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1. Introduction

Item nonresponse occurs when a sampled unit co-
operates in the survey but fails to respond to some
of the items. To compensate for item nonresponse,
imputation can be used to estimate values for the
missing items. Hot deck imputation is the impu-
tation procedure in which the value assigned for a
missing item is taken from respondents in the cur-
rent sample.

Many of the hot deck imputation procedures use
auxiliary variables known for both the respondents
and nonrespondents to divide the sample into cells,
called imputation cells. The hot deck imputation
method assigns the value from a record with a re-
sponse to the record with a missing value for the
same cell. The record providing the value is called
the donor and the record with the missing value is
called the recipient. A property of hot deck imputa-
tion is that any imputed value is a known possible
value of the study variable. For example, imputed
values for categorical variables will also be categori-
cal with the same number of categories as observed
for the respondents.

Nearest Neighbor imputation (NNI) is a type of
hot deck that is used for many surveys. Sande (1983)
reviewed the general features of NNI approach and
Rancourt, Sarndal, and Lee (1994) proposed a vari-
ance estimation method with NNI under a linear
regression model. Recently, Fay (1999) addressed
variance estimation problems in a simple situation,
Chen and Shao (2000) proposed a model-based vari-
ance estimator, and Chen and Shao (2001) proposed
a jackknife variance estimator that is less dependent
on the assumed model compared to the other meth-
ods. The most challenging part of variance estima-
tion problem for NNI is the absence of a general ex-
plicit imputation model. If we had an explicit model,
then the NNI method might be replaced by the di-
rect model-based method. For this reason, the meth-
ods of Rancourt, Sarndal, and Lee (1994) and Chen

and Shao (2000), which are derived under explicit
models, may not be suitable as a general method-
ology of variance estimation for NNI. Fay (1999)
gave a reasonable set of assumptions but his vari-
ance estimator can lead to negative estimates for
some domains. Only the method of Chen and Shao
(2001) leads to a valid variance estimator under a
fairly general imputation model with weak assump-
tions. However, their variance estimator does not
apply unless the imputation classes are constructed
using strata. The method of Chen and Shao (2001)
is also based on the assumption that the number of
imputation cells is fixed, the number of respondents
is large within each imputation cell, and that the
sampling fraction is negligible. Thus, their method
is not applicable to the Long form Census data where
the sampling fraction is sizeable.

Census 2000 Long form data are obtained from a
stratified random sample and the Census long form
data estimation operation uses a NNI method for
handling item nonresponse. For variance estimation,
Fairchild (2001) discussed options for incorporating
imputation variance into long form direct variance
estimates and concluded that the current methods
of variance estimation after NNI cannot be applied
to Long form data. The purpose of this report is to
provide a variance estimation method suitable for
the long form variance estimation. The method we
propose in this report will produce unbiased vari-
ance estimates under the assumptions used by Fay
(1999). The proposed method naturally incorpo-
rates sampling fractions and can be implemented
using a replication method such as the jackknife.
Before we propose a variance estimator for the NNI
method, we first consider a more general variance es-
timation methodology for hot deck imputation. Kim
and Fuller (2001, hereafter KF) established variance
estimation methodology for any hot deck imputa-
tion method. Since NNI is a special case of hot deck
imputation, we can modify the idea of KF for the
NNI method. The cell mean model, which assumes
an iid model within each cell, is replaced by the as-
sumption of Fay (1999), wherein it is assumed that
the iid model holds within a neighborhood, defined
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by the nearest neighbors used in imputation. The
techniques of variance estimation in KF are based
on fractional imputation, that involves replicating
a nonrespondents’ records a number of times and
imputing separately to each replicate, usually with
different donors. Since the long form survey imputed
only one value for each missing item, it is necessary
to modify the KF procedure to make it applicable
to a single imputation method.

In Section 2, we introduce the notation and as-
sumptions used for general hot deck imputation. In
Section 3, the variance estimation method of KF is
reviewed and some examples are used to illustrate
the ideas. In Section 4, we develop the method of
KF for NNI. In Section 5 modifications for the sin-
gle imputation of the U. S. Census long form are
presented. Concluding remarks are in Section 6.

2. Preliminaries

2.1 Hot deck imputation

A hot deck imputation method can be described
by two factors, the first of which is the way in
which donors are selected for each missing item.
This is determined by the distribution of d =
(dij; i € Agr,j € An), where Ag denotes the set of
indices of the sample respondents, Ay, denotes the
set of indices of the sample nonrespondents , and d;;
is the number of times that Y; is used as donor for
Y;. The distribution of d is called the imputation
mechanism.

