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Abstract: The U.S. Census Bureau has a long track-
record of efforts to assess the accuracy of decennial
census counts, and has, with the help of others, inves-
tigated alternatives to traditional census taking such as
the use of administrative records. In past censuses and
census tests, the Bureau has also used administrative
records to supplement traditional counting methods and
to explore the possible uses of multiple systems esti-
mation. This paper describes the use of a three-way
cross-classification of the the Administrative Records
Experiment (AREX) 2000 bottom-up (BARCUF) data
file, Census 2000, and the Accuracy and Coverage Eval-
uation Survey (ACE) to create block-level triple sys-
tems population estimates within the five AREX 2000
counties. We present a statistical approach in which the
AREX 2000 and Census 2000 results are considered the
primary population lists available for all blocks, and the
ACE results are treated as an auxiliary random sample
of blocks from a third population list.

1 Introduction
Going back at least to the 1940 decennial census, the
U.S. Census Bureau has put into place a variety of
methods for assessing the accuracy and coverage of the
decennial census counts, e.g., using demographic anal-
ysis and post-enumeration surveys (e.g., see Anderson,
2000). For the 2000 decennial census, this assessment
took the form of the Accuracy and Coverage Evalua-
tion Survey (ACE), a survey of approximately 314,000
housing units intended to find both duplicates and miss-
ing households in the decennial census. In March 2001,
however, the Executive Steering Committee for A.C.E.
Policy (ESCAP) of the U.S. Census Bureau recom-
mended that unadjusted census numbers be used for

redistricting, and in October of 2001, ESCAP further
recommended that unadjusted Census 2000 numbers be
used for purposes other than redistricting, stating that
the A.C.E. failed to uncover approximately 3 million
erroneous enumerations in the census, causing an over-
count of the population.

In a separate effort, the Bureau has investigated alter-
natives to traditional census taking such as the use of
administrative records1 either as a substitute for or as
a supplement to the traditional enumeration. Various
panels of the National Research Council have encour-
aged these efforts and emphasized the important role
administrative records could play as part of the decen-
nial census effort (e.g., see Cohen, White, and Rust,
1999, pp. 89-91), as has the U.S. Census Monitoring
Board (2001) and congressional committees. Admin-
istrative records have also been the focus of efforts by
national statistical offices in other countries (e.g., see
Scheuren, 1999). Other efforts to explore the use of
administrative records in decennial census operations
(e.g., see Zanutto and Zaslavsky, 2001) have been in-
triguing but inevitably have suggested the need for more
careful research and followup.

In response to continued interest in the roll administra-
tive records can play in existing survey programs, the
U.S. Census Bureau through its Planning, Research, and
Evaluation Division (PRED), developed a program to
produce, on an annual basis, an administrative records
“superlist” called the Statistical Administrative Records
System (StARS). StARS is the end result of the careful
merging of six or more administrative records sources;
the first production of StARS occurred in 2000 using
1999 data. As part of the Census Bureau’s evaluation
program for Census 2000, PRED developed an admin-
istrative records experiment (AREX 2000) in which the
feasibility of using StARS for either an administrative

∗The authors acknowledge the support and assistance of the Planning, Research and Evaluation Division of the U.S. Census Bureau and the
financial support of the Bureau through a contract with the Research Triangle Institute.

1By administrative records, we mean government data collected for regulatory or transactional purposes. Examples of administrative records
data include state databases such as driver’s license records and national databases such as Internal Revenue Service tax records.
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records census2 or to augment existing decennial cen-
sus practices was explored. As part of AREX 2000,
extensive verification and testing, as well as additional
processing of the 1999 StARS dataset, was performed
for the data for five counties in Colorado and Maryland.
Further information on StARS and AREX 2000 can be
found in Asher and Fienberg (2001) or in the other pa-
pers presented during this session.

In this paper, we outline methodology for estimating a
population count at the block level via multiple systems
estimation (MSE) using results from the 2000 decen-
nial census, ACE data, and the AREX 2000 “superlist.”
In this case, two of the lists cover every block (cen-
sus and AREX 2000), and one list covers a sample of
blocks (ACE). Several papers have addressed the issue
of population estimation in the case of three or more
lists (e.g. Zaslavsky and Wolfgang, 1993), but have not
necessarily addressed the issue of missing data within
one or more of the lists. Creating models in a situation
where there is at least one list that only covers a sam-
ple of blocks is addressed via a hierarchical Bayesian
approach in Zaslavsky (1989). Zaslavsky’s models,
however, do not address the issue of lists in which the
missingness is not ignorable (Rubin, 1976). There is
therefore a need to explore multiple systems estimation
in the case of non-ignorable missingness.

