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1.  INTRODUCTION 
 

The Value of Construction Put in Place (VIP) is a 
U.S. Census Bureau publication measuring the value of 
construction installed or erected at construction sites during a 
given month. The VIP estimates come from the monthly 
Construction Progress Reporting Survey (CPRS) augmented 
with estimates of a non-CPRS component based on 
regulatory filings, phasing of other Census data, 
administrative records, and trade association data.  In July 
2002 the Census Bureau began publishing the monthly VIP 
for new “types of construction” (TC) categories that 
reclassified and expanded the previous TC categories. (The 
latter can be found in U.S. Census Bureau (2002a).)  The 
new TC categories contain many more series and levels of 
detail than do the old TC categories.  This expansion to more 
levels of detail resulted in relatively small sample sizes and 
large sampling errors for the direct survey estimates for 
many categories. 

In this paper we investigate the use of time series 
modeling and signal extraction methods to borrow 
information over time for improving the VIP estimates.  
Scott and Smith (1974) and Scott, Smith, and Jones (1977) 
proposed use of time series techniques to improve estimates 
in repeated surveys.  More recent work in this area includes 
papers by Bell and Hillmer (1990), Binder and Dick 
(1989,1990), and Pfeffermann (1991).  The approach 
requires the development of time series models for the 
sampling errors in the direct estimates as well as for the true 
underlying series being estimated.  Here we develop such 
models for 70 VIP time series from a subset of the TC 
categories that refer to privately owned nonresidential 
construction.  All these series start in January 1993 and end 
in December 2000, and are estimated entirely from the 
CPRS.  These direct estimates have last-year (year 2000) 
average coefficient of variation (CV) ranging from 3% to 
27%.  Table 1 gives a complete list of the TCs and their last- 
month, last-year average, and last-four-year average CVs.  
We also perform signal extraction with the fitted models to 
examine the potential for variance reduction in the estimates 
by borrowing information over time through the models.  

___________________________________ 
 

This paper reports the results of research and analysis 
undertaken by Census Bureau staff. It has undergone a 
Census Bureau review more limited in scope than that given 
to official Census Bureau publications. This report is 
released to inform interested parties of ongoing research and 
to encourage discussion of work in progress. 

Sections 2 through 4 develop these models for the VIP series, 
and Section 5 presents the signal extraction results. 

We view the results presented here as preliminary due 
to some significant data limitations: a) the direct VIP 
estimates used in this study were adjusted with 
undercoverage and late selection factors, whereas the 
estimates of sampling variances and autocovariances that we 
had available did not reflect these adjustments, b) the length 
of the time series we analyzed is eight years, and we had 
estimates of sampling variances and autocovariances only for 
the last four years.  The first of these limitations means that 
we are simply forced to assume that the sampling variances 
and autocovariances we had available are at least 
approximately valid for the time series of estimates we are 
analyzing.  Further analysis might assess this assumption or 
partially address this limitation.  The second limitation is 
perhaps more directly relevant to the results presented here.  
The limited amount of data available means that we had 
difficulty determining the appropriateness of the models we 
developed, and that even if we assume we chose models of 
appropriate form, we remain quite uncertain about the model 
parameters.  This is important because the signal extraction 
results as computed are optimistic in that they assume the 
correct model is being used, including use of the true values 
of the model parameters.   
    
2.  MODELING OF THE SAMPLING VARIANCES 
AND AUTOCORRELATIONS 
 

Given concerns about the high level of sampling error 
in the VIP point estimates there is reason for concern also 
about the level of sampling error in their corresponding 
estimates of sampling variances, autocovariances, and 
autocorrelations.  To reduce the level of statistical 
uncertainty in these estimates we take the raw (direct) 
sampling variance and autocorrelation estimates and model 
them.  Our philosophy is that, if the direct survey point 
estimates need to be improved via modeling, then so too do 
the direct survey variance and autocorrelation estimates. 

