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1. Introduction
Various controlled selection techniques have been

developed since Goodman and Kish (1950) first
suggested the method. Jessen (1970) proposed two
methods which can be quite complicated to
implement and sometimes fail to provide a solution.
Jessen (1978) approached the controlled selection
problem as probability lattice sampling.

Hess, Riedel and Fitzpatrick (1975) gave a
detailed explanation of how to use controlled
selection in order to select a sample of Michigan’s
hospitals. Groves and Hess (1975) suggested a formal
computer algorithm for obtaining solutions to two-
and three-dimensional controlled selection problems.

Causey, Cox and Ernst (1985) proposed an
algorithm based on transportation theory to solve
two-dimensional controlled selection problems, an
approach originally suggested in a previous paper by
Cox and Ernst (1982).

Following Rao and Nigam (1990, 1992), Sitter
and Skinner (1994) used a linear programming
approach to solve controlled selection problems.
Tiwari and Nigam (1998) proposed using linear
programming to reduce the selection probabilities of
non-preferred combination of units.

Huang and Lin (1998) proposed a recursive
algorithm using network flow to solve the two-
dimensional controlled selection problem with row or
column subtotals.

In this paper, we suggest a new linear
programming approach. Our method adopts ordinary
distance functions to minimize the overall distortion
to cell sample size expectations in two-dimensional
controlled selection problems.

2. Optimal Samples
Consider the two-way controlled selection problem
that is denoted by the R C× tabular array A , which
consists of cells that have real numbers, ,

ija
1, ,i R= ⋅⋅⋅ , 1, , .j C= ⋅⋅⋅ Let ,kB 1, , ,k L= ⋅⋅⋅ denote

possible samples where each sample is the
replacement of the real numbers in A by the adjacent
integers. Also, let ijkb be each internal entry of kB .
Then ijkb equals either [ ]

ija or [ ] 1ija + , where [ ]
ija

is the integer part of .ija

The major restriction on finding a solution to this
controlled selection problem is the fact that the
selection probabilities of samples should depend only
on the tabular array .A In other words, we have to
consider a set of samples with selection probabilities
that satisfy the constraints:

( )
,

, ( )

k k

kijk ijk ij
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E i j pb aBb
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and
( ) 1

k

k
p B

B B∈
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where B is the set of possible samples, { },kB and
( )kp B is the selection probability of each sample kB .

There may be a large number of sets of
probability distributions ( )kp B satisfying (2.1) and
(2.2), although only one set of probabilities can be
used to obtain a solution to the controlled selection
problem. In this case, we may consider an algorithm
to find the solution that reflects the closeness of each
sample kB to ,A which is based on an appropriate
and objective principle for measuring this
“closeness.”

For this purpose we consider several measures of
closeness between A and .kB The ordinary distance
metric, which is often called the Euclidean metric,
could be used.
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This function would be the most common measure to
define the distance between arrays A and .kB

The metric measure below could be also used to
define another distance function for each integer m .

( ) ( ):

m mR C
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1, ,k LL= , 1 m< < ∞ (2.4)

It is clear that we can define other distance
functions using the following metric:
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p pR C
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1, ,k LL= , 1 p≤ < ∞ (2.5)
Furthermore we can define the distance function

below for p = ∞ .

( ) { }: max :1 ,1ij ijkk i R j Cd a bA B4
−= ≤ ≤ ≤ ≤ ,

1, ,k LL= (2.6)

which is motivated by the fact that:

( ):( : ) lim kk
p

d A B A Bd 34
→∞

= (2.7)

The different metrics for measuring the
“closeness” of A and Bk , such as 1 42 3

, ,, and ,d dd d
give rise to a number of distinct metric spaces. Here
we focus on 1

d or 4,d which are special cases of

3
d with 2p = and p = ∞ . These are chosen because

1
d represents the “overall distance” between A and

kB considering all R C× cells, whereas
4d indicates

the maximum deviation in a single cell.
We define a few samples in the set of all possible

samples, { },
k

B having the minimum distance value
from

1d or
4

d as ‘optimal samples.’ For identifying
optimal samples, we would prefer 4d rather than 1d
because the following relation always holds:

B B0 1
⊆ , (2.8)

where B
0

is the set of optimal samples under metric

1d and B
1

is the set of optimal samples for metric 4d .
Empirically, there would be a very small number

of samples to be added to our subset of optimal
samples when we use

4d compared to
1d .