In the remainder of this paper, we first briefly describe
the basic capture-recapture model and the assumptions
inherent to that model. Because we are treating the ACE
sample as a “missing data” problem, we then describe
previous research and theorems related to estimation
where there is missing data. Finally we develop mod-
els specifically for estimating population counts from
the three-way Census/AREX/ACE dataset that allow for
non-ignorable missingness in a multiple systems esti-
mation framework.

2 Background Methodology

2.1 Multiple systems estimation

We provide a detailed discussion of multiple systems
estimation in Asher and Fienberg (2001) and summa-
rize pieces of that discussion here. The simplest ver-
sion of this methodology, dual systems estimation, re-
lies on three assumptions: 1) independence of the cap-
tures (lists), 2) homogeneous probability of capture in
the population of interest, and 3) error-free methods
of matching across captures. If these three conditions
are met, then a table displaying a cross-classification of
population counts for the two lists is as follows:

List 2
In Out Total

List In x11 x10 x1+

1 Out x01 x00 x0+

Total x+1 x+0 x++ = N

Here x00 represents the count of members of the popu-
lation that are not captured by either list; the goal is to
estimate N , the total number of members of the popula-
tion. This traditional estimator for N is:

N̂ = �x1+x+1

x11
�

where ��� is the greatest integer ≤ �. Henceforth we
simply assume all such estimates are rounded down to
the nearest integer.

In practice, the three assumptions outlined above are
rarely met. If three lists are available, log-linear model-
ing techniques can be applied that can account for de-
pendency of the lists. Let xijk , i, j, k ∈ {0, 1} represent
an observed count in a three-way cross-classification
table of population counts for three lists. In this nota-
tion, x000 is the count of those members of the pop-
ulation that are not included on any of the three lists,
whereas each of the other 7 counts are in fact observ-
able. Taking these 7 counts together, we observe a total
of n = x111 +x101 +x011 +x001 +x110 +x100 +x010

persons. Finally, the population total is N = n + x000.

Our goal is to estimate x000. As such, we want a model
for the observable cells that we then project to the un-
observed cell. We do this through a log-linear represen-
tation for the expected counts, mijk = E{xijk}:

log(mijk) = u + u1(i) + u2(j) + u3(k) +
u12(ij) + u13(ik) + u23(jk)

with constraints on the u-terms, e.g., that they add to
zero across any subscript. This log-linear model is the
standard no-second order interaction model, or, in other
words, the model that allows for dependency between
pairs of lists but not three-way list dependency. But
because we are applying it initially to only the 7 ob-
servable expected cell counts, the model is in effect
“saturated” and fits the data perfectly, i.e., the maxi-
mum likelihood estimates for the expected counts are
m̂ijk = xijk for all i, j, k.

Within this framework, we can also fit either reduced
models to the data from three cross-classified lists
which include only certain pair-wise dependencies or
the model of complete independence. Again we esti-
mate the expected cell values under the model and we

2An administrative records census is a population count using administrative records only. For more information, see Scheuren (1999).
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project the model to the missing (0, 0, 0) cell. For both
the saturated and the reduced models we can write the
estimate of N , N̂ , as:

N̂ = n +
m̂111m̂100m̂010m̂001

m̂110m̂101m̂011
, (1)

The simplest model for three lists that allows for both
list dependencies and heterogeneity of capture proba-
bilities is based on models developed by Georg Rasch
for scoring examination items in educational testing.
For a three-way cross-classification, let πk1k2k3 be the
probability of observing a count in the cell (k1k2k3),
kj ∈ {0, 1}; in this case mk1k2k3 = Nπk1k2k3 . Then,
under the Rasch model:3

log(πk1k2k3) = α + k1β1 + k2β2 + k3β3 + (
3∑

j=1

kj)2γ

(2)
In this model, the β terms capture the list dependencies,
and the γ term is a measure of the capture heterogene-
ity. Note that the value of γ is not affected by permuta-
tions of k1, k2, k3 and hence we have a quasi-symmetry
model (e.g., see Bishop, et al., 1975). This transformed
version of the Rasch model ignores moment inequalities
implicit in the underlying Rasch model as described in
Cressie and Holland (1983) and Darroch, et al. (1993).
See Asher and Fienberg (2001) for further details.