Unfortunately, sampling variance and autocovariance 
estimates are not available prior to January 1997, i.e., we 
have no sampling variance and autocovariance estimates for 
the first four years of our observed time series (1993-1996).  
Because of the sample size and frame changes in January 
1997 (Cartwright 1996; Mesenbourg 1997), this means we 
also lack information to relate pre-1997 sampling variances 
to post-1997 sampling variances, and similarly for 
autocovariances.  Thus, here and in Section 3 we develop 
sampling error models based only on the post-1997 data.  
Use of these models for the full length of the observed time 
series in Section 4 necessitates some “heroic” assumptions as 
noted there. 
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2.1 Modeling of the Sampling Variances 
 

The sampling variance Varp(yt) of the direct VIP 
survey estimate yt is estimated using the stratified jackknife 
method.  This is done using the VPLX program (Fay 1998).  
Sampling variances are expected to depend on sample size 
and possibly also on the VIP levels.  Various alternative 
models for this dependence were thus fitted to the direct 
sampling variance estimates and compared empirically. 

The first stage in modeling the variances was defining 
nt, the sample size at time t, for each of the 70 TCs.  The 
definition of nt is not so obvious for the VIP estimates.  We 
examined different definitions of sample size nt.  The 
alternative definitions differ in regard to the extent to which 
they count certainty cases (that is, having a sampling rate of 
1-in-1) and how they treat the cases that were originally 
sampled as belonging to another TC (not the TC under 
consideration) but later discovered to belong to this TC.  The 
latter cases were not part of the planned sample for the given 
TC, though they currently are part of the sample.  One can 
argue that certainty cases do not contribute to sampling 
variability and thus should not be counted towards sample 
size.  (This argument would be more compelling if the 
estimate were broken into pieces from the certainty and 
noncertainty portions of the sample, and the variance 
estimates were used for modeling the separate noncertainty 
portion.).  It is possible that the choice among the alternative 
definitions of nt will make little difference to the variance 
modeling for a given TC.  To check this we computed 5×5 
correlation matrices between the alternatively defined nt’s for 
each of the 70 TCs.  The correlation coefficients exceeded 
.90 for almost all pairs of alternative nt’s for all TCs.  This 
high correlation suggests that choice of a particular nt is 
unlikely to appreciably affect the fit of the variance model. 
Our tentative choice was the definition that removed from 
the sample size count of the certainty cases.  For those series 
where the correlation coefficients for the chosen nt definition 
and the other nt definitions were less than .90 we compared 
fits of variance models (discussed below) using these 
alternative definitions.  The models of the chosen nt 
definition had smaller AICs than models for the other nt 
definitions, and so this definition remained the preferred 
choice. 

A natural way to account for possible dependence of 
sampling variances on the level of the VIP estimates is to 
model relative sampling variances rather than directly model 
the sampling variances. The relative sampling variance of  yt 
is defined as RelVarp(yt) = Varp(yt) / (Yt)

2, where Yt is again 
the underlying population quantity estimated by yt (true VIP 
for the TC).  From a Taylor series linearization, RelVarp(yt) 
is approximately Varp[log(yt)], a property that will be 
relevant to the time series modeling of Section 4.  Since Yt is 
unknown, we use RelVârp(yt) = Vârp(yt) / (yt)

2 to estimate the 
relative sampling variances. 

To investigate alternative possibilities for the 
dependence of sampling variances on level and sample size, 
we fitted the following generalized variance function (GVF) 
models by linear regression (Wolter (1985, ch. 5) discusses 
GVFs.): 1) RelVârp(yt) = b1  / nt + error.  2) RelVârp(yt) = b0 

+ b1 / nt + error.  3) RelVârp(yt) = b0 + error.  4) Vârp(yt) = 
b1 / nt + error.  5) Vârp(yt) = b0 + b1 / nt + error.  6) Vârp(yt) 
= b0 + error.  7) Vârp(yt) = b1nt + error.  8) Vârp(yt) = b0 + 
b1nt + error.  Models 1 to 3 allow for dependence of 
sampling variances on level through modeling of the relative 
variances, whereas models 4 to 8 imply no explicit 
dependence of sampling variances on level.  Models 1 and 4 
allow for sampling variability to be inversely proportional to 
sample size, and models 2 and 5 generalize this dependence 
with an intercept term.  Models 3 and 6, however, allow no 
dependence of sampling variability on sample size.  Models 
7 and 8, which imply that sampling variances increase with 
increasing sample size (assuming b1 > 0), require some 
explanation.  Such dependence is possible because sample 
size increases with the level of construction activity (more 
active projects in sample), as does the level of the VIP series, 
and as would the variance of the estimates of VIP. 

