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Abstract: In the analysis of complex survey 
data, goodness-of-fit tests and other model 
checks often are based on quadratic-form test 
statistics.  The resulting tests generally make 
explicit or implicit use of variance-covariance 
matrix estimators.  Under some complex 
sample designs, these matrix estimators are 
relatively unstable.  The can cause serious 
degradation of the performance of the 
associated tests.  This paper examines the 
extent to which generalized variance function 
methods can produce more stable variance-
covariance matrix estimators, and thus lead to 
improved test statistics.  Special emphasis is 
placed on distinctions among three types of 
error associated with variance-covariance 
matrix estimators: sampling error, equation 
error and parametric estimation error.  
Relationships between the resulting test 
statistics and Rao-Scott type test statistics are 
considered.  Applications to the U.S. Current 
Employment Survey and the U.S. Consumer 
Expenditure Survey are discussed.     
 
 
1. Introduction 
 
1.1 Multivariate Inference from Complex 

Survey Data 
 
In the analysis of sample survey data, it is 
often important to carry out inference for a k -
dimensional parameter vector  
 

),...,( 1 ′= UkUU θθθ    (1.1) 
 
or an associated superpopulation vector,  
 
 

),...,( 1 ′= kξξξ θθθ    (1.2) 
 
For some general background, see, e.g., Fuller 
(1975), Rao and Scott (1981, 1984, 1987), 
Binder (1983), Skinner, Holt and Smith 
(1989), Korn and Graubard (1990), 
Pfeffermann (1996) and references cited 
therein.   
 In the current discussion, three points will 
be of principal interest.  First, a complex 
sample design  C  is used to collect data from 
which a point estimator )ˆ,...,ˆ(ˆ

1 ′= CkCC θθθ   is 
obtained.  Let )(•pE  and )(•pV  denote, 
respectively, the expectation and the variance-
covariance matrix of a random vector 
evaluated with respect to the sample design. 
We assume that 
 

UCpE θθ ≅)(     (1.3) 
 
in the sense that the difference UCpE θθ −)(  is 
small relative to other sources of variability.   
 Second, suppose that the variance-
covariance matrix )( CpV θ  is nonsingular, and 
that   
 

{ } ),0()ˆ()( 2/1
kUCCp INV →−− θθθ     (1.4) 

 
in law, where 2/1−A  represents the inverse of 
the symmetric matrix square root of a 
symmetric positive definite matrix A, and 
where the convergence in expression (1.4) 
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refers to the limit of the multivariate 
distribution induced by the complex sample 
design C, conditional on a given realized 
finite population U.   
 Then we may use the distributional 
approximation (1.4) to carry out design-based 
inference for Uθ .  For example, given a 
prespecified vector ),...,( 0010 ′= kθθθ , one may test 
the null hypothesis 
 

00 : θθ =UH    
 

using the test statistic  
 

{ } )ˆ()ˆ()ˆ( 0

1

00 θθθθθ −′−=
−

CCpCC VT   (1.5) 
 
Under 0H  and condition (1.4), 0CT   is 
distributed as a chi-square random variable on 
k  degrees of freedom.   
 Third, in practical applications, we 
generally do not know )ˆ( CpV θ , but we often can 
compute a variance-covariance matrix 
estimator  pV̂   (through linearization or 
replication methods) such that  
 

→ppVd ˆ   Wishart ),( pp Vd   (1.6) 
 
for some appropriate scalar degrees-of-
freedom term pd , independent of Cθ̂ .  Then the 
associated quadratic-form test statistic,  
 
 

( ) )ˆ(ˆ)ˆ(ˆ
0

1

00 θθθθ −′−=
−

CpCC VT    (1.7) 
 
is distributed as a multiple of an F random 
variable on k  and 1+− kd p  degrees of 
freedom under 0H .   
 Fourth, if 1+− kd p  is relatively small, 

then 0ĈT   may perform relatively poorly.  In 
addition, in some cases it may be difficult or 

impossible to compute pV̂  due to 
confidentiality constraints or limitations on 
available software.  Under such 
circumstances, one may consider an 
alternative test statistic,  
  

( ) )ˆ()ˆ( 0
1*

0
*
0 θθθθ −′−=

−

CpCC VT    (1.8) 
 
where *

pV   is believed to be relatively stable (in 
a sense specified in Sections 2 and 3), and is 
computed readily from available data.   
 
