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1. Introduction

For the Current Employment Statistics Program,
approximately unbiased and stable variance
estimators are important for the empirical evaluation
of standard design-based point estimators, and for
production of related small domain estimators. In
some cases, standard design-based variance
estimators can be relatively unstable, which may lead
to consideration of alternative variance estimators
based on generalized variance functions. This paper
presents an exploratory analysis of generalized
variance function models for estimates of total
monthly employment within domains determined by
the intersection of metropolitan statistical area and
major industrial division. Three topics receive
principal attention: (a) a detailed description of
features of the underlying sample design that are
important in variance estimation; (b) graphical
evaluation of potential biases in generalized variance
function estimators; and (c) omnibus measures of the
relative magnitudes of the fixed and random
components of model lack of fit.

2. Survey Background

The Current Employment Statistics Program is
conducted by the U.S. Bureau of Labor Statistics as a
Federal-State cooperative program. The Bureau
specifies the design of the survey and operational
procedures in close coordination with the States. On
a monthly basis, the Bureau produces national
estimates while the States produce State and local
area estimates. The data collected for the survey
includes all employees, production workers,
production workers hours paid, and production
workers payroll. This data is collected each month
for a sample of approximately 220,000 State
Unemployment Insurance (UI) accounts from each of
the 50 States and the District of Columbia. The
primary estimate made from the survey is the
monthly total “all employee” estimate which is
published approximately 3 weeks after the reference
period of the collected data. Because of the
importance of the payroll employment estimates

produced and the timeliness of the estimates, the CES
estimates are recognized as a leading economic
indicator. They provide one of the first available
signs of the state of the economy each month. The
estimates are also used as input into many other
major economic indicators.

3. Sample Allocation and Selection

The sample for the survey is selected each year
from a sample frame compiled from State
Unemployment Insurance accounts. These UI
accounts are compiled by BLS as part of another
Federal-State cooperative program known as the
Covered Employment and Wages (ES-202) Program.
The data is collected for this program by the States
under contract with the BLS and consists of over
7,000,000 individual establishment records
representing virtually every employer in each of the
50 States and the District of Columbia. These UI
account and establishment records include
information on total employment, Standard Industry
Code (SIC), and county or area which is used to code
the Metropolitan Statistical Area code (MSA). The
individual establishment records in each UI account
have the same types of information coded as that
collected and coded for the UI account. Each of
these establishment records may operate in a slightly
different SIC and area than that coded for the
“parent” UI account record. The UI account parent
records (the sample unit) on the sample frame are
stratified by State into 11 major industrial divisions
(MID), and 8 employment size classes (Size) for a
total of 88 strata for each State. The largest Size
units (Size 8 – 1,000 or more employees) are selected
with absolute certainty. The sample collection
resources are fixed for each State through an
administrative process. The resources required to
collect the certainty units are removed from each
State’s total. The remainder of the sample for each
State is allocated to the remaining 77 non-certainty
strata using a program that optimizes the allocation to
provide the best estimate (smallest sampling error) of
State total employment. The input into this process
includes the estimated resources required to collect
data from each unit and the over-the-month
coefficient of variation for employment as calculated
from the sample frame. Thus, the sample is truly a
State based design. The sample strata are defined by
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State, MID, and Size. Before sample selection, the
units within each stratum are sorted by MSA to
ensure that MSAs have sample units selected from
them in direct proportion to the number of units in
the MSA. The sample is selected from each
State/MID/Size stratum, after sorting by MSA, by
taking one random start for the stratum and then
selecting the remainder of the sample units by taking
every N/n th unit in the stratum. This does not ensure
that all MSAs within the stratum will have sample
units selected, however, it does ensure that if units
are selected from a stratum with a probability of ¼
and an MSA in the stratum has 4 units, then 1 unit
from the MSA will be selected. Within a given State
x MID x Size stratum, units are sorted only according
to MSA and an uninformative permanent random
number. This provides a degree of randomness for
the MSA sample selected within each stratum. This
also provides a degree of independence between the
MSA samples that are used in making MSA/MID
estimates of all employees. After sample selection,
each sample unit is given a sample weight which is
equal to the inverse of the probability of selection.
For additional background in the CES sample design,
see Butani et al, (1997), Werking (1997) and
references cited therein.

4. Point Estimation

We will limit our discussion of estimation to all
employment (AE) estimates since that is the principal
statistic estimated from the survey and the one
estimate where the need for reliable and stable
sampling error information is the strongest. For a
given month, the individual establishment data is
collected for all responding establishments within
each selected UI account. This provides us the actual
MID and MSA where the employees in the
establishment are working. When making estimates,
the individual establishment records are used to
ensure that we place the employees in the appropriate
industry and area. The form of the monthly estimate
of AE is referred to as a weighted link relative
estimator:
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where tŶ = total employment estimate for month t,

1
ˆ

−tY = total employment estimate for month t-1,

∑
∈ tMi

tii yw , = summed weighted employment total in

month t for matched sample units at time t and t-1,
i.e., matched sample units at time t reporting non-

zero data for month t and t-1, and ∑
∈

−
tMi

tii yw 1, =

summed weighted employment total in month t-1 for
matched sample units at time t.