We examined scatter plots of RelVârp(yt) or  Vârp(yt) 
versus nt, with the fitted GVF curves superimposed.  While 
some, not all, of the plots were quite noisy, those that were 
not suggested that models 4 to 6 are unreasonable, i.e., 
sampling variances are positively related to the level of the 
series.  The plots also suggested dependence of sampling 
variances on sample size, eliminating model 3 from 
consideration.  We thus kept four models for further analysis 
(models 1, 2, 7, and 8) and discarded the others.  We 
computed AICs from these four models using results of the 
regression fits and assuming the error terms were normal and 
homoscedastic.  (AIC = m × log(SSE / m) + 2 × p where m is 
the number of data points in the fit, p is the number of 
parameters in the GVF, and SSE is the regression error sum 
of squares.)  Model 2 had the smallest AIC for 62 out of 70 
series.   

Because the normality assumption for the error terms 
in models 1 to 8 is questionable given that the data are 
estimated variances and relative variances, we also tried 
fitting models for the logs of the variances and relative 
variances.  These analogs to models 1, 2, 7, and 8 are: 1-log) 
log[RelVârp(yt)]  =  log(b1 / nt)  +  error.  2-log) 
log[RelVârp(yt)]  =  log(b0  +  b1 / nt)  +  error.  7-log) 
log[Vârp(yt)]  =  log(b1 nt)  +  error.  8-log)  log[Vârp(yt)]  =  
log(b0  +  b1 nt)  +  error.  Note that models 1-log and 7-log 
reduce to linear models that can be fit by linear regression, 
while models 2-log and 8-log require fitting by nonlinear 
regression (done using PROC NLIN in SAS (1990)).  We 
compared AICs for the four models, finding that of these 
models 2-log had the smallest AIC for 64 out of the 70 
series.  We thus discarded models 7-log and 8-log along with 
models 7 and 8.  We then compared AICs for models 1, 1-
log, 2, and 2-log.  For the log models we added to the AICs –
2 times the log-Jacobian of the log transformation, which is -
2Σlog|Jt| for t = 1 to m, where Jt = ∂log(νt) / ∂νt = 1 / νt  and 
νt is the tth observation of the data being modeled: νt = 
RelVârp(yt) for model 1-log and  model 2-log.  Model 2-log 
had the smallest AIC for 63 of the 70 series, and for three of 
the other TCs model 1-log, a special case of model 2-log, had 
the lowest AIC.  Of the remaining four TCs for which model 
2 was preferred by AIC, there was only one TC for which the 
difference was substantial.  To avoid the complexity of using 

Joint Statistical Meetings - Business & Economic Statistics Section

2471



  

different variance models for a few different TCs, we 
adopted model 2-log for all 70 TCs. 
 
2.2 Modeling of the Sampling Autocorrelations 
 

For all 70 TCs in this study, we produced estimates of 
sampling autocovariances and autocorrelations for each pair 
of months from January 1997 through December 2000.  Like 
the sampling variances, the sampling autocovariances 
between time t and t – k Côvp(yt, yt-k) were also estimated 
using the VPLX program with the stratified jackknife 
method.  Follows, the estimated sampling autocorrelations 
are computed from the estimated sampling autocovariances 
and variances as Côrrp(yt, yt-k) = Côvp(yt, yt-k) / [Vârp(yt) 
Vârp(yt-k)]

.5. 
Assuming stationarity of the autocorrelations, for 

each TC we averaged all the estimated autocorrelations for a 
given lag, that is, averaging 47 estimated lag-1 
autocorrelations, 46 estimated lag-2 autocorrelations, etc.  
We then used the averaged autocorrelations to calculate 
corresponding partial autocorrelations by solving the Yule-
Walker equations of successively higher order (Box and 
Jenkins 1976, pp. 64-65).  Graphs of the resulting 
autocorrelation function (ACF) and partial autocorrelation 
function (PACF) were produced and examined for all 70 
TCs. 

The patterns of the ACF and PACF plots were quite 
similar across all 70 TC’s.  The ACF is dominated by an 
exponential decay (apart from some persistent positive, 
though small, autocorrelations at higher lags that were not 
characteristic of the 70 TCs in general).  The PACF has a 
large spike at lag 1 and a much smaller spike at lag 2 (more 
so for some series than others).  Candidate models for such 
patterns include the first order or second-order autoregressive 
(AR(1) or AR(2)) model and the mixed ARMA(1,1) model.  
Again, for simplicity, we wanted to use the same model for 
all the TCs.  The AR(2) seemed to be a suitable choice for 
this purpose. 
 