 
1.2 Multivariate Generalized Variance 

Functions 
 

Properties of the test statistic *
0CT , or of 

associated test-inversion confidence sets, will 
depend heavily on the properties of the 
random matrix  *

pV   .  The remainder of this 
paper studies these properties through 
extensions of ideas developed previously 
within the literature on univariate generalized 
variance functions.  Section 2 develops a 
general framework for components of error 
associated with variance-covariance matrix 
estimators like pV̂  or *

pV .  Specifically, 
Subsection 2.1 considers general distinctions 
among sampling error, equation error and 
smaller-order parametric estimation error.  
Subsection 2.2 explores these distinctions 
further within the context of generalized 
variance function models.  Subsection 2.3 
discusses Rao-Scott type adjusted test 
statistics as special cases of the test statistic 
(1.8).   

Section 3 applies some of the general ideas 
of Section 2 to a specific problem in the 
analysis of employment growth rates 
estimated from the U.S. Current Employment 
Survey.  Of special interest is the fact that in 
the variance-covariance matrix estimator, 
there is a nontrivial component of error  
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associated with error in the estimation of the 
underlying univariate generalized variance 
function.  Section 4 reviews the main ideas of 
this paper and suggests some possible 
extensions.   
 
2. Components of Error in Variance-

Covariance Matrix Estimators 
 
2.1. Sampling Error, Equation Error and 

Parametric Estimation Error 
 
Section 1 focused attention on design 
properties of the point estimator Cθ̂  and the 
associated variance-covariance matrix 
estimator pV̂  .  For example, under conditions 
(1.4) and (1.6), we have, conditional on a 
given finite population U,  
 

UCpE θθ =)ˆ(     (2.1) 
 

pCp VV =)ˆ(θ     (2.2) 
 
   ppp VV ε+=ˆ     (2.3) 
 
where 0)( =ppE ε  .  Extension of previous 
literature on generalized variance functions 
(e.g., Wolter, 1985, Chapter 5); Johnson and 
King, 1987; and Valliant, 1987) suggests that 
one view the finite population U  as having 
been generated by a superpopulation model ξ 
such that   
 

ξξ θθ =)ÛE ,      
 
and 
 

( ) ),,(,,| γθγθ ξξξ XfXVE p =    (2.4) 
 
where X is a matrix of available auxiliary 
information (e.g., sample sizes, the coefficient 
of variation of relevant weights, or other 

relevant design information), γ  is an 1×r  
vector of unknown parameters, and ),,( ⋅⋅⋅f   is a 

kk× -dimensional matrix function of known 
form.  Then we may define the equation error  
   

),,( γθξ XfVc p −= ,   (2.5) 
 
the difference between the realized random 
matrix pV  and its superpopulation expectation,  

),,( γθξ Xf .   

In addition, the parameters ξθ  and γ  
generally are unknown, and X often is also 
unknown.   Given specific estimators Cθ̂ , X̂  
and γ̂  (see, e.g., Valliant (1987) for 
discussion of ordinary least squares and 
generalized least squares methods for 
estimation of γ ), define the parametric 
estimation error,  
   

),,()̂,ˆ,ˆ( γθγθ ξ XfXfb C −= ,   (2.6) 
 
Under mild conditions, the error b will depend 
on both pε  and c, but generally will be of 
smaller order of magnitude than either pε  or c.  
Now suppose  the in computation of the test 
statistic (1.8), we have used  
 

)̂,ˆ,ˆ(* γθ XfV Cp = ,    (2.7) 
 
Then we may consider the properties of the 
test statistic (1.8) for three separate cases.   
 
