model is: 

,s h h
x

hs hs
w e

β δγ ′ +=   

where whs is the expected number of households of type h in (the 
population of) state s.  A type is, practically speaking, unique on 
the database because no two households are exactly alike.  
Therefore, each household in the database represents its own 
type, and whs is the weight that will be given to household h 
when deriving estimates for state s.  γhs is an indicator set by the 
modeler to one if state s is allowed to borrow from the state in 
which household h actually resides, and zero otherwise. 
Although we will assume for the evaluation presented in this 
paper that each state borrows from every other state, Schirm and 
Zaslavsky (2001) describe an application in which the extent of 
borrowing is restricted. xh is a column vector of I control 
variables, that is, household characteristics for household h.  βs 
is a vector of I unknown parameters to be estimated for each 
state.  δh is an unknown parameter to be estimated for each 
household.  The first term in the exponent on the right side of the 
model reflects the prevalence in state s relative to other states of 
households of the same general type as household h, that is, with 
the same vector of observed characteristics.  The second term 
reflects the national prevalence of households of specific type h. 

The βs and δh parameters are estimated by maximum 
likelihood and satisfy two constraints that are the first order 
conditions for maximum likelihood estimation: 

Constraint 1:  for each ,
hs h

s

w W h=∑  

where Wh is the control weight, that is, the original sample 
weight or national weight of household h, and: 

Constraint 2:  for each  and ,
hs hi si

h

w x X s i=∑  

where Xsi is the control total for control variable i in state s.  
According to the first constraint, reweighting does not change 
the total weight given to a household across all states, that is, at 
the national level, ensuring that the household contributes the 
same to a national estimate after reweighting as before.  
According to the second constraint, all control totals are satisfied 
for every state. 

These two constraints do not determine, by themselves, 
unique weights.  However, if we first distribute each household’s 
total sample weight uniformly across the states, and then alter 
those initial state weights the least amount that is necessary to 
reproduce the control totals (Zaslavsky 1988), we obtain the 
reweighting model given at the beginning of this section, which  
in combination with the constraints makes the weights unique.  
Our estimation algorithm—an iterative two-step procedure 
described in Schirm and Zaslavsky (2001)—takes this approach 
to obtain unique weights. 

One way to understand the general philosophy underlying 
our approach to modeling is to think of the entire database as a 
high-dimensional contingency table with dimensions that are 
defined by the many household characteristics contained in the 
database, including state of residence.  If we describe this table 
by a log-linear model, our modeling assumption is that some 
margins and low-order interactions of the household 
characteristics—the ones that appear in the vector xh—are 
interacted with state, while the high-order interactions of the 
household characteristics are not interacted with state and, 
therefore, are the same in each state.  In other words, the model 
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assumes that the ways some household characteristics interact 
with each other are similar across states.  Fitting a model that 
includes low-order interactions and excludes high-order 
interactions is a standard approach to smoothing a contingency 
table.  The estimated table that is fit under the model is 
smoother, that is, less affected by sampling variability than the 
sample table that is obtained by tabulating every state separately 
with the original sample weights, which corresponds to the (fully 
saturated) model in which every interaction among household 
characteristics is also interacted with state so that no interactions 
are excluded.  By using weights fitted under the model with only 
low-order interactions, rather than the original sample weights, 
we reduce the variances for the entries in the high-dimensional 
table that is our database and, hence, for estimates calculated 
from the table. 

In a simple case, the control variables are all dummy 
(indicator) variables for membership in a set of strata that fully 
partition the population of households—that is, the strata are 
disjoint and exhaustive.  In that case, our reweighting procedure 
reduces to synthetic estimation of state means because the model 
simply weights the households in each stratum to represent the 
prevalence of that stratum in the state for which weights are 
being derived.  Our procedure is more flexible than synthetic 
estimation, however, allowing us to use more variables as 
controls.  For example, our procedure can control for 10 
dichotomous controls by fitting 10 model parameters in each 
state.  A purely synthetic approach would have to estimate the 
prevalence of each of 1,024 categories formed by cross-
classifying the 10 variables. 