The assumption that the value of γ is not affected by
permutations of k1, k2, k3 may not hold well. This as-
sumption is equivalent to the belief that the distribution
of capture probabilities across individuals is the same
for each list. If we believe that this distribution is dif-
ferent for subsets of the lists, we will need to relax this
assumption. A vehicle for doing so is through a par-
tial quasi-symmetry model, which, for 3 lists, takes the
form:

log(πk1...kJ ) = α + k1β1 + k2β2 + k3β3

+ γ(k1 + k2, k3)

where

γ(s1, s2) = log E
[
e(s1θ1+s2θ2)|k = 0

]
.

In this case, θ1 represents the random individual effect
for lists 1 and 2, and θ2 represents the random individ-
ual effect for list 3; θ1 and θ2 are assumed to follow
different underlying distributions. Mathematical details
for the derivation of the partial quasi-symmetry model
can be found in Darroch, et al. (1993).

In our application, both census and AREX 2000 data is
available for all blocks, and ACE data is available for a
random subset of blocks. All of the models described
above, while applicable, need to be modified to account
for the missing ACE data. In the next section, we de-
scribe methodology for addressing missingness.

2.2 The case of missing data

Missing data can be thought of as unintentionally or
intentionally missing, in a pattern that is random or
non-random. In our problem; there is a specific sample
design from which the final sample of ACE blocks is
derived. The missing blocks are purposefully selected,
and there is no “non-response” in the sense that data
are collected for every ACE block. The data for ACE
are intentionally missing and random for the non-ACE
blocks, but result from a complex sampling design that
must be taken into account in the development of mod-
els for population estimation.

Rubin (1976) provides a general framework for han-
dling missing data problems in both likelihood and
Bayesian inference which we utilize here. We define
M to be a missing value indicator with parameter φ and
U to be the random variable of interest with pdf fθ(u).
Then V is the observable random variable. For an ob-
servation, v = u if m = 1, and v is missing if m = 0.
Then, taking V to be a vector of n iid random variables,
we partition the vector into two subsets, v(0), which is
missing, and v(1), which is equal to u(1). Using the ob-
served data ṽ = (ṽ(0), ṽ(1)), we define the following
vectors:

m̃ = (m̃(0), m̃(1))
ũ = (u(0), ũ(1))

Let gφ(m|u) be the conditional distribution of M given
the unobserved vector u.4 Then the missing data are
missing at random if, for each φ, gφ(m̃|ũ) is constant
for all u(0), and φ as being distinct from θ if their joint
parameter space factorizes into a φ-space and θ-space
and/or the prior distributions for φ and θ are indepen-
dent. Then if the data are missing at random and φ
is distinct from θ, both likelihood-based inference and
also Bayesian inference can ignore the missing data and
be based on the observed data only (Rubin, 1976; Little
and Rubin, 1987).

3Mathematical details for the derivation of (2) are in Cressie and Holland (1983), Fienberg and Meyer (1983), Holland (1990), Darroch et al.
(1993), and Fienberg, Johnson, and Junker (1999).

4Note that the marginal distribution fφ(m) is of little interest at this point, as any dependence the “missingness” has on the underlying data is
intergrated out.
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If, however, either the data are not missing at random or
φ and θ are not distinct, then the joint likelihood for φ
and θ is given as

L(θ, φ|ṽ) =
∫

fθ(ũ)gφ(m̃|ũ)du(0)

or the joint posterior distribution of φ and θ is propor-
tional to

p(θ)p(φ|θ)
∫

fθ(ũ)gφ(m̃|ũ)du(0).

A question of interest then becomes whether the ACE
sample is truly missing at random, and if the mecha-
nism by which the missingness occurs is distinct from
the population estimation problem. The primary sam-
pling unit for the ACE was a block cluster. As a first
step, block clusters were partitioned into three strata
by size: 0-2 housing unit (small) block clusters, 3-79
housing unit (medium) block clusters, and (large) block
clusters with over 80 housing units. American Indian
Reservation block clusters formed a fourth stratum.
A systematic sample was taking within each stratum,
leading to a total sample of approximately two million
housing units. The sample was then reduced as follows:
medium and large block clusters were stratified again
by estimated demographic composition and differences
in housing unit counts between the ACE listing and
census address list. The result was five sub-strata within
each state, which were differentially subsampled. Small
block clusters were subsampled according to sub-strata
as well, but oversampled in comparison to the medium
and large block clusters. American Indian Reservation
block clusters were not subsampled.