On the other hand, if we define ‘unfavorable
samples’ as samples which have the maximum
distance value, 1d yields a greater number of
unfavorable samples than does 4d .

In the next section, we first review several
controlled selection methods in the literature and then
explain our new algorithm to obtain solutions of
controlled selection problems. We use a simple linear
programming approach which maximizes the
selection probabilities of optimal samples under
distance metric 1d and 4d and simultaneously
minimizes the selection probabilities of unfavorable
samples.

3. Optimal controlled selection
The algorithm developed by Causey et al. (1985)
applies transportation theory to approximate
nonlinear distance functions (2.5) and (2.6) by linear
functions in order to obtain a solution for the
controlled selection problem. To solve the problem
specified by the array A, their algorithm requires the
solution to a sequence of problems. Thus this
algorithm is not only less direct, but also more

purposive in making a decision on the selection
probabilities of samples.

Sitter and Skinner (1994) showed how linear
programming may be applied to controlled selection
problems. Their key idea is to minimize “the
expected lack of desirability” of samples with regard
to margins of the tabular array .A Their method is
primarily applicable to controlled selection
problem ,A with non-integer margins.

Huang and Lin (1998) adopted subgroup
constraints raised by Goodman and Kish (1950) and
solved a controlled selection problem as a network
flow problem. Their method uses a recursive
algorithm based on simple definitions of the selection
probabilities of samples, which is similar to the
method of Causey et al. (1985).

In this section, we present an algorithm to
optimize the assignment of probability to each
sample.

First, consider all possible samples for the
controlled selection problem corresponding to
rounding of tabular array .A As mentioned above,
the set of possible samples is denoted by .B Second,
establish the following linear programming problem:

( ): ( )
k

k

k
B B

pA B Bdφ 11
=

∈
∑ (3.1)

or

2 2 ( : ) ( )
k

k k
B B

d A B p Bφ
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subject to:
*( )

k

k ij
ij B

p B a
∈

=∑ , (3.3)

( ) 0
k

p B ≥ , (3.4)

( ) 1
k

k
B B

p B
∈

=∑ , (3.5)

where *
ija is the non-integer part of .ija

For distance measure
2
,d this method can be

employed for any integer, m > 2. Although
3d could

also be considered as the weight in objective
functions such as (3.1) or (3.2), it is sufficient to
explain the role of different distance functions in the
linear programming approach using

1
d or

4
.d

In particular, we can use the following objective
function for p = ∞ under the same constraints (3.3),
(3.4) and (3.5).

:( ) ( )
k

k k
BB

PA B Bdφ 43
=

∈
∑ (3.6)

It is evident that it would be more convenient to
use φ

3
than φ

1
or φ

2
since d 4 has the simpler form

and d4 would cluster possible samples into several
groups in which the number of groups is much
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smaller than in using d
1

or .d2 It also makes the
selection probability of each sample ( )

k
p B easy to

compute under the linear programming approach.
Third, selection probabilities of possible samples

are obtained by minimizing each objective function
subject to the constraints (3.3), (3.4) and (3.5).

Finally, we randomly select one sample from the
sampling plan which is the solution, using the method
of cumulative sums (probability proportionate to size).

Objective functions φ
1

φ
2

or φ
3

would reflect
the “closeness” of each sample

kB to the original
tabular array ,A and this linear programming
approach would maximize the selection probabilities
of optimal samples under the given constraints.

This algorithm may be a more direct approach
than the method using transportation theory or flow
in the network developed by Causey et al. (1985) and
Huang and Lin (1998) respectively, since the
controlled selection problem is specified directly as a
linear programming problem. Also, it would reflect a
more straightforward weight than the method
proposed by Sitter and Skinner (1994), which uses
marginal constraints in tabular array A .