3.  EVALUATION DESIGN 

We have designed an evaluation of the reweighting method 
to answer the following main questions: 

• Are indirect estimates from a reweighted database more 
accurate than direct estimates?  That is, does the reduction 
in variance from reweighting more than offset the bias 
introduced?  If indirect estimates are more accurate, how 
much more accurate are they? 

• Among several reweighting models with fewer or more 
control variables, which give the most accurate estimates for 
various estimands? 

The fundamental problem in answering these questions and 
assessing the relative accuracy of alternative estimates is not 
knowing the truth, that is, the true values of the quantities that 
we are trying to estimate. 

We have taken two approaches to evaluating the error of 
direct and indirect estimates.  One approach uses estimates of the 
variance and bias of an estimator that are internal to the sample 
at hand.  This was the approach that we took in Olsen, Schirm, 
and Zaslavsky (2000), where the sample at hand was from the 
Survey of Income and Program Participation. Although variance 
estimation with SIPP—or Current Population Survey (CPS)—
data is difficult due to the complex sample design, replication 
methods can be used to estimate the variances of the direct and 
indirect estimators. We can then estimate biases of indirect 
estimators using the formulae presented in Olsen, Schirm, and 
Zaslavsky (2000).  This approach is well adapted to application 
in a production setting because it uses only the data in the 

sample that is already being used for production.  A deficiency 
of this approach is that the estimate of the bias of an indirect 
estimator is obtained from complex formulae involving several 
terms measured with error, and is often unstable and highly 
sensitive to the accuracy of the variance estimates used.  

Therefore, for the evaluation presented in this paper, we 
have taken a second approach based on simulation.  With this 
approach, we construct a known artificial population that is 
similar to a real population.  In other words, we specify what the 
truth is.  Then, we can compare direct and indirect estimates 
with the truth and measure their accuracy.  To construct our 
simulation population, we combine households from CPS data 
for several recent years.  Then, for each of many samples of 
households that we draw from the population, we calculate 
direct estimates for various estimands of interest.  We also 
calculate indirect estimates for each of the reweighting models 
that we have fit to the sample data.  Finally, we calculate the 
difference between each estimate and the true value for the 
estimand, and measure the accuracy of the direct and indirect 
estimates according to mean (across samples) absolute or 
squared error.    In this section, we describe in greater detail 
these steps in our evaluation.  We present results from our 
evaluation of the reweighting method in the next section. 

3.1 Constructing a Population and Drawing Samples 

3.1.1  Selecting Households for the Population.  Our 
evaluation measures the accuracy of an estimate by its difference 
from the true value of the estimand under consideration.  We 
calculate this true value using all of the households—properly 
weighted—in the population that we have constructed.  As 
described in Schirm and Zaslavsky (2001), we constructed this 
population by combining nearly 151,000 interviewed households 
in 24 nonoverlapping rotation groups from the March CPS 
samples for 1996 to 2000. 
 

3.1.2  Weighting Households in the Population.  Each 
interviewed household in the CPS has a sample weight.  
Although we refer to our collection of 151,000 households as a 
“population,” we assigned weights to the households.  We will 
refer to the assigned weights as “population weights” to 
distinguish them from the weights assigned when we draw 
samples from our population. 

The initial population weight assigned to each household 
was its original CPS sample weight.  Then, we raked the 
population weights for each of the 24 rotation groups in our 
population to one state population total and 43 national 
population totals. Our approach to raking is similar to the 
approach used in weighting the March CPS sample, although we 
used a smaller set of national controls. 

 
3.1.3  Drawing Samples from the Population.  Because an 

actual CPS sample consists of 8 rotation groups, we drew 
samples of 8 rotation groups from the 24 rotation groups in our 
population.  We used simple random sampling with replacement 
to draw 200 samples.  To obtain sample weights, we multiplied 
each household’s population weight by the product of three and 
the number of times that the household’s rotation group was 
selected for the sample.  The factor of three reflects the fact that 
we select 8 of the 24 rotation groups.  We drew 200 samples 
because the coefficient of variation of an estimated variance 
based on 200 draws is about 10 percent (assuming that estimates 
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are approximately normally distributed), which we regarded as 
adequate precision for the comparisons to be made. 