The blocks not included in the ACE sample are clearly
missing at random. In this case, φ can be considered a
vector of Bernoulli parameters, where φi = φj if block
clusters i and j are within the same sub-stratum. u is a
vector of population counts, and θ a vector of expected
population counts. Within each combination of strata
and sub-strata, block clusters have equal probability of
selection, therefore the missingness is unrelated to the
actual population count of the block cluster. But the
second assumption required for ignorable missingness
is not met; φ and θ are not distinct. To see this, simply
note that block clusters with a small number of housing
units, and therefore a small population, are more likely
to be sampled than other block clusters. Therefore if
θi is large, φi is relatively small, and visa versa. Any
modeling strategy adopted for these data will therefore
need to explicitly address the missingness of the ACE
data. One possibility is to model each sub-stratum sep-
arately; in this case the missingness could be ignored.
Another possibility is to incorporate the covariate infor-
mation used to develop the strata and sub-strata into the

modeling procedure. We discuss these options further
in the next section.

3 Methodology

3.1 Developing MSE models for stratified
data with ignorable missingness

Let i be a subscript representing inclusion (i = 1) or
exclusion (i = 0) in the census, j be a subscript rep-
resenting inclusion or exclusion in AREX 2000, k be
a subscript representing inclusion or exclusion in ACE,
and l be a subscript indicating block (with L blocks to-
tal). The situation is that we have data for every block
for the census and AREX 2000, but not for ACE. As
a results, for l = 1 to L blocks, we have x10+, x01+,
and x11+. For the subset of blocks for which there is
ACE data available, we also have x001, x011, x101, and
x111. We wish to balance differences between blocks
with the need to borrow strength across them to account
for the missingess. To do so, within sub-strata, we build
a log-linear model as follows.

First, assume no missing data. A saturated log-linear
model would be:

log(mij0(l)) = α(l) +
∑

βij0(l)

log(mij+(l)) = 2α(l) +
∑

βij1 + 2
∑

βij0(l)

where the subscript ijk indicates that βijk (or βijk(l))
is an interaction parameter if i + j + k > 1. In this
case, expected counts to which ACE data contributes
will have a common dependency structure (given by the
βij1’s), while expected counts to which ACE data does
not contribute will have block-specific list effects and
dependencies (given by the βij0(l)’s). These two types
of expected counts are connected within the model by a
block-effect parameter. Table 2 shows a design matrix
for this model in the case of two blocks. For block l, un-
der the assumption of random missingness, the m ij1(l)

rows may simply be dropped; the combination of the
block-effect parameter and the common β ij1’s across
blocks make estimation of these expected values possi-
ble given particular constraints on the ratio of missing
to non-missing ACE blocks.

For the number of columns in the design matrix in Table
1 to be larger than the number of rows, it must be true
that 7(L−L′)+3L′ ≥ 4+4L where L is the total num-
ber of blocks, and L′ is the number of blocks for which
ACE sample is missing. For large L, this suggests that
there should be more non-missing blocks than missing
blocks, which is impossible within the context of this
problem. We must reduce the number of parameters to
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Table 1: Example “design” matrix for 2 complete blocks, “saturated” log-linear model
β001 β011 β101 β111 α(1) β100(1) β010(1) β110(1) α(2) β100(2) β010(2) β110(2)

log(m01+(1)) 1 1 0 0 2 0 2 0 0 0 0 0
log(m10+(1)) 1 0 1 0 2 2 0 0 0 0 0 0
log(m11+(1)) 1 1 1 1 2 2 2 2 0 0 0 0
log(m001(1)) 1 0 0 0 1 0 0 0 0 0 0 0
log(m011(1)) 1 1 0 0 1 0 1 0 0 0 0 0
log(m101(1)) 1 0 1 0 1 1 0 0 0 0 0 0
log(m111(1)) 1 1 1 1 1 1 1 1 0 0 0 0
log(m01+(2)) 1 1 0 0 0 0 0 0 2 0 2 0
log(m10+(2)) 1 0 1 0 0 0 0 0 2 2 0 0
log(m11+(2)) 1 1 1 1 0 0 0 0 2 2 2 2
log(m001(2)) 1 0 0 0 0 0 0 0 1 0 0 0
log(m011(2)) 1 1 0 0 0 0 0 0 1 0 2 0
log(m101(2)) 1 0 1 0 0 0 0 0 1 1 0 0
log(m111(2)) 1 1 1 1 0 0 0 0 1 1 1 1