We have developed public use SAS-based soft-
ware for our linear programming approach to two-
way controlled selection problems. Possible samples

,
kB 1, ,k LL= for original tabular array A are

automatically produced. The objective functions such
as φ

1
, φ

2
and φ

3
can be used by simple options in

the program.
In this software, a two-phase revised simplex

method, implemented using SAS/OR LP Procedure,
is employed to solve the controlled selection
problem. A unique optimal solution set is obtained
when the objective function is minimized under the
given constraints (3.3), (3.4) and (3.5) through phase
1 and 2 of LP program.

In using the algorithm, there are no restrictions on
the problem size, i.e., the number of all possible
samples that can be considered for the solution. The
problem size and the number of constrains that can be
solved would depend on the memory capacity and the
available disk space of the computer. A public use
version of the SOCSLP (Software for Optimal
Controlled Selection Linear Programming) software
may be downloaded from the URL:
http://www.isr.umich.edu/src/smp/socs.

4. Examples
We apply our linear programming method to solve
three two-way controlled selection problems previous-
ly described in the literature. These problems are
divided into two cases: integer margins and non-
integer margins. The results from several methods are
compared using as criteria the assigned selection

probabilities of optimal samples and unfavorable
samples.

Example 1: Jessen (1970)�
We first examine the simple example given in the
table of Jessen (1970), page 778. This example is a
3 3× controlled selection problem with integer
margins and a total sample of size n = 6. There are
six possible samples, ,kB that satisfy the marginal
constraints imposed by the problem.

Table 1 presents the selection probability of each
sample, resulting from Jessen’s (1970) method 2 and 3
solutions, the Sitter and Skinner (1994) method, and
our method using φ 1

and .φ 3 For Sitter and
Skinner’s method, we used the SAS/OR LP
Procedure to find the solution.

Table 1 shows that the solutions from all methods
except Jessen’s method 3 yield the same result for
this simple controlled selection problem. In the
common solutions, the optimal sample receives .5
probability of selection and the unfavorable sample
has .2 chance of selection.

Example 2: Jessen (1978)
Consider another example that is a 4 4× controlled
selection problem (Jessen 1978, p. 375) which has 30
possible samples. This problem also has integer
margins. Jessen used a simple but effective probability
lattice sampling method to find a solution set for this
controlled selection problem. A comparison of the
proposed method using

1
φ or

3
φ with those of Jessen

(1978) and Sitter and Skinner (1994) is shown in
Table 2. (Only samples that receive a non-zero
probability for one or more methods are shown.)

Sitter and Skinner’s method provides the lowest
probability of 0.4 to optimal samples, whereas the
suggested method using

1
φ or

3
φ allocates the

highest probability of 0.8 to the samples. For
unfavorable samples, the suggested methods give the
probability of 0.2. Jessen’s method and the Sitter and
Skinner solution give zero probabilities to the
unfavorable sample pattern.

Example 3: Causey et al. (1985)
Causey et al. (1985) used an 8 3× controlled
selection problem to explain their transportation
theory algorithm. Each row can be regarded as a
stratum and each column considered a classification
variable. This problem could produce 141 possible
samples considerably larger than in the above two
problems. Table 3 presents a comparison of the sug-
gested method using

1
φ or

3
φ with Causey et al.

(1985), Huang and Lin (1998), Sitter and Skinner
(1994). (See the last page)
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Table 1. Sampling Designs And Comparison For
Example 1

( )
k

p BSample

kB JS2 JS3 S - S K- H- S(1) K - H – S(2)