 
3.2 Estimands 
 

We specified 40 estimands for which we would compare 
the accuracy of direct and indirect estimates for states.  Sixteen 
of the estimands are counts of persons.  Each of the other 24 
estimands gives the percentage of persons in a specified 
“denominator” group—persons ages 0 to 4, for example—who 
are also members of a smaller “numerator” group—persons ages 
0 to 4 who are at or below 185 percent of poverty—that is a 
subset of the denominator group.  The numerator of each of the 
percentage estimands is a count estimand, and each count 
estimand appears once or twice as a numerator.  A rationale for 
considering related count and percentage estimands is that 
counts are often more directly interpretable and policy-relevant, 
but percentages are more comparable across states of different 
sizes.  All of the estimands that we consider are potentially 
interesting to policymakers or the administrators of food and 
nutrition and welfare programs or programs for providing health 
insurance to children in low income families.  In addition, the 
values of each estimand vary substantially or at least nontrivially 
across states.  When developing the list of estimands to consider, 
we also sought to include some estimands for which direct 
estimates would be very imprecise for most, if not all, states and 
other estimands for which direct estimates might be relatively 
precise for at least some states.  All 40 estimands are defined in 
Schirm and Zaslavsky (2001). 

 
3.3 Reweighting Models 

 
For each of the 200 samples drawn from the population, we 

fit four nested reweighting models that we have dubbed “null,” 
“small,” “medium,” and “large.”  Among all possible 
reweighting models, the model that allows the most borrowing 
of strength has no control variables.  With our estimation 
procedure, such a model would spread each household’s national 
weight equally across all states.  Then, however, each state 
would have the same estimated population (the national 
population divided by 51), which would render meaningless any 
comparisons of estimated to true counts.  Thus, we want any 
reweighting model to include at least one control variable that 
enables us to obtain a sensible estimate of each state’s total 
population or some other relevant measure of size.  Our null 
model, so named because it controls almost nothing, controls for 
the total number of people and the total number of people ages 
16 and over.  The latter was included because it is the one state-
level control used in weighting the CPS (and in raking the 
weights for our population). 

We can think of our small model as a “demographic” 
model because it includes controls pertaining to the composition 
of households and states by age, race, and Hispanic origin.  The 
small model also controls in each state for the number of 
households that are in large central cities with substantial black 
or Hispanic populations and the number of households that are 
not in such areas.  The main purpose for including these two 
variables is to restrict somewhat the borrowing of strength from 
reweighting.  Specifically, for the one state (the District of 
Columbia) with no households outside large central cities with 
substantial black or Hispanic populations, no weight is given to a 
household if it is not from such a central city.  Likewise, for the 

21 states that have no large central cities with substantial black 
or Hispanic populations, no weight is given to a household from 
such a central city in another state.  For example, no Wyoming 
weight is given to a household from New York City. 

To the small model, the medium model adds three control 
variables pertaining to the economic status of households. The 
corresponding control totals allow us to control for the income 
distribution in a state, as measured by the number of people at or 
below 100 percent of poverty, the number above 100 percent but 
at or below 130 percent of poverty, and the number above 130 
percent but at or below 185 percent of poverty.  Because we 
control to these three totals and the total population, we also 
control the number of people above 185 percent of poverty.  The 
income thresholds that define the control variables and control 
totals in the medium model are the same as the income 
thresholds that define many of the estimands, so adding such 
controls may improve the accuracy of indirect estimates. 

The large model adds still more controls that are related to 
the characteristics used to define estimands.  Adding such 
controls may enhance accuracy by making the characteristics of 
reweighted state populations more similar in relevant ways to the 
characteristics of the true state populations.  The added controls 
are listed in Schirm and Zaslavsky (2001). 

As noted before, we fit each of our four reweighting 
models to each of the 200 samples.  For each sample, we 
obtained control totals for the four models by direct estimation. 