The second factor is the way the weight of the
donor is defined for each missing item. Let wj; be
the fraction of the original weight assigned to donor
1 as a donor for element j. For missing item j,

Yi; = Z dijw;;yi (1)

IEAR

is the weighted mean of the imputed values. In
the case of a single imputed values the full fraction
(wj; = 1) is assigned to the donor and all other re-
spondents are given zero weights for missing unit j.
The d;; are nonnegative and the sum of the imputa-
tion fractions, w;; of the donors for a missing item
should be equal to one. Thus,

> dijwy; =1,

IEAR

Vj € A. (2)

A linear estimator using hot deck imputation can be
written in the form

o = Z Zdijij;(j Yi = Z aiyi. (3)

i€EAR \JEA I€EAR

The sum of wjw}; over all recipients for which i is a
donor (including the donor for itself), denoted by «;,
is the total weight of donor i. Note that a; > w; for
i € AR, because the final weight of a unit is increased
if the unit is used as a donor. If responding unit ¢ is
not used as a donor, except for itself, then a; = w;.

2.2 Cell mean model

Agssume that the finite population U is made up of G
imputation cells. Let n, be the number of sample el-
ements in imputation cell g and let ry, 4 > 0, be the
number of respondents in imputation cell g. Within
cell g, g = 1,2,--- G, the elements in the finite
population are a realization of independently and
identically distributed random variables with mean
fg and variance o;. Thus,

Y; % (g, 0%), VieU, (4)

where U, denotes the set of indices for the g-th impu-

tation cell in the population U and ‘~ is the abbrevi-
ation for independently and identically distributed.
We call the model (4) the cell mean model.

The distribution of Y in the sample is determined
by the sampling mechanism and by the distribution
of the vector Y. If there is no dependence of the
distribution of Y on the sampling mechanism, the
sampling mechanism is said to be ignorable. That
is, a sampling mechanism is ignorable if the condi-
tional distribution of Y for the sample is equal to the
marginal distribution of Y. Similarly, the response
mechanism is said to be ignorable if the conditional
distribution of Y for the respondents is the same as
the conditional distribution of Y for the sample.

We assume the sampling mechanism and the re-
sponse mechanism are ignorable under the cell mean
model (4). Then, the cell mean model holds for the
respondents and for the nonrespondents in the sam-
ple. Thus,

Vil (4,48) % (ng,07), VieU,  (5)

The expression in (4) is the marginal distribution of
the population vector Y , while the expression in
(5) is the conditional distribution of the population
vector Y given the realized sample and the realized
respondents.

The imputation mechanisms allowed are quite
general, including with-replacement hot deck and
without-replacement hot deck procedures. The only
restrictions on the imputation mechanism are:

(I.1) The distribution of d is independent of
Y and depends only on (ri,re,---,rg) and
(nlanZ;"' ,T’LG).
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(I.2) For i € A and j € Ay,

Pr(dij>1|i€Uy,jelU,) = 0
> 0

ifth#g
ith=y.

The two conditions make the distribution of the re-
spondents unchanged after imputation. Thus, the
resulting distribution of the respondents after impu-
tation is

Yi| (4, A, d) ¥ (ny,02), VieU, (6)

2.3 Variance of hot deck imputation estima-
tor

Under the assumptions discussed in Section 2.2, KF
show that the variance of the hot deck imputation
estimator (3) is

Var (éI) (7)
G
= Var Z Z wipy | + E
g=licA,

where A, = AN U, is the set of indices for
the g-th imputation cell in the sample and a; =
> jea wjwi;di; is the total weight of donor ¢ after
hot deck imputation. The distribution used to de-
fine the variance in (7) is the joint distribution of
the cell mean model, sampling mechanism, response
mechanism, and imputation mechanism.

G

2 2
IIDIELAL

g=1 iEARg

3. Variance estimation after hot deck
imputation

To consider variance estimation, let a replication
variance estimator for the complete sample be

PO =a@® i), ®

where §%) is the k-th estimate of 6N based on the
in the k-th replicate, L is the number of replicates,
and ¢y is a factor associated with replicate k deter-
mined by the replication method. When the original
estimator 0 is a linear estimator of the form (1), the
k-th replicate of can be written 6k = Yica wz(-k)yi,
where wgk) denotes the replicate weight for the i-th
unit of the k-th replicate.