Case 1:  Negligible equation error and 
estimation error.  Suppose that cVp

1−  and bVp
1−  

are both of small order of magnitude.  Then 
the misspecification effect associated with the 
use of *

pV  in place of pV  is negligible, and the 
test statistic (1.8) will follow approximately 
(evaluated with respect to the sample design) a 
noncentral chi-square distribution on k 
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degrees of freedom, and with noncentrality 
parameter equal to  
 

{ } )(),,())(2/1( 0
1

0 θθγθθθ ξ −′− −
UU Xf  

 
Case 2:  Negligible equation error and 
nontrivial  estimation error.  Suppose that  

cVp
1−  is of small order of magnitude, but that 

bVp
1−  is not small.  Thus, the estimation error b 

depends primarily on sampling error, pε , 

rather than on equation error; and pV  is 
approximately equal to ),,( γθξ Xf .  Suppose 
further that for some 0>bd ,  
 

→)̂,ˆ,ˆ( γθ Xfd Cb  Wishart [ ]),,(, γθξ Xfdb ,      

and is approximately independent of Cθ̂  .  
(This final condition would hold, for example, 
if the function ),,( γθ Xf  does not depend on θ .  
Then standard arguments (e.g., Korn and 
Graubard, 1990) indicate that, evaluated with 
respect to the design, the test statistic (1.8) is 
distributed approximately as a scalar multiple 
of a noncentral F random variable.  The 
relative operating characteristics of the test 
statistics (1.8) and (1.7) will then depend 
primarily on the relative values of pd  and bd .   
 
Case 3:  Negligible estimation error and 
nontrivial  equation error.  Suppose that bVp

1−  

is of small order of magnitude, but that cVp
1−  is 

not small.  Then two results are of practical 
interest.   First, conditional on a given 
realization of the finite population U from the 
superpopulation ξ , use of *

pV  as an 

approximation to pV  would lead in general to a 
nontrivial associated misspecification effect 
matrix,  
 

2/1*2/1*2/1*2/1* )()()( )( −−−− +≈ ppkppp VcVIVVV  

 
 
Thus, if one wished to use *

pV  (e.g., for 
stability reasons) and to remain within a 
design-based framework, the performance of 
(1.8) would depend on the eigenstructure of  
 

2/1*2/1* )()( −−
pp VcV  

 
and may in general be problematic.   

Under Case 3, a possible alternative would 
be to consider the use of the test statistic (1.8) 
in a restricted form of  ξp inference, i.e., 
inference with respect to both the design and 
model.  Specifically, recall that evaluation a 
variance-covariance matrix with respect to 
both the design and superpopulation sources 
of variability leads to the expression,  

 
{ } { })ˆ()ˆ()ˆ( CpCpCp EVVEV θθθ ξξξ +=   (2.8) 

 
Furthermore, assume that  
 

{ } { })ˆ()ˆ(
1

CpCp EVV θθ ξξ

−
 

 
is negligible.  (This would occur, for example, 
under a standard superpopulation model with 
independent and identically distributed 
variates, a negligible sample fraction, and 
additional regularity conditions.)  Then  

)ˆ( CpV θξ   is approximately equal to 

{ })ˆ( CpVE θξ , which by expression (2.4) is 
equal to ),,( γθξ Xf .  Thus, under the assumption 
of negligible estimation error in Case 3,  

)̂,ˆ,ˆ(* γθ XfV Cp =  is approximately equal to 

)ˆ( CpV θξ .   
If we also assume that the distribution of  

 
{ } )ˆ()ˆ(

2/1

ξξ θθθ −
−

CCpV ,  
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evaluated with respect to the ξp  distribution, 
is approximately ),0( kk IN , then the test statistic 
(1.8) has ξp  distribution approximately equal 
to a noncentral chi-square distribution on k  
degrees of freedom and with noncentrality 
parameter  
 

 { } )(),,())(2/1( 0
1

0 θθγθθθ ξξξ −′− −Xf  
 

Note that the abovementioned ξp  
approach to Case 3 used several additional 
assumptions.  If these assumptions are not 
satisfied, then a ξp  approach to Case 3 may 
be problematic.  In particular, if  