 
3.4 Measuring Accuracy 

We assess accuracy with two commonly used measures of 
error: mean absolute error (MAE) and mean squared error 
(MSE).  We calculate MAEs for the count estimands and MSEs 
for the percentage estimands.  For a given estimator—the direct 
estimator or one of the four indirect estimators (null, small, 
medium, or large)—and a given count estimand, the MAE for a 
state is obtained by summing absolute errors over the 200 
samples and dividing by 200. We obtain an average MAE by 
calculating a weighted sum of the 51 state MAEs, with states 
weighted equally. The average MAE can be interpreted as the 
typical number of people in a category who are placed in the 
wrong state by a given estimator.  State MSEs and average 
MSEs are similarly obtained from squared errors for percentage 
estimands.  When calculating average MSEs, we consider three 
weighting schemes.  One scheme weights states equally, and the 
other two give more weight to states with more people in total or 
in a group that is relevant to the estimand under consideration.  
In using “average” here and in the remainder of the paper, we 
are referring to an average across states (and, sometimes in the 
next section, across estimands as well).  In contrast, when we 
use “mean,” we are typically referring to a mean across the 
samples that we have drawn. 

One attractive property of MSE as a measure of error is 
that in contrast to MAE, MSE can be decomposed into the 
contribution from variance, which measures how estimates vary 
about the mean estimate, and the contribution from bias, which 
measures how the mean estimate differs from the true value of 
the estimand.  Specifically, MSE equals the variance of the 
estimates plus the bias squared.  It is important to understand 
that despite its pejorative colloquial meaning, “bias” in this 
context does not imply any intent to be unfair to a state.  Rather, 
it describes the imperfect fit of the models that underlie indirect 
estimation.  Direct estimates are typically unbiased or nearly so, 
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meaning that a mean estimate over many samples approaches the 
true population value.  The mean value of estimates from an 
indirect estimator may differ from the population value because 
a state happens to have more people in a group (e.g., more adults 
over age 65 and under 130% of the federal poverty level) than 
could have been predicted from knowing the control totals of the 
model and the distribution of relevant characteristics in other 
states.  When squared bias is large compared with variance, the 
model does not predict the estimand in question very well and a 
model with more controls might perform better.  When the 
contribution due to variance is the largest part of MSE, the 
model might be too complex and, therefore, the estimates might 
be made more stable by reducing the number of controls 
obtained by direct estimation. 

 
4.  EVALUATION RESULTS 

 
Several interesting results emerge from our initial analysis 

of the estimated mean absolute and squared errors for the direct 
estimator and the four indirect estimators.  We discuss these 
results and extensions of our analysis in this section. 

We find that the estimates of relative MSE—MSE for an 
indirect estimator as a percentage of the MSE for the direct 
estimator—are very little affected by the choice of weighting 
scheme.  This may reflect the fact that in the CPS, from which 
we constructed our population, sample sizes are fairly uniform 
across states, certainly much less variable than the states’ 
populations.  Hence, the amounts of sampling error in state 
estimates are not very much related to the sizes of the states.  
Because of this finding, we discuss in this paper the results that 
were obtained by weighting states equally. 

According to the MAE and MSE estimates that are 
presented in Schirm and Zaslavsky (2001), each of the four 
reweighting models at least sometimes reduces error relative to 
the direct estimator for both count and percentage estimands.  
The large model most frequently dominates the direct estimator.  
It improves accuracy relative to the direct estimator for 14 out of 
16 count estimands according to the MAE criterion.  For the two 
remaining count estimands, the accuracy is almost identical.  
The large model reduces error relative to the direct estimator for 
21 out of 24 percentage estimands according to the MSE 
criterion. 

The models with fewer control variables than the large 
model sometimes improve accuracy relative to the direct 
estimator, but they do so less frequently than the large model.  
By the MAE criterion for count estimands, the null, small, and 
medium models are better than the direct estimator for 1, 7, and 
12 out of 16 estimands, respectively, whereas the large model 
dominates the direct estimator for 14 estimands.  The large 
model dominates the other three indirect estimators for all but 
three estimands, for which the medium model is most accurate.  
Similarly, by the MSE criterion for percentage estimands, the 
null, small, and medium models beat the direct estimator for 6, 
13, and 19 out of 24 estimands, respectively, compared with 21 
out of 24 for the large model.  For 14 out of 24 estimands, the 
large model has the smallest MSE.  The medium, small, and null 
models have the smallest MSEs for 7, 1, and 1 estimands, 
respectively, and for one estimand, the large, medium, and small 
models have the same MSE. 