3.  DEVELOPMENT OF THE SAMPLING ERROR 
MODEL  
 

In Section 4 we develop models for the time series of 
the logarithms of the VIP estimates for the 70 TCs, denoting 
the time series for a given TC by log(yt).  Here we complete 
development of the models for the sampling error component 
et of log(yt).  In Section 2.1 we developed models for Var(et) 
= Varp[log(yt)], noting that from a Taylor series linearization 
Varp[log(yt)] ≈ RelVarp[(yt)].  In Section 2.2 we noted that 
the sampling error autocorrelations generally appeared to be 
well-modeled by an AR(2) model.  Putting these two parts of 
the model together, we have the following general form of 
the sampling error model: et = htẽt where ht is the standard 
deviation of et, i.e., ht = [Var(et)]

.5 ≈ {RelVarp[(yt)]}
.5 and ẽt  

has variance one and follows the AR(2) model (1 - φ1B - 
φ2B

2) ẽt = ct.  B is the backward shift operator and ct is white 
noise.  So that ẽt has variance one we need to set Var(ct) so 
that the variance computed from the AR(2) model above is 

one.  From Box and Jenkins (1976, p. 62) this implies that 
])1[(])1()1[()( 2

1
2

222
2 φφφφσ −−×−+== tc cVar .  To 

estimate the parameters φ1 and φ2 we used the averaged 
sampling autocorrelations developed in Section 2.2 and 
applied the Yule-Walker equations for the AR(2) model.  
From Box and Jenkins (1976, p. 60) this gives 

1̂φ  = [r1(1 - 

r2)] / (1- 2
1r ) and 

2̂φ  = (r2 – 2
1r ) / (1 – 2

1r )

 

where r1 and r2 are 
the averaged sampling autocorrelations at lags 1 and 2. 

The estimates of ht come from the fitted variance 
models developed in Section 2.1.  The model chosen there 
(model 2-log) is fitted to the estimates, log[RelVârp(yt)], 
which are taken as estimates of γt = log[Var(et)].  Denote the 
fitted values by )/ˆˆlog(ˆ 10 tt nbb +=γ .  We wish to convert these 

to estimates of Var(et).  Simple exponentiation is one 
obvious way to do this, i.e., we set )ˆexp(2

tth γ= . 

A more involved approach to converting fitted values 
from the sampling variance model 2-log to estimates of 
Var(et) attempts to correct for bias from the log 
transformation.  We assume that the direct relative variance 

estimates, tv = RelVârp(yt), are approximately unbiased for 

Var(et).  If we knew the parameters b0 and b1, and the 
variance of the error term (say ω2) in model 2-log, then from 
properties of the lognormal distribution E(νt) = exp(γt + 
.5ω2) ≡ exp(b0 + b1 / nt + .5ω2).  Since we only have the 
fitted model we assume the fitted values )/ˆˆlog(ˆ 10 tt nbb +=γ  

are approximately normally distributed with means γt and 
variances Var( tγ̂ ).  This means that exp( tγ̂ ) is 

approximately lognormal with )ˆ(5.ˆ )( tt VareeE γγγ += .  
Assuming that the residual variance from the fit of model 2-
log )2(]ˆ)[log(ˆ 22 −−=∑ mv tt γω  is a consistent estimate of 

the true residual variance ω2, this implies that 

( ) ( ) )(
22 5.)]ˆ(ˆ[5.ˆ

t
Var eVareEeE t =≈ +−+ ωγγωγ  so we set 

)]}ˆ(ˆ[5.ˆexp{ 22
ttt Varh γωγ −+= . 

We tried both of these approaches and found they 
sometimes gave different results.  The differences from the 
two approaches were greater than 10% for 30 out of 70 time 
series, but the other 40 series had less than 10% difference.  
The series with large differences tended to be noisier than the 
series with less than 10% differences.  The sampling error 
standard error, ht, that will be used in section 4 is the result of 
the second approach.   

Another problem is that we had sampling variance 
estimates only from January 1997 to December 2000, and so 
fitted the sampling variance models using data from this 
period.  Because of the sample design changes in January 
1997 (sampling rate changes and sampling frame change) we 
really have no information to relate sampling variances prior 
to 1997 to those from 1997 on.  Therefore, from January 
1993 to December 1996 we simply set the value of ht to its 
value for January 1997.  This is not a good solution to this 
problem, but the only other option is to restrict the time 
series modeling to start in January 1997, which would give 
us only four years of data.  We intend to pursue the second 
option later, but for now take the first course of filling in the 
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earlier ht values, keeping in mind that this is a significant 
limitation to our results. 
 