 
{ } { })ˆ()ˆ(

1

CpCp EVV θθ ξξ

−
 

 
is not trivial, then )̂,ˆ,ˆ( γθ Xf C  can seriously 

underestimate )ˆ( CpV θξ , and the resulting 
misspecification effect matrix,  
 
{ } { }

{ } { }{ } 2/12/1

2/12/1

),,()ˆ(),,(

),,()ˆ(),,(

−−

−−

+= γθθγθ

γθθγθ

ξξξ

ξξξ

XfEVXfI

XfVXf

Cpk

Cp

 

 
may have one or more eigenvalues 
substantially greater than unity.  Thus, in this 
setting it is preferable to construct a 
generalized variance function model that 
produces a good approximation for )ˆ( CpV θξ , 

rather than for )ˆ( CpV θ  .   
 
2.2 Links with Univariate Generalized 

Variance Function Models 
 
The preceding subsection considered the 
variability of the equation error at a fairly high 
level of generality, without specific ference to 
a particular parametric superpopulation model.  
The application in Section 3 obtains some 
model identification information through 

specific distributional assumptions for related 
univariate generalized variance functions.   

For the current discussion, consider a set 
of J ordered quadruples )ˆ,,,ˆ( pjpjjCj VVXθ  , 

Jj ,,1 K=  associated with J distinct 
estimands jθ .  In addition, assume that on a 
logarithmic scale,  

 

pjpjpj eVV += )ln()ˆln(    (2.9) 
 

and  
 

jjpj qXV += γ)ln(    (2.10) 
 
where pje  , Jj ,,1 K=  are independent and 
identically distributed normal random 
variables with mean eµ  and variance 2

eσ ;  

jq  , Jj ,,1 K=  are independent and 
identically distributed normal random 
variables with mean 0  and variance 2

qσ ; and 
the errors pje  and jq  are mutually 
independent.  Note that the lognormal 
assumption (2.9) is not consistent with the 
assumption (1.6) of an approximate Wishart 
distribution for ppVd ˆ .  In the current discussion, 
we will not make direct inferential use of the 
Wishart assumption (1.6), but we will assume 
that on the original scale,  pjpjp VVd /ˆ   has the 
same first and second moments as a chi-square 
random variable on pd  degrees of freedom, 
i.e.,  
 
   1)/ˆ( =pjpjp VVE       (2.11) 
and  
 
   ppjpjp dVVV /2)/ˆ( =      (2.12) 
 
Routine results for the lognormal distribution 
(e.g., Casella and Berger, 1990, p. 628) and 
additional algebra show that  
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)/21ln()2/1( pe d+−=µ   

 
and  )/21ln(2

pe d+=σ .  In addition, under 
the assumption that the quadruples 

)ˆ,,,ˆ( pjpjjCj VVXθ  are independent, ordinary least 

squares regression of  )ˆln( pjV  on jX  leads to 

consistent estimators γ̂  of γ and )ˆ( ESM  of 
22
epq σσ + .  In addition,  

 
)/21ln()ˆ(ˆ 2

pq dESM +−=σ  
 
provides a consistent estimator of 2

qσ  under 
the assumptions listed above; and 
  

)ˆ2/ˆexp(* γjpj XESMV +=  
 
is a consistent estimator of ),,( γθξ Xf  = 

{ })ˆ( CpVE θξ .   
Also, additional algebra shows that ,  
 
{ } { } )1exp(),,(),,( 22 −=− qjjpj XfXfVV σγθγθ ξξξ .   

 
can be estimated by { } )1ˆexp(22* −qpjV σ .  As noted 
above, we are using lognormal assumptions 
for both the sampling error pje  and the 
equation error jq .  Nonetheless, analysts often 
summarize the stability of a variance estimator 
through a moment-based “degrees of 
freedom” calculation, which in this case 
would be,  
 

)1ˆexp(/2ˆ 2 −= qqd σ   (2.13) 
 
In this case, expression (2.13) represents the 
uncertainty in *

pjV  as a predictor of the random 

variable pjV , which is subject to the equation 

error jq  on the logarithmic scale.  Finally, 

consider again Case 2, in which one has 
negligible equation error and nontrivial 
estimation error.  Then additional routine 
algebra leads to the Satterthwaite-type 
“degrees of freedom” estimator,  
 