Considering ratios of indirect to direct average MSEs, we 
find that the average ratio (across estimands) is 254 percent for 
the null model, 126 percent for the small model, 99 percent for 

the medium model, and 72 percent for the large model.  By a 
criterion based on these averages, the null and small models do 
worse than the direct estimator, the medium model does about as 
well as the direct estimator, and the large model improves 
moderately on the direct estimator (about as much as increasing 
the sample size by 40 percent).  However, this method of 
summarizing the results might understate the benefits of model-
based estimation.  In fact, calculating ratios for each estimand 
with the MSE of the direct estimator in the denominator of the 
comparison ratio favors the direct estimator in three ways. 

First, there is some random variation in the MSE estimates 
due to the fact that only 24 rotation groups were available for 
sampling.  That is, although the number of samples drawn (200) 
was chosen to give adequate precision for estimates of MSE in 
the simulation, the simulation population itself is a random 
sample of only 24 rotation groups from the real population of the 
United States, and therefore differs from the real population 
randomly in ways that may affect the results for particular 
estimands.  Because of the nonlinearity of a ratio as a function of 
the denominator, the estimated ratio obtained by taking the ratio 
of two unbiased estimators tends to be biased upwards, 
advantaging the denominator quantity. 

Second, there is nonrandom variation in the ratio of MSEs 
as well as random variation, because a model might fit very well 
for some estimands while the direct estimator might estimate 
other estimands relatively precisely. Although there are many 
possible ways of summarizing the comparison of estimators 
when the MSE ratios vary, averaging the ratios of indirect to 
direct MSEs tends to advantage the direct estimator for much the 
same reason as with random variation.  To illustrate this, 
suppose that for one estimand the indirect estimator has 10 times 
the MSE of the direct estimator, and for another estimand the 
direct estimator has 10 times the MSE of the indirect estimator.  
Despite the symmetry of the relationship, the mean 
indirect/direct MSE ratio is (1/2) × (1/10 + 10) = 5.05 or 505 
percent, making the indirect estimator appear far inferior. 
Inverting all of the ratios, we find that the mean of the 
direct/indirect ratio of MSEs is 85 percent, 122 percent, 141 
percent, and 154 percent, respectively, for the null, small, 
medium, and large models.  These averages make all but the null 
model appear superior to the direct estimator, and the effective 
improvement from the large model is like adding 54 percent to 
the sample size.  A measure that is unaffected by ratio bias is the 
median indirect/direct MSE ratio across the 24 estimands, which 
is 142 percent, 89 percent, 76 percent, and 70 percent for the 
null, small, medium, and large models, respectively.  Again, this 
summary indicates the superiority of all but the null model to the 
direct estimator. 

Third, MSE ratios might tend to be systematically related 
to the sizes of the errors.  For some estimands, the MSE of the 
direct estimator is much larger than for other estimands, perhaps 
because the relevant sample size is very small in some or all 
states or because of patterns of clustering of households with 
relevant characteristics.  The MSE of an indirect estimator, on 
the other hand, is less affected by sample size than the MSE of 
the direct estimator and more affected by model fit, and there is 
no reason why the model fit should be systematically related to 
the sample size for an estimand.  Therefore, we might expect 
that the benefit of indirect estimation would be greater for the 
“problem” estimands for which the direct estimator has 
unusually large variance.  For the two estimands with the largest 
variance, the large model indirect estimator reduces the MSE 
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very substantially (to, respectively, 50 percent and 41 percent of 
the direct estimator’s MSE).  This issue is addressed by an 
alternative summary measure of the performance of the 
estimators that calculates a mean across estimands for each 
estimator before comparing estimators (by taking a ratio).  This 
measure treats all estimators as equally important, and hence 
gives more weight to reduction of error for estimands with large 
estimation error.  Because the estimands are combined before 
calculating a ratio, this procedure is relatively unaffected by the 
ratio biases described above.  By this measure, the indirect/direct 
ratios of average MSE are 172 percent, 80 percent, 70 percent, 
and 58 percent, respectively, for the null, small, medium, and 
large models.  Again, all indirect estimators but the null model 
outperform the direct estimator, and use of the large model is 
comparable to a 72 percent increase in sample size.  For the two 
problem estimands, the root mean squared error—or RMSE, 
which is roughly interpretable as a standard error—is reduced 
from 12.6 percent to 8.9 percent for one and from 11.1 percent to 
7.1 percent for the other. 