If we treat the imputed values as if they are true
values and apply the standard replication variance
estimator in (9), then the naive variance estimator
can be expressed as

Vi (0r) = e (919 i)

k=1

where é;’i) = DlicAn aﬁf)yi

Y ien, Wi widi;. Kim and Fuller (1999) showed
that, if the complete sample variance estimator in
(8) is design unbiased for the variance of ,,, then
the naive variance estimator applied to the imputed
data set satisfies

with aEf) =

E {‘71 (91)} = Var gi;‘: Wi fhg
L G 9
+ ZE Z Z Ck (agf) —ai) 03
k=1 g=1i€EARy

Thus, comparing (9) with (7), we can see that the
naive variance estimator unbiasedly estimates the
first component of the total variance in (7) but does
not necessarily unbiasedly estimate the second com-
ponent of the total variance. The bias of the naive
variance estimator is

Bias (VI) =F EG: Z

g=1li€ARry Lk=1

The bias of the naive variance estimator comes
from the fact that the contribution of donor i to the
total variance (a? ) is different from the contribution
of donor 7 to the expectation of the naive variance

. L (k) 2
estimator (3 ,_;ck|@;; —a;) ). In that sense,

the replicate weight aEf) =2 jea wj(-k)wz‘jdij is not
the proper weight to use in estimating the imputa-
tion variance. To correct this, we compute replicates
of the imputation fractions that account for the re-
alized total weight due to imputation. Thus, if we
can construct a replication method defined by

617 =3 o= 3 [ Y wl e dy ) v

I€EAR I€EAR jEA
so that
L 2
(k) _ 2 _
Z Z(ail — Qg — Zaia 9_1727"'7G7
i€ARg k=1 i€EARy

(10)
then the second component of the total variance in
(7) will be unbiasedly estimated. In addition to (10),
we also require

3 diwi? =1, Vje A

IEAR

(11)

Note that the replicates of the imputation fractions
mimic the behavior (2) of original imputation frac-
tions.
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A sufficient condition for (10) is

Z Ck (agk) — ozi)2 — Z Ck (ozg]:) — ozi)2

iGARg ieARg
L . 9
= o - Zci (a§k) — ak) (12)
i=1

where aglz) =Y jea wj(-k)wfjdij is the replicate to-

tal weight for the naive variance estimator. The left
side of equality (12) is the difference between the
contribution of k-th replicate to the expected value
of the proposed variance estimator and the contri-
bution of k-th replicate to the expected value of the
naive variance estimator. The right side of equal-
ity (12) is the difference between the contribution
of unit k to the conditional variance and the contri-
bution of unit k to the expected value of the naive
variance estimator.

To construct an unbiased estimator of the variance
we derive replicates that satisfy both (11) and (12).
A natural starting place is to consider replicates con-
structed by removing all of the imputed values asso-
ciated with a deleted respondent and increasing the
weights of the other donors. By slightly modifying
this procedure with an adjustment for each replicate
we can construct an unbiased estimator of the vari-
ance. For a fractionally imputed procedure with M
distinct donors, replicates satisfying (11) are

wz‘j—ék ifdkalandkzi
wi? = wh + (M —1)7" 6 ifdy =landk#i
wi otherwise,

(]

(13)
where J;, are calculated to satisfy (12). Replicates
that satisfy (12) satisfy

Ck Oégll? — Qg — 6Ic Z w§k)dkj

JEAM
k Ok k
+ Z Ck a§i) —ap + M —1 Z w§- )dkjdij
i€EARy JEAM
itk

- Y afdl- ai}2 =} - ZL:% {odi - ak}2.

i€ARy i=1

Thus, for mutually exclusive imputation cells, a Jj
can be determined by solving a quadratic equation
of dp. If such ¢ exists, the variance estimator will
be unbiased. In contrast, the method of Chen and
Shao (2000, 2001) is based on asymptotic theory,
where the number of respondents in every cell must
be large enough to apply large sample theory.

Under simple random sampling, for sufficiently
large sample size n, determining equation (12) can
be simplified as

4262 di\’
(1+ 6pdy)” + 1= <1 + Mk> . (14)

By the mean value theorem, we can show that the
solution to (14) satisfies 0 < 0, < M !, which guar-
antees nonnegative replicates of wy;.