Once each year the estimates are benchmarked or
adjusted to the true population employment values
from the Covered Employment and Wages Program.

For t=0, the estimator shown above is started with 0Y

in the place of 1
ˆ

−tY , 0Y being the true population

value at the benchmark month or month 0.

5. Variance Estimation

Variance estimation is accomplished using
balanced half-sample (BHS) methodology. The BHS
method addresses all of the CES design features
including stratification, allowances for imputation
variance and for the finite population correction.
Details of the procedure are provided in Wolter et al,
(1998). The basic form for the variance estimator is:
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where θ̂ = the full sample weighted link relative
estimator (4.0) for total employment as described
above; k is the number of half samples (both the half
sample and its complement half sample are used); γ
= a mixing parameter used to weight the half samples

)1( γ+ , and the complement of the half samples

)1( γ− , withγ set = 0.5; and +
αθ̂ = the half sample

weighted link relative estimator for the α th half
sample (using the half sample and its complement).
The weights used for these half sample estimates are
adjusted for the half sample, imputation, and the
finite population correction factor.

The set of half samples used for calculating
variances for Statewide/All Industry estimates are
constructed by employing the use of a Hadamard
matrix with columns representing different strata and
rows designating different half samples. The number
of sample strata in each State is 66 since there are 11
MIDs and 6 size classes. (For purposes of variance
estimation, the largest 3 size classes are collapsed
together.) A Hadamard Matrix of order 68 is used to
designate the half samples. This results in 68 half
sample replicates used in calculation of Statewide/All
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Industry estimates, which in turn produce variance
estimates for the aggregate estimates.

The estimates that are of interest for our study
are estimates of total employment in a given MID
within a specified MSA. The variances needed for
these estimates have two purposes. The first is for
use by the States in analyzing their small area
estimates made using the weighted link relative
estimator (1) described above. The second is for use
in weighting the weighted link relative estimate in a
weighted least squares small area estimator. In
calculating the variances for MSA/MID estimates,
the only remaining stratification uses the 6 combined
size classes within the MID. A new Hadamard
matrix of order 8 is used to define 8 half samples for
each of the MSA/MID variance estimates. The
columns represent the six size strata (the first and last
colunms are omitted) and the rows designate the 8
half samples. The variance estimates calculated have
only 6 degrees of freedom and display a substantial
degree of variability.

6. Finding a Generalized Variance Function

Due to the above mentioned stability problems
for standard design-based estimators, we explored the
possibility of using generalized variance functions
(GVFs) for small domains defined by the intersection
of MSA and MID. For some general background on
GVFs, see Johnson and King (1987), Valliant (1987)
and references cited therein. Woodruff (1992, 1993)
considered generalized variance functions for high-
level point estimators from the CES under its
previous quota-sample design. The present paper
restricts attention to results under the CES probability
design.

We consider a linear regression (GVF) model

with )ˆln( mtV as a dependent variable, where mtV̂ is

the BHS estimate of variance for mtŶ , the

employment estimator for domain m in month t.
After exploring many alternative GVF models, the
search was narrowed to the model:

imtmmt entxV ++++= )ln()ln()ˆln( 32010 γγγγ
(6.0)

where =0mx the true employment in area m for the
benchmark period 0; t = month label for number of
months from benchmark period; =mtn number of
responding sample UI Accounts in domain m at time

t; and, mte = a random error term with expectation

equal to zero and variance equal to 2
eσ .

If ( )2,0~ emt Ne σ , an approximately unbiased

estimator of the design expectation of mtV̂ is:

)}(ˆˆ)ln(ˆˆ2/ˆexp{ 32010
2*

mtmemt ntxV γγγγσ ++++≡ (6.1)

In many applications, a variance estimator
follows approximately a chi-square or lognormal
distribution. To evaluate the adequacy of these
approximations, for the CES, we produced the
quantile-quantile plots displayed in Figures 1 and 2
for data collected for the Wholesale Trade industry in
M = 100 MSAs and T = 12 months. Figure 1 displays
a plot of the quantiles of the relative remainder terms

)ˆ()( *1*
mtmtmtmt VVVd −= − (6.2)

(vertical axis) against the corresponding quantiles of
a standardized chi-square distribution on six degrees
of freedom. Note especially that the upper tail of the
distribution of mtd is much more extreme than
would be anticipated under a standardized chi-square
distribution on six degrees of freedom.