4.  DEVELOPMENT OF MODELS FOR THE TIME 
SERIES OF THE DIRECT ESTIMATES 
 

The direct log VIP estimate is equal to the true log 
VIP plus sampling error, log(yt) = log (Yt) + et.  The model 
for the observed time series log(yt) is determined by the 
models for the two components log(Yt) and et; we call such a 
model a “component model.”  When the model for log(Yt) 
includes regression terms, we call the model for log(yt) a 
RegComponent model.  Given the models for the sampling 
error components et developed in Section 3, and given a 
specified form for a time series model for log(Yt), we can fit 
the resulting RegComponent model to the observed series 
log(yt) to estimate the unknown parameters of the model for 
log(Yt).  In doing so the parameters of the model for the 
sampling error component et are held fixed.  The 
REGCMPNT program developed by the Time Series Staff of 
the Census Bureau performs this type of model fitting. 

As part of exploratory analysis to determine suitable 
forms for the models for the true time series log(Yt), we used 
the X-12-ARIMA program (U.S. Census Bureau 2002b) to 
fit some RegARIMA models (regression models with error 
terms following ARIMA models), ignoring the sampling 
error components.  This allowed us to check for trading-day 
effects and outliers in the series.  Any outliers found were 
carried over for use in the RegComponent model since the 
REGCMPNT program does not perform outlier detection.  
For the ARIMA models we started in all cases with the 
airline model (Box and Jenkins 1976, ch. 9).  In cases where 
the estimate of the seasonal moving average parameter was 
close to 1 we cancelled the seasonal difference and 
noninvertible seasonal MA operator and converted the model 
to an ARIMA(0,1,1) with fixed seasonal effects and a trend 
constant. 

Having made a preliminary determination of the need 
for trading-day effects and outliers, the resulting 
RegComponent models were fitted by the REGCMPNT 
program for each of the 70 VIP series.  We used airline 
models for log(Yt) except when the ARIMA model fitting 
results suggested fixed seasonality.  The REGCMPNT fitting 
results were examined and changes were made to the models 
when they exhibited any of the following properties:  1) if an 
outlier (included in the RegComponent model using the 
appropriate regression variable) had a t-statistic less than 3.8 
(the critical value used in the X-12-ARIMA outlier 
detection), the outlier was dropped from the model.  2) If the 
model included trading-day effects but the chi- squared 
statistic testing the significance of the trading-day effects was 
insignificant at the .05 level then the trading-day effects were 
dropped from the model.  3) If the model included fixed 
seasonal effects and the fixed seasonal p-value was 
extremely large (p-value > .45; note that these p-values 
tended to be either very large or less than .05), then the fixed 
seasonal effects would be dropped from the model, leaving a 
nonseasonal model.  4) If the estimate of the nonseasonal 
MA parameter was near 1, the nonseasonal difference was 

cancelled with the nonseasonal MA operator and a trend 
constant was added to the model.  5) If the estimate of the 
seasonal MA parameter was now near 1, the seasonal 
difference was cancelled and a fixed seasonal and a trend 
constant were included. 

We continued to modify models as needed until the 
results seemed reasonable or simply the best that we could 
do.  We did not feel the need to stray from the airline model 
since in the cases where the RegComponent model seemed 
not to fit well the situation generally was not improved much 
by changing the airline model to some other model.  
Basically, some of the series were just quite noisy and 
difficult to model.        

Given that we lacked sampling variance estimates for 
the first four years of our series our sampling error models 
are questionable for this period.  Motivated by this, we 
shortened the VIP series to the four years starting in January 
1997 for which we did have sampling variance estimates, and 
tried fitting the RegComponent models to these shortened 
series.  Unfortunately, we were generally unsuccessful in 
modeling these extremely short series. 
 