4. Application to NNI method

The variance estimation method described in Sec-
tion 3 can be applied for any hot deck imputation
method. Fay (1999) assumed

E:(yp) =
Vare (yp) =

E¢ (Yant(v)) (15)
VCLTC (ynnt(b))

and assumed the y-variables in the neighborhood to
be uncorrelated, where nnt(b) is the index for neigh-
bor t of unit b. We make the stronger assumption
that N
Yo Z':é' (Nz; 0—@2)
where B; is the set of neighborhoods of element i
based on the neighbor designation. We call B; the
nearest neighbor cell or the neighborhood of y;. The
cells B; can overlap, and the validity of the KF
method does not require the cells to be disjoint.
Ounly (10) and (11) are required. Then (16) is essen-
tially a cell mean model, where B; is a cell. Thus,
we can apply the method described in Section 3 and
form replicates to satisfy (10).
If Y; appears in more than one neighborhood we
assume the variance is the same in all neighborhoods
containing Y;. Then equation (7) becomes

Var (én) =Var {Zwim} -I-E{ Z a?a?} .
icA i€AR
(17)

A replicate variance estimator will be unbiased if

Sa Y (o ) =Y ot vi, ()

k=1 teB; teB;

Vb € B; (16)

™~

where (k) (k), *(k)
k k)  *x(k
o) = ) wwy
JED:
and D; is the set of recipients for which 7 is a donor.
Equation (18) is analogous to equation (10).
To discuss construction of the replicate fraction

w;j(k), let Py, be the set of indices of elements deleted,

1860



Joint Statistical M eetings - Section on Survey Research M ethods

or that have their weights reduced, in the k-th repli-

*(k) i

cate. For t € By, the replication fraction w18

w;j—(sk if Mjp >0 and t € Py
w:](k) = w,’fj + Cjkék if t ¢ P
wy; otherwise,
(19)
where Mj, = ZtGPmAn d;; is the number of

donors in P, for missing unit j and Cj, =
(M — Mjk)_1 M. Note that (19) is essentially the
same as (13). The only difference is that B; is
treated as a cell. Assuming the Py to be mutually
exclusive and exhaustive, the d; can be calculated
by

2

Z Ck (agk) _ at)Z — Z Ck (agltc) _ Oét)

teB; teB;
L 2
= ) {af = e (off - ) } (20)
tePNB; s=1
where aglz) = > jen w§-k)w;;j. By summing both

sides of (20) over replicates it can be shown that
(20) implies (18).

5. Application to the U. S. Census
Long Form

To apply the method of KF to the Census Long Form
data we extend the definition of fractional imputa-
tion to include single imputation. We assume that
the neighborhood has M donors, but that wj; =1
if dij = 1 and w;-*j = 0 if dij = 1. That iS, sin-
gle imputation becomes a special case of fractional
imputation. Then, we can apply the KF method
to a single imputation and the suggested replicate
fraction for a missing unit is (13). Thus, if M =
2 deleting a first nearest neighbor will reduce the
fractional weight of the donor and increase the frac-
tional weight of the second nearest neighbor. But,
deleting a second nearest neighbor will have no ef-
fect on the replicate fractional weight of donors. The
proposed method for variance estimation uses frac-
tional imputation even though a single imputation
was used for point estimation. Fractional imputa-
tion was originally proposed to reduce the variance
due to imputation and this is not achieved with a
single imputation.

6. Concluding Remarks

In this paper, we examined some properties of the
hot deck imputation estimator and a variance es-
timator based on the KF paper. We showed that
modifications of the KF method make it applicable

to NNI data. The proposed replication variance esti-
mation method is exactly unbiased under fairly rea-
sonable assumptions, and covers nonignorable sam-
pling fractions. The proposed variance estimator is
also applicable to estimating means for several items
with different missing patterns. A disadvantage of
the proposed method is that the computation can
be cumbersome for a large data set, because it re-
quires solving quadratic equations. For the Long
Form Census data, we recommend using the pro-
posed method to evaluate the approximate predic-
tion variance estimation method already in place.
We have demonstrated that the proposed method
can be implemented for the jackknife method. Im-
plementation for Fay’s successive difference replica-
tion method (Fay and Train, 1995) is also possible.
This memo, does not include an empirical investiga-
tion of the proposed method. In the KF paper, ex-
tensive simulations show the superiority of the pro-
posed method over the multiple imputation method.
We plan to include empirical findings in the next
version of this memo.
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