0 1 1
1 0 1#
1 1 0

0.2 0.1 0.2 0.2 0.2

0 1 1
1 1 0
1 0 1

0.0 0.1 0.0 0.0 0.0

1 0 1
0 1 1
1 1 0

0.0 0.1 0.0 0.0 0.0

1 0 1
1 1 0 *
0 1 1

0.5 0.4 0.5 0.5 0.5

1 1 0
0 1 1
1 0 1

0.3 0.2 0.3 0.3 0.3

1 1 0
1 0 1
0 1 1

0.0 0.1 0.0 0.0 0.0

1∑ 0.5 0.4 0.5 0.5 0.5

2∑ 0.2 0.1 0.2 0.2 0.2

Note. * : optimal sample, # : unfavorable sample

JS2: Jessen’s method 2, JS3: Jessen’s method 3

S – S : Sitter and Skinner(1994)’s method

K – H – S(1): Proposed method using
1

φ
K – H – S(2): Proposed method using

3
φ

1∑ : Sum of selection probabilities of optimal samples

2∑ : Sum of selection probabilities of unfavorable samples

We note that all these methods provide different
solutions, although the four methods except Sitter
and Skinner’s method offer the same sum of selection
probabilities of optimal samples. The proposed
methods distribute the total probability of 0.4 to two
optimal samples, whereas the first two methods just
allocate the probability to only one optimal sample.
Sitter and Skinner’s method appears to be less
effective for this problem. For this problem, we
would prefer the method using

3φ to one using
1

φ
because the former gives the probability of 0.08 to
the unfavorable samples, while the latter gives a
higher probability of 0.2 to the undesired sample
problem.

In conclusion, through the above examples, the ef-
fectiveness of the method using

1
φ or

3
φ is measured

by the ability to maximize the selection probabilities
of optimal samples. In particular, not only does the
method using

3
φ maximize the possibility to be

selected for optimal samples, it reduces the selection
probabilities of unfavorable samples as the controlled

Table 2. Sampling Designs And Comparison For
Example 2

( )
k

p BSample

kB JS S – S K – H – S(1) K – H –S(2)

0 0 1 1
0 1 0 1
1 0 1 0
1 1 0 0

0.2 0.1 0.0 0.0

0 0 1 1
0 1 0 1 #
1 1 0 0
1 0 1 0

0.0 0.0 0.2 0.2

0 0 1 1
1 0 0 1
0 1 1 0
1 1 0 0

0.0 0.1 0.0 0.0

0 0 1 1
1 1 0 0 *
0 0 1 1
1 1 0 0

0.2 0.1 0.2 0.2

0 0 1 1
1 1 0 0
0 1 0 1
1 0 1 0

0.0 0.1 0.0 0.0

0 1 1 0
0 0 1 1
1 0 0 1
1 1 0 0

0.0 0.1 0.0 0.0

0 1 1 0
1 0 0 1 *
0 0 1 1
1 1 0 0

0.0 0.0 0.2 0.2

0 1 1 0
1 0 0 1
0 1 0 1
1 0 1 0

0.2 0.0 0.0 0.0

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

0.0 0.1 0.0 0.0

0 1 1 0
1 0 1 0 *
1 0 0 1
0 1 0 1

0.4 0.3 0.4 0.4

0 1 1 0
1 1 0 0
0 0 1 1
1 0 0 1

0.0 0.1 0.0 0.0

1∑ 0.6 0.4 0.8 0.8

2∑ 0 0 0.2 0.2

Note. JS : Jessen’s (1978) probability lattice sampling method. See notes for

Table 1

by the ability to maximize the selection probabilities
of optimal samples. In particular, not only does the
method using

3
φ maximize the possibility to be

selected for optimal samples, it reduces the selection
probabilities of unfavorable samples as the controlled
selection problems have larger numbers of possible
samples. Though we did not show the results of the
comparisons between the suggested method using

2
φ

and other methods, they are less effective than the
method using

3
φ in reducing the selection

probabilities of unfavorable samples.

5. Conclusion
In this paper, we propose using a linear programming
approach with metric distance functions as a weight
for each sample to find optimizing solution sets in
two-way controlled selection problems. We have
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implemented this procedure in a new SAS-based
software.

As shown in the above examples, this method
would offer solution sets not only to maximize the
selection probabilities of optimal samples, but also to
minimize the probability of choosing unfavorable
samples in large controlled selection problems.

Based on the results for the two-way controlled
selection problem, we expect that the suggested
method would also contribute to controlled selection
problems with three dimensions. We are currently
working on an extension to those problems and to
develop a more effective algorithm for large
controlled selection problems.
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Table 3. Sampling Designs And Comparison For Example 3

Note a : Causey, Cox and Ernst (1985), b : Huang and Lin (1998)
c : Sitter and Skinner (1994) , d : Proposed method using

1
φ

e: Proposed method using
3

φ
See notes for Table 1.