{ } 



 −′=

−
1),2/1)(ˆ,ˆ(ˆ),2/1(2ˆ 12

jqjb XVXd γσ  

          (2.14) 
 
Expression (2.14) represents the uncertainty in 

*
pjV  as an estimator of pjj VXf =),,( γθξ  under 

Case 2.  Consequently, comparison of pd , qd̂  

and bd̂  can provide a rough indication of the 
relative magnitudes of, respectively, the 
sampling errors, equation error effects and 
estimation error effects considered in Cases 1 
through 3.   
 
2.2. Misspecification Effect Matrices and 

Rao-Scott Adjusted Test Statistics 
 

Section 2.1 discussed misspecification 
effect matrices within the context of the 
equation error model (2.5).  The original work 
by Rao and Scott (1981, 1984, 1987) on 
quadratic-form test statistics focused principal 
attention on approximations for the 
distribution of a test statistic under a null 
hypothesis associated with the parameter 
vector  θ .  We note, however, that to some 
degree, the adjusted matrices used in the Rao-
Scott test statistics can be viewed as simple 
multivariate variance function estimators.   
 
3. Application to Data from the U.S. 

Current Employment Survey 
 
We applied the principal ideas of Section 2 to 
estimates of total employment for a large 
number of domains covered by the U.S. 
Current Employment Survey (CES).  For 
some background on the Current Employment 
Statistics Survey, see American Statistical 
Association (1994), Werking (1997), Butani, 
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Harter and Wolter (1997), Butani, Stamas and 
Brick (1997), West, Kratzke and Grden 
(1997).  For the present discussion, four 
features are of principal interest.  First, 
domains were defined by the intersection of 
three factors: 
 
Industry Ii ,,1K= ; 6=I  (Mining; mining 
and construction combined; construction; 
durables goods manufacturing; nondurable 
goods manufacturing; and wholesale trade.  
For some areas, mining and construction are 
combined, while for other areas, they are 
treated as distinct industries.) 
 
Area Aa ,,1K=  ( 272=A metropolitan areas 
in the United States). 
 
Month 12,,1K=t  (January through 
December, 2000).   
 
To reflect the Industry×Area×Month 
structure used to define the domains of 
interest, the estimand subscript j  used in 
Section 2 will be replaced by the triple 
subscript ),,( tai .  For instance, for industry i , 
area a , and month t , we have  
 

=iaty True total employment;  
 

=iatŷ A direct (weighted link relative) 
estimator of iaty , based only on data from 
industry i  and area a .   
 

=iatV̂ An estimator of the design variance of  

iatŷ , computed through standard fractionally 
weighted methods of balanced repeated 
replication.   
 

We explored several possible versions of 
the logarithmic model (2.10) and ultimately 
selected one with a relatively large number of 
predictors: 
 

)ln()ln()ˆln( 02010 iaiiaiipiat nyV γγγ ++=  

iatpiati qet +++ )ln(3γ    (3.1) 
 
where ),,,( 3210 iiii γγγγ  are vectors of 
nonrandom coefficients that are allowed to 
vary across industries;  0iay  is the nominal 
true total employment in the intersection of 
industry i  and area a  during a benchmark 
month 0; and 0ian  is the number of sample 
units (unemployment insurance accounts) 
selected from industry i  and area a .   
 Second, the original sample design 
stratified the population by state, industry and 
size class.  Within a given state ×  industry ×  
size cell, units were selected through a 
systematic sampling method that implicitly 
stratified by geographical area.  Consequently, 
it is reasonable to treat the errors as 
independent across industry ×  area 
combinations.  However, except for attrition 
and a small amount of sample rotation, the 
same units were included in the sample in 
each month, so one could not reasonably 
assume independence of the error terms across 
months.   