In summary, the indirect estimators improve upon the 
accuracy of the direct estimator for most estimands, with the 
greatest improvements being obtained with the large model.  The 
comparison of average performance of the various indirect 
estimators with the direct estimator depends to some extent on 
the method used for aggregating across estimands.  Nonetheless, 
the indirect estimator based on the large model improves on the 
direct estimator even when they are compared using the standard 
that is most favorable to the direct estimator.  With a standard 
that aggregates squared error across all estimands, the standard 
that is most neutral among methods, three indirect estimators—
all but the null model—improve upon the direct estimator. 

We can gain further insight into the performance of the 
alternative estimators by measuring the tradeoffs between bias 
and variance. We find that the estimated bias-variance tradeoffs 
are related in a predictable way to the sizes of the reweighting 
models, that is, the numbers of control variables in the models.  
For the direct estimator, almost the entire MSE is due to 
variance because the estimator is unbiased except for the ratio 
bias from taking the ratio of two unbiased estimators.  
Conversely, the MSE of the null model is almost entirely (98 
percent on the average, across estimands) due to bias—
representing the difference between the national average 
(adjusted only for state total population and population ages 16 
and over) implied by this model and the various true values in 
the different states—because the variance of the national 
estimate is quite small.  The share of MSE due to variance grows 
monotonically with the size of the model.  The average share 
across estimands is 10 percent for the small model, 24 percent 
for the medium model, and 42 percent for the large model.  The 
null model, which is the smallest model, and the direct estimator, 
which can be regarded as the largest model, also fit this pattern.  
This pattern is expected because a model with more parameters 
(control variables) fits better and has less bias, but the estimates 
have more variance because more parameters have to be 
estimated from the fixed number of sample observations.  That 
is, adding more control variables to a model means that more 
control totals will be estimated directly from data for individual 
states, rather than (implicitly) data for the whole nation, reducing 
the amount of borrowing of strength across states.  Even with the 
largest of our models (excluding the direct estimator), more error 
is due to bias than variance on the average and for 17 out of the 
24 percentage estimands.  That result and the previously 

discussed result that the largest model is the most accurate for 14 
of the 24 estimands suggest that we may not have reached the 
break-even point where the increased variance from adding 
control variables offsets the decreased bias.  Thus, an even larger 
model might yield further improvements in accuracy.  

We consider the results of our initial analysis of the 
estimated MAEs and MSEs to be very promising for the use of 
indirect estimates derived using our reweighting approach.  
Thus, we plan to conduct further analysis. 

One extension, which was just discussed, is to consider 
what control variables might be added to our large model to 
make an even larger model.  Then, we would assess whether 
adding control variables improves accuracy. 

We will also work to improve our understanding of factors 
affecting the performance of the various indirect estimators 
relative to the direct estimator.  For example, we will examine 
the relationship between the size of the denominator population 
and, hence, the noisiness of direct estimates of percentages and 
the amount of improvement obtained from using the various 
models.  In addition, we will look in detail at the likely 
associations between specific estimands and control variables 
that would affect the accuracy of the various direct and indirect 
estimates. 

Finally, we will apply the evaluative tools that we have 
already used to assess the accuracy of composite estimators that 
combine direct and indirect estimates either in fixed proportions 
or in proportions that depend on the sample size for each state.  
Such an estimator, like the other estimators that we have 
considered, can also be represented by a set of state-specific 
weights for each observation.  Composite estimators have a 
natural justification in terms of empirical Bayes modeling 
techniques, which provide an explicit rationale for weighting 
together direct and indirect estimators to minimize mean squared 
error.  However, our emphasis will not be on deriving the 
optimal empirical Bayes estimator for each estimand.  Rather, 
we will try to find estimators of this form that can broadly 
improve on the “pure” strategies described above for a wide 
range of estimands simultaneously, using a single set of weights. 
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