something reasonable for the data at hand; specifically,
the number of block-specific parameters, if reduced by
one per block, allows the model to operate with two
non-missing blocks and an arbitrarily large number of
missing blocks. In other words, the model will work
if the number of block-specific parameters is limited to
the number of non-missing datapoints for every block
(there are three such datapoints). Removing the block
effect is out of the question, as this is what is used to
link the blocks without ACE data to the data available
for that block. So one (or all three) of the other parame-
ters must become identical for each block for the model
to work. It may not be plausible to assume a fully sat-
urated model for these data in any case. Modifying the
log-linear model by dropping terms equates to remov-
ing columns from the design matrix in Table 2 with care
to avoid creating a non-hierarchical model. Luckily, the
β110(k) parameters will be frequently dropped, as we
believe there is little dependency between AREX 2000
and the decennnial census.

Rasch-like models can be considered in this framework
quite easily. Again, we begin in the frame that there is
no missing data. Then:

log(mij0(l)) = α(l) +
∑

βij0(l) + γ(l)

log(mij+(l)) = 2α(l) +
∑

βij1 + 2
∑

βij0(l) + 2γ(l)

Note that the symmetry term is within block, and miss-
ingness will present the same problems for this model
as for the fully saturated one, due to a greater number
of parameters than datapoints for blocks without ACE
sample. Again, the solution is to allow at least one pa-
rameter to be constant across blocks.

Results from several of the models described thus far
can be compared within a model selection procedure
that relies on goodness-of-fit and model parsimony.
The missingness for these data will result in a model se-

lection problem that will test different configurations of
dependency and heterogeneity relationships mixed be-
tween lists mixed with block dependency, as parameters
are moved from block-specific to non-block-specific
and potentially dropped altogether. Whatever pattern
of parameters prevails, the potential models will all be
hierarchical, with the block parameters as random ef-
fects and the β’s as fixed effects. Additionally, in the
Rasch-like models, the γ parameters are considered ran-
dom effects at the individual level. As a result, standard
statistical software for generalized linear models is ill-
prepared to incorporate either the moment constraints
for the heterogeneity term nor the uncertainty of the
block effect. Expanding the hierarchical model into full
Bayesian format will allow us to address these issues.

To develop the Bayesian model, we choose the follow-
ing framework:

X(l) ∼ Multinomial(
∑

ijk

eα(l)+
∑

βijk(l) ,

pijk(l) =
eα(l)+

∑
βijk(l)

∑
ijk eα(l)+

∑
βijk(l)

)

α(l) ∼ Normal(µα, σ2
α)

βijk(l) ∼ Normal(µijk, σ2
ijk)

The assumption that the β terms follow common prior
distributions across blocks removes the concerns about
identifiability of the model, assuming a sufficient prior.

3.2 Developing MSE models with covari-
ates for data with non-ignorable miss-
ingness

Covariate information derived about the housing units
within the blocks is used in the stratification of the ACE
sample. By regressing these characteristics on the logit
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of φ within a Bayesian framework, we can account for
the missingness within the model. We let M be the vec-
tor of missing value indicators, and Y(l) be a vector of
covariates for block l. Then:

X(l) ∼ Multinomial(
∑

ijk

eα(l)+
∑

βijk(l) ,

pijk(l) =
eα(l)+

∑
βijk(l)

∑
ijk eα(l)+

∑
βijk(l)

)

M(l) ∼ Bernoulli(
eτY(l)

1 + eτY(l)
)

α(l) ∼ Normal(µα, σ2
α)

βijk(l) ∼ Normal(µijk, σ2
ijk)

τ ∼ Normal(µτ , σ2
τ )

To implement this model, the distribution of m (l)xij1(l)

is used, and the covariate information and combined pri-
ors again makes the model “identifiable” in a Bayesian
sense.

4 Future Work
At this time, the creation of a three-way cross-
classification of the decennial census, ACE, and AREX
2000 is nearly complete. Our future work will in-
volve fitting these models to this dataset and refining
our methodology.
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