Third, within a given industry ×  area 
combination, the principal relevant 
stratification factor was size class.  The 
original sample design provided eight size 
classes, but for purposes of variance 
estimation, the three largest size classes were 
collapsed, yielding an effective number of 
strata equal to six.  In parallel with this, the 
balanced repeated replication method used 
eight distinct sets of fractional replicate 
weights.  Thus, customary arguments would 
assign no more than 6=pd  degrees of 
freedom to the direct variance estimator  

iatV̂ .  Also, the current analysis excluded 
domains that had less than or equal to twelve 
responding units in a given month.  
Consequently, a total of 5160 domains had 
estimates iatV̂  available for use in fitting 
model (3.1).   
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Finally, additional modeling results not 
detailed here indicated that the magnitudes of 
equation errors in this case were small relative 
to other sources of variability, corresponding 
to an estimate of qd  greater than 100, while 
estimation error had a nontrivial effect on the 
random variability of *

iatV , corresponding to 
moderate average degrees-of-freedom terms 

bd̂  = 20.8 for durable goods, bd̂  = 27.4 for 
nondurable goods and bd̂  = 56 for wholesale 
trade.  Thus, the remainder of this analysis 
will follow Case 2 in Section 2.1.   
 
3.2 Comparison of Industry-Specific 

Growth Rates Across Areas Within 
States 

 
In development of small domain estimation 
methods for the domains )(iat , one important 
issue was the comparison of period-specific 
growth rates for a given industry across 
metropolitan areas in a given state.  If the 
observed data were consistent with a null 
hypothesis of equal growth rates, then it might 
be reasonable to consider use of a synthetic 
estimator based on state-level growth rates 
within the given industry.  Conversely, if the 
observed data were not consistent with an 
assumption of homogeneous growth rates, 
then a more refined small domain estimator 
would need to be used.   

To study this, consider a set of A   areas 
and define the vector  ),,( 1 ′=⋅ iAttiti yyy K ; 
define  )ˆ,,ˆ(ˆ 1 ′=⋅ iAttiti yyy K  similarly; and let  

iM  be an AA ×− )1( -dimensional matrix with 
i -th row equal to iaM , where iaM  has its a -th 

column equal to 1

1
0

1
0 )( −

=

− ∑−
A

b
ibia yy  and all other 

columns equal to 1

1
0 )( −

=
∑−

A

b
iby .  Thus, tiia yM ⋅  is 

equal to the difference between the growth 
rate from month 0 to month t  in area a , 
compared with the corresponding aggregate 

growth rate taken across all A  areas in the 
state.  Thus, a null hypothesis of homogeneous 
growth rates may be written,  
 

1)1(0 0: ×−⋅ = Atii yMH  
 
If one knew the true design variance of  

tiy ⋅ˆ  , then one could test 0H  with the nominal 
pivotal quantity 
 

{ } )0ˆ()ˆ()0ˆ( 1
0 −′′−= ⋅

−
⋅⋅ tiiitipitiiM yMMyVMyMT  

 (3.2) 
 
Under 0H  and additional regularity 
conditions, 0MT   is distributed (with respect to 
the sample design) approximately as a central 
chi-square random variable on 1−A  degrees 
of freedom.   

Because of the very limited number of 
degrees of freedom, 6=pd , associated with 

the direct variance estimator iatV̂ , substitution 

of the terms iatV̂  into expression (3.2) was 
inadvisable.  Instead, in keeping with the 
reasoning and results presented at the end of 
section 3.1, we computed  
 

{ } )ˆ()ˆ()ˆ( 1**
0 tiiitipitiiiM yMMyVMyMT ⋅

−

⋅⋅ ′=   (3.3) 
 
where { })ˆ(,),ˆ()ˆ( *

1
**

iAtptiptip yVyVdiagyV K=⋅

 and )ˆ(*
iatp yV  is computed as described in 

Section 2.2, based on model (3.1).  The 
reasoning presented at the end of Section 3.1 
then indicates that under 0H  and additional 
regularity conditions,  

*
0iMT  is distributed (with respect to the sample 

design) approximately as  
 

)2ˆ,1()1(ˆ)2ˆ( 1 +−−−+− − AdAFAdAd bibibi ,  
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where )2ˆ,1( +−− AdAF bi  is a central F random 

variable on 1−A  and 2ˆ +−Adbi  degrees of 
freedom.  Table 1 reports numerical values of 