5.  APPLICATION OF SIGNAL EXTRACTION 
RESULTS TO INVESTIGATE POTENTIAL FOR 
IMPROVING ESTIMATES OF THE TRUE VIP 
SERIES 
 

The REGCMPNT program produces finite sample 
signal extraction estimates of the component series along 
with signal extraction error variances for these estimates.  
We denote the signal extraction estimates for the log VIP 
series by log(Ŷt).  Our interest here is primarily in the signal 
extraction error variances, denoted Var[log(Yt) - log(Ŷt)].  
The square roots of these error variances can be interpreted 
in percentage terms, analogous to CVs.  When compared to 
the original sampling error CVs for the direct VIP estimates, 
this provides a measure of the improvement from signal 
extraction. 

The signal extraction results from REGCMPNT 
assume that the correct model is used.  In particular, no 
allowance is made in the signal extraction error variances to 
account for uncertainty due to using estimated model 
parameters.  With reasonably long time series the 
consequence of this is generally some amount of 
understatement of the signal extraction error variance.  With 
the limitations of our modeling (very short time series, some 
series have high levels of sampling error, no sampling 
variances prior to 1997) we are quite uncertain about the true 
values of our model parameters.  This raises the possibility 
that the signal extraction variances we examine here 
significantly understate the true error variances.  However, 
overstatement of variances could also occur if the 
innovations variance in the model for log(Yt) is 
overestimated.  The bottom line here is that, due to the 
significant amount of uncertainty about our model 
parameters, the signal extraction variances generally provide 
at best rough indications of potential for improvement from 
signal extraction.  Results for single series should not be 
taken too seriously, particularly for those series with high 
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levels of sampling error.  Results considered over all 70 VIP 
series probably provide better general indications of potential 
for improvement.  The results should not be taken as precise 
quantifications of the potential improvement. 

 
     
Table 1.  Sampling Coefficient of Variation (CV) and Percentage 
Improvements in CV from Signal Extraction for the Last-month  
Average, Last-year Average, and Last-four-year Average 
   
            Last Month                 Last Year Average        Last Four-Year Average 
               (%) CV                   (%) CV                        (%) CV 
Types of            Sampling   Improve-     Sampling   Improve-     Sampling   Improve-   
-Construction      CV (%)       ment            CV (%)       ment            CV (%)        ment 
  
Lodging     5   3        5       4            5             5 
Office    4 13        4     16            5           27  
Commercial   3 30        3     30            4           43 
Health Care   5 32        4     33            5           46 
Educational   5 14        5     18            6           24 
Religious    5 34        5     34            7           50 
Public Safety   9   1        8       2            8             3 
Amuse & Rec   5   8        5     12            6           17 
Transportation   5   6        6       9            8           11 
Sewer & WstDisp 23 14      27     17          22           18 
Water Sup Sys 28 31      26     40          26           46 
Manufacturing   3   4        3       7            4             8            
Food/Bev/Tobac 10 10      10     14          12           17         
Textile/App//Leath 14   6      12       8          17           10   
Wood  10   3      15       6          16             8         
Furniture    12 10      24     14          24           18                
Paper Products 16 27      17     30          24           37       
Print/Publishing 17   5      15       7          15             9      
Chemical/Allied   7   2        8       4            8             5       
Petroleum/Coal   7   6      17     10          12           12 
Rubber/Plastics    9   2      10       2            8             3     
Stone/Clay/Glass   6   3        8       3          13             9 
Primary Metal     8   2        5       2            7             3       
Fabricated Metal   9   3      11       4          11             5     
 Machinery/Non-el 17   5      19       9          17           12            
Computer/Elect/El   7   2        7       3            7             3 
Transportation   8 15        9     18          13           24 
Miscellaneous   8   3        8       5          12             7 
Financial    12 52      11     46          14           53              
Automotive   8 27        9     30          12           40                    
Food/Beverage     9 38        9     34          12           49     
Multi-Retail   6   9        5     13            6           18             
Other Commercial   8 25        8     24          13           45             
Warehouse   4 13        5     17            6           22                
Hospital    7 28        5     31            7           45                 
Medical Building   8 13        9     18            9           21         
Special Care   9 49        9     45          11           49            
 Preschool  22 28      24     31          33           50                
Primary & Second 10 17      11     21          13           27      
Higher Education    6 28      15     27            9           38        
Other Educational 18 9        7     15          16           19        
House of Worship   6 35        6     36            8           50         
Other Religious   9 45        9     43          12           50         
Theme/Amusemnt  10   3      13       5          16             6           
Sports  15   6      10     10          12           11      
Fitness  15 30      14     31          18           43      
Perform/mtCnter 10   4      12       5          14             7   
Social Places 13 30      12     32          16           42            
MovieTheatr & Stud   9   3      10       5            9             7 
Air    4   2        4       3            7             4           
Land  17   4      16       6          16             8          
General Offices   4 12        4     15            6           26      
Auto Sales 16 19      17     24          20           36    
Auto Service/Parts 13 24      13     26          18           38  
Parking    8   6      14     10          18           12  
Food  11 36      12     31          15           47 
Dining/Drinking 18 39      16     39          18           50 
Fast Food  20 35      26     41          29           51            
General Merchand   5 16        9     20          10           28     
Shopping Center   9   6        7     11            8           16      
Shopping Mall 21 12      12     16          10           19        
Other Stores 13 24      12     26          19           43               
Drug Stores 18 23        9     25          22           40                
Building Supplies   9   6      16     10          14           20    
General Warehses   4 10        5     18            6           28   
Instructional   8 29        9     30          11           40  
Dormitory   14 45      13     41          21           47           
Sport/Rec Facility   19 12      21     17          22           20 
Gallery/Museum 22 10      16     17          17           22             
Auxiliary Buildings 13 12      13     17          16           21  