Figure 1

Figure 2 presents the corresponding lognormal plots.
Note that under model (6.0), the lognormal
distribution provides a better approximation to the
upper tail of the distribution of mtd .

Figure 2
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7. Diagnostics to Assess the Adequacy of
Approximation (6.0): Direct Evaluation of
Remainder Terms

Define the relative remainder terms

)ˆ()( *1*
mtmtmtmt VVVd −= − (7.1)

and their average
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for a given month t. Routine arguments then show
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should follow approximately a t distribution on M-1
degrees of freedom, provided
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Thus, (7.5) provides a summary indicator of the

overall relative bias, if any, of *
mtV as an estimator of

)ˆ( mtVE . Similarly, expression (7.4) provides month
specific indications (averaging over metropolitan

areas) of the overall relative bias of *
mtV .

We applied the ideas leading to expressions (7.4)
and (7.5) to data from T=12 months (January through
December, 2000) for five industries. Figure 3

displays the values td and the corresponding
approximate pointwise 95% confidence intervals
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for the month-specific average relative bias terms
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. The plotting symbols A

through E correspond, respectively, to five industries,
construction, combined construction and mining,
durables manufacturing, nondurables manufacturing
and wholesale trade. For these five industries, M was
equal to 61, 36, 131, 100, and 100 respectively. The
values of M vary across industry because we omitted
from consideration any MSA x MID combinations
that had less than 12 responding sample UI accounts
in any month between March 1999 and December
2000. Note especially that in all cases, the
confidence intervals in Figure 3 include the value
zero, which would be consistent with the
unbiasedness condition (7.6).

Figure 3
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8. Diagnostics for Chi-Square Approximations

Note that (7.4) and (7.5) depend on distributional
assumptions only in a limited way, e.g., through
approximate normality of a mean of M independent
random variables. If we also assume that

*/ˆ
mtmt VVc

follows a chi-square distribution on c degrees of
freedom for some c>0, then for a given month t the

terms )( 2
mtd , m=1, …, M are independent and

identically distributed with expectation equal to
cdV mt /2)( = . In particular, if c=6, then

3/1)( =mtdV . Define

∑
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m
mtt dMD
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21 .

If our estimator ratio */ˆ
mtmt VV satisfies the chi-

square distributional approximation, then the terms

3/1ˆ −= tLFt DR

have a mean equal to zero, and an approximately
unbiased variance estimator is
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with associated confidence intervals

)ˆ(ˆˆ
975,.1 LFtMLFt RVtR −± (8.2)

A confidence interval (8.2) that falls entirely
above zero would correspond to relative differences

mtd that are more variable than anticipated under a

2
6Χ approximation. This might be attributable to

mtV̂ being associated with fewer degrees of freedom
than the nominal c=6. On the other hand, this
phenomenon might also arise from a lack of fit of the

values )ˆln( mtV to model (6.0). Note especially that

the diagnostics td and d are sensitive to systematic

deviations of *
mtV from )ˆ( mtVE , across all areas in a

given month t, or all months. In contrast with this,

LFtR̂ will reflect local deviations

)ˆ()( *1*
mtmtmt VVV −− that may not necessarily all have

the same sign.

Similarly, define the aggregate goodness-of-fit
measure
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and approximate 95% confidence interval

)ˆ(ˆˆ
975,.1 LFMLF RVtR −± (8.4)

Figure 4 displays the confidence intervals (8.2)
for January through December of 2000 for the same
MSAs and the same five industries considered in
Figure 3, with the same industry labels A through E.

Figure 4

9. Diagnostics for Lognormal Approximations

The preceding subsection presented diagnostics
intended to identify cases in which the relative errors

mtd deviated substantially from their expectations
under an idealized chi-square approximation. If we

instead had )/ˆln( *
mtmt VV following a normal

distribution with mean zero and variance 2
eσ , the

corresponding diagnostics would be the same as in

Section 8, but with LFtR̂ replaced by
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[ ]1)ˆexp(
~ 2 −−= etLFt DR σ

and associated approximate 95% confidence interval

)ˆ(ˆ~
975,.1 LFtMLFt RVtR −± (9.1)

Note especially that relative errors mtd that
display a greater degree of dispersion (heavier tails)
than would be observed under a lognormal model
will tend to produce confidence intervals (9.1) that
fall entirely above zero. Similarly, relative errors that
display less dispersion (lighter tails) than would be
observed under a lognormal model will tend to
produce confidence intervals that fall entirely below
zero. (Conversely, confidence intervals that include
zero are consistent with a lognormal model for the
relative errors mtd .

Similar comments apply to the quantity averaged
over time,

[ ]1)ˆexp(
~ 2

0 −−= eLF DR σ

with associated confidence interval equal to (8.4)

with LFR̂ replaced by LFR
~

.
Figure 5 displays the confidence intervals (9.1),

with labeling similar to that for Figure 2.

Figure 5
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