*
0iMT  and related quantities for three industries: 

durable goods manufacturing, nondurable 
goods manufacturing and wholesale trade for 
the state of Pennsylvania.  Note that the 
applicable number of metropolitan areas, A, 
varied across industry due to the exclusion of 
area × industry combinations that had less 
than or equal to 12 responding sample units.  
Note especially that for all three industries, the 
computed test statistic *

0iMT  is small relative to 
the corresponding critical value, indicating 
that we do not have sufficient evidence to 
reject the null hypothesis of constant growth 
rates across metropolitan areas.   
 
4. Acknowledgements 
 
The authors thank Larry Huff and Julie 
Gershunskaya for useful discussions of 
generalized variance functions; and for 
providing the data used in Section 3.  The 
views expressed in this paper are those of the 
authors and do not necessarily represent the 
policies of the U.S. Bureau of Labor Statistics.   
 
5. References 
 
 
Binder, D.A. (1983).  On the variances of 
asymptotically normal estimators from 
complex surveys.  International Statistical 
Review 51 279-292.     
 
Butani, S., Harter, R., and Wolter, K.  (1997).  

Estimation Procedures for the Bureau of 
Labor Statistics Current Employment 
Statistics Program.  Proceedings of the 
Section on Survey Research Methods.  
American Statistical Association, 523-528. 

 
Butani, S., Stamas, G. and Brick, M. (1997).  
Sample  

Redesign for the Current Employment 
Statistics Survey. Proceedings of the 
Section on Survey Research Methods, 
American Statistical Association, 517-522.   

 
Casella, G. and Berger, R. L (1990).  
Statistical inference.  Wadsworth.   
 
Fuller, W.A. (1975).  Regression analysis for 
sample survey.  Sankhya C 37, 117- 132.    
 
Johnson, E.G., and King, B.F. (1987). 
Generalized variance functions for a complex 
sample survey.  Journal of Official Statistics, 
3, 235-250. 
 
Korn, E. L. andGraubard, B. I. (1990).  
Simultaneous testing of regression coefficients 
with complex survey data: Use of Bonferroni t 
statistics.  The American Statistician 44 270-
276 
 
Pfeffermann, D. (1996). The use of sampling 
weights for survey data analysis.  Statistical 
Methods in Medical Research 5,  239- 261. 
 
Rao, J. N. K. and Scott, A. J. (1981).  The 
analysis of categorical data from complex 
sample surveys: Chi-squared tests for 
goodness of fit and independence in two-way 
tables.  Journal of the American Statistical 
Association 76  221- 230 
 
Rao, J. N. K. and Scott, A. J. (1984).  On chi-
squared tests for multiway contingency tables 
with cell proportions estimated from survey 
data.  The Annals of Statistics 12, 46-60.   
 
Rao, J. N. K. and Scott, A. J. (1987).   On 
simple adjustments to chi-square tests with 
sample survey data.  The Annals of Statistics 
15, 385-397.    
 
Skinner, C. J., Holt, D., and Smith, T. M. F., 
Eds. (1989).  Analysis of complex surveys.  
New York: Wiley.   

Joint Statistical Meetings - Section on Survey Research Methods

912



 
Valliant, R. (1987).  Generalized Variance 
Functions in Stratified Two-Stage Sampling.  
Journal of the American Statistical 
Association 82 499-508.   
 
Werking, G. (1997).  Overview of the CES 
Redesign. Proceedings of the Section on 

Survey Research Methods, American 
Statistical Association, 512-516.   
 
Wolter, K.M. (1985).  Introduction toVariance  

Estimation.  New York:  Springer Verlag. 
 

 
 
Table 1: Tests for Homogeneity of Growth Rates Across Areas, By Industry.   
Pennsylvania, June 2000 
 
Industry A 

bid̂  *
0iMT  Critical value 

Durables 11 20.8 7.1 48.6 
Nondurables 9 27.4 2.4 26.2 
Wholesale 4 56.2 2.7   8.6 
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