 
 

Keeping these limitations in mind, Table 1 presents 
results derived from the signal extraction variances produced 
by REGCMPNT.  The table shows the estimated 

improvements from signal extraction over the sampling CVs 
of the direct estimates.  To summarize the results, the percent 
improvements are shown in the CVs of the last month 
estimate, along with the average percent improvements over 
the last year of estimates and   the   last four  years  of   
estimates.   The    percent improvements shown are 
multiplicative percent improvements on the sampling CVs 
expressed as percents.  Thus, if the sampling CV was 20% 
and the improvement was 25%, then  the  signal  extraction  
CV was (1 − .25)×20% = 15%.     

Table 1 indicates that there was a wide range of 
estimated improvements.  Note the average improvement in 
the CVs over the last year ranged from 2% (public safety 
TC) to 46% (financial TC).  For those TCs whose last-year 
average sampling error CV is less than 10%, the average 
percent improvement from signal extraction ranged between 
2% and 45%.  For TCs whose last-year average sampling 
error CV is greater than 10%, the average percent 
improvement ranged between 4% and 46%.  This showed 
potential for improvements both for TCs with relatively 
small sampling CVs as well as for TCs with relatively large 
sampling CVs.  However, improvements in the accuracy of 
estimates for TCs whose sampling CVs are already quite low 
(say < 5%) may not be of much interest.    
     
6.  CONCLUSIONS 
 

The results presented provide rough indications of 
potential for improvement of the VIP estimates through time 
series modeling and signal extraction.  Assessment of the 
actual improvements that can be realized, however, is made 
difficult by the significant data limitations (short series with 
no sampling variance estimates for the first four years).  
These limitations leave us with considerable uncertainty 
about the parameters of our models, and this affects the 
validity of the signal extraction results.  (The signal 
extraction variances can be thought of as estimates, here 
fairly imprecise estimates, of the true variances of the errors 
in the signal extraction estimates.)  The high level of 
sampling error in some of the series is another limitation on 
the modeling results as it too contributes to uncertainty about 
model parameters.  Series with high levels of sampling error 
are the most interesting in regard to potentially improving on 
the accuracy of the direct survey estimates.  Unfortunately, 
high levels of sampling error make series more difficult to 
model. 

In the future we hope to do additional work to at least 
partially address some of the limitations of this study.  First, 
we will soon have available one additional year of VIP 
estimates to extend our time series, and can also generate 
corresponding sampling variance estimates.  The resulting 
series will still be rather short, but not quite so short as 
before.  Second, we intend to pursue a Bayesian approach to 
inference with our models to recognize uncertainty about the 
model parameters.  (This will most likely recognize 
uncertainty only about the parameters in the models for 
log(Yt), taking the fitted sampling error models as given, but 
it is the uncertainty about the parameters in the models for 
log(Yt) that is of most concern.)  The goal here is not really to 
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reduce the uncertainty, but simply to account for it in the 
signal extraction results.  Finally, if we are able to achieve 
satisfactory results with the Bayesian approach, we intend to 
use the models to investigate model-based seasonal 
adjustment of the VIP series, and the potential for the use of 
the models to improve seasonal adjustment results.  Again, 
this will probably need to be done with a Bayesian approach. 
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