Sample
kB ( )

k
p B Sample

kB ( )
k

p B Sample
kB ( )

k
p B

0.20
a 0.00 0.00

0.00
b 0.00 0.00

0.00
c 0.05 0.00

0.00
d 0.10 0.00

0 2 0
1 0 1
0 0 0
2 0 0
1 0 0
0 1 0
0 0 1
0 0 1 0.00

e

0 2 0
1 0 1
1 0 0
1 1 0
1 0 0
0 1 0
0 0 1
0 0 0 0.04

0 2 0
2 0 1
0 0 0
1 1 0
1 0 0
0 0 0
0 1 0
0 0 1 0.02

0.00 0.00 0.00

0.00 0.00 0.00

0.10 0.05 0.15

0.00 0.00 0.00

0 2 0
1 0 1
0 0 0
2 0 0
1 0 1
0 0 1
0 1 0
0 0 0 0.10

0 2 0
1 0 1
1 0 0
1 1 0
1 0 1
0 0 0
0 0 0
0 0 1 0.04

0 2 0
2 0 1
0 0 0
1 1 0
1 0 0
0 0 1
0 0 0
0 0 1 0.06

0.00 0.00 0.00

0.20 0.00 0.00

0.00 0.00 0.10

0.00 0.10 0.10

0 2 0
1 0 1
0 0 0
2 0 0
1 1 0
0 0 0
0 1 0
0 0 1 0.00

0 2 0
2 0 1
0 0 0
1 0 0
1 0 1
0 1 0
0 0 0
0 0 1 0.00

1 2 0
1 0 1
0 0 0
1 0 0*
1 1 0
0 1 0
0 0 1
0 0 0 0.16

0.00 0.00 0.00

0.00 0.20 0.00

0.00 0.00 0.05

0.10 0.00 0.00

0 2 0
1 0 1
0 0 0
2 0 0
1 1 0
0 0 1
0 0 1
0 0 0 0.00

0 2 0
2 0 1
0 0 0
1 0 1
1 0 0
0 1 0
0 0 1
0 0 0 0.00

1 2 0
1 0 1
0 0 0
1 0 1
1 1 0
0 0 0
0 0 1
0 0 0 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.10 0.00 0.10

0.10 0.10 0.00

0 2 0
1 0 1
0 0 0
2 0 0
1 1 0
0 1 0
0 0 1
0 0 0 0.10

0 2 0
2 0 1
0 0 0
1 0 1#
1 0 1
0 0 0
0 1 0
0 0 0 0.00

1 2 0
1 0 1
0 0 0
1 0 1
1 1 0
0 0 0
0 1 0
0 0 0 0.00

0.20 0.00 0.40

0.20 0.00 0.40

0.00 0.05 0.15

0.00 0.00 0.30

0 2 0
1 0 1
1 0 0
1 0 0
1 0 1
0 1 0
0 0 1
0 0 0 0.00

0 2 0
2 0 1
0 0 0
1 0 1
1 0 1
0 1 0
0 0 0
0 0 0 0.06

1 2 0
1 0 1
0 0 0
1 1 0*
1 1 0
0 0 1
0 0 0
0 0 0 0.24

0.00 0.00

0.00 0.00

0.10 0.00

0.00 0.00

0 2 0
1 0 1
1 0 0
1 0 0
1 1 0
0 1 0
0 0 1
0 0 0 0.04

0 2 0
2 0 1
0 0 0
1 0 1
1 1 0
0 0 0
0 0 1
0 0 0 0.06

0.00 0.20

0.00 0.00

0.00 0.00

0.10 0.00

0 2 0
1 0 1
1 0 0
1 0 1#
1 0 0
0 0 0
0 1 0
0 0 1 0.08

0 2 0
2 0 1
0 0 0
1 0 1
1 1 0
0 0 0
0 1 0
0 0 0 0.00

0.40
a

0.00
a

0.40
b

0.00
b

0.25
c

0.00
c

0.40
d

0.20
d

1∑

0.40
e

2∑

0.08
e
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