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1. Introduction
For the error localization (EL) problem in

automatic data editing and imputation (E/I) with linear
edits under the Fellegi-Holt (F-H) methodology (Fellegi
and Holt, 1976), the linear programming approach
provides proper methods for solution (Rubin, 1975;
Sande, 1978; Schiopu-Kratina and Kovar, 1989).
However, in practice, the computational efficiency of
error localization has been an issue (Winkler, 1999;
Winkler and Chen, 2002). Various efforts have been
made to improve the efficiency, including using an
algorithm other than Chernikova’s for linear
programming, e.g., one based on Duffin’s (1974)
analysis of a system of linear inequalities (Houbiers,
1999); a tree-search approach instead of a Chernikova’s
algorithm-like process (Quere, 2000; Quere and De
Waal, 2000); and even an entirely different approach,
while still in the spirit of F-H (Bankier, 2000; Bankier,
et al., 2000). 

One other consideration is to simplify the linear
edit system by using its special structure and features,
for example, to reduce the dimensionality of the system
and thus the magnitude of computation for error
localization. 

Edits used in economic surveys and censuses, like
those created by USDA/NASS for the U.S. Census of
Agriculture, are primarily linear. They also contain a
considerable number of equality edits, for example,
balance edits in which an aggregate variable is equal to
the sum of its component variables.   

In the presence of equality edits in a linear edit
system, it seems preferable to use the equality edits to
eliminate fields (variables), leading to a simplified
system in reduced dimension. However, until now,
none of the automatic computer E/I systems for
numerical data have distinguished conceptually
between equality and inequality edits. Equality edits
have generally been treated as a special case of
inequality edits. Some algorithms adopted the
representation of an equality edit by two inequalities of
opposite direction. Such handling seems to ignore the
more informative specification of an equality edit. The
equality form defines a more restrictive relationship
than that of an inequality. In linear theory, an equality
represents a lower dimension hyperplane in the data

linear space. The contribution of an equality edit to an
editing problem should therefore be more than that of
an inequality edit. 

From the point of view of F-H methodology, there
is an important distinction between equality and
inequality edits in their generation of implied edits.
This paper identifies such a distinction and establishes
a method of using equality edits to eliminate fields and
reach an equivalent linear edit system, for which all the
inequality edits form a linear edit system of lower
dimension. The original linear editing problem, for
example error localization, can be solved by first
solving the problem with respect to this reduced
system, and then determining the remaining fields by
the specification of the equality edits.    

Benefits in computational efficiency from this
methodology can be significant. The magnitude of the
editing problem is reduced through elimination, and the
program needs only to handle inequality edits.

The outline of this paper is as follows. Section 2
describes the basic setting and concepts of linear
editing. Section 3 reviews some basic concepts and
results of the F-H theory in the context of linear editing,
that are related to the topic of this paper. Section 4
presents our theoretical results on the methodology of
elimination by equality edit. Section 5 gets back to the
main editing problem, error localization, which
motivated this research and now can be solved in
reduced scale with improved efficiency. Section 6
briefly discusses the implementation issue.
 
2. Linear Editing

The editing problem of numerical data from a
survey/census is generally defined by a set of linear
edits in the following form:

: , (1a)e i a x a x a x bi i in n i1 1 2 2+ + + ≤. . .

i m=1 2, , . . . ,

with positivity constraints for the variables :x j

. (1b)x j nj ≥ =0 1 2, , , . . . ,

Here in (1a) the inequality sign may represent either
inequality or equality. In matrix notation, the above
linear edit system is written as  
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(2a)A x b≤
and

(2b)x 0≥

where ( ) is the edit coefficient matrix of (1a),A m n×
( ) is the right-hand-side vector of (1a), andb m ×1

is the data record vector (wherex = ( , , . . . , )x x x n1 2
τ

denotes the transpose of a vector). Data editing soτ
specified is called linear editing. Additional constraints
may be added to the above basic setting to define
various linear editing problems, for example error
localization that will be discussed in Section 5. 

A data record is a passing record with respect to a
linear edit system if the record satisfies all edits in the
system. Otherwise, the record is a failed one. All data
points that satisfy the linear edit system constitute the
feasible area of the system. A passing record is also
called feasible, and a failed record infeasible. A linear
edit system is completely described by its feasible area.
Two linear edit systems are considered equivalent if
they have identical feasible areas. Geometrically, the
feasible area of a linear system is a polyhedron in the
data space, which can be described by the set of all its
extremal points. 

We are actually in the setting of linear
programming (Gass, 1985; Luenberger, 1984;
Nemhauser and Wolsey, 1988). Linear editing
problems, such as error localization, are generally
related to solutions of a linear program. A linear
program can be solved by finding the set of all extremal
points of its feasible area. Chernikova’s algorithm
(Chernikova, 1964, 1965) is used to find all extremal
points of a linear system of nonnegative variables.

3. F-H Theorem on Linear Edits
Fellegi and Holt (1976) established the

fundamental theory of automatic editing and
imputation in the following criteria, widely referred to
as the F-H principles: 

(1) The data in each record should be made to satisfy all
edits by changing the fewest possible items of data
(fields).
(2) Imputation rules should be derived from the
corresponding edit rules without explicit specification.
(3) When imputation takes place, it should maintain, as
far as possible, the frequency structure of the data file.

For a failed record, identifying the fewest possible
fields that may be changed to make the resulting record
satisfy all edits is the error localization problem. 

To solve the error localization problem, F-H
showed that both explicit (the original) edits, as

specified by subject-matter experts, and implied edits
are needed. An implied edit is one that is logically
implied by a set of explicit edits. An implied edit is said
to be an essentially new edit if it does not involve all
the fields (variables) explicitly involved in the edits that
generated it. A field that is eliminated in generating an
essentially new implied edit is called a generating field
of the implied edit. A set of edits together with all
essentially new implied edits that can be generated from
the set of edits, forms a complete set of edits. The
concept of a complete set of edits is crucial in F-H
theory, which underlies their main theorem. 

We focus on linear editing. For linear edits, the
generation of essentially new edits and the derivation of
a complete set of edits take an explicit form, as given
by Theorem 3 of Fellegi and Holt (1976). The
following is a restatement of the theorem.

Theorem (F-H, 1976).  An essentially new implied

edit is generated from edits and , as in (1a),e t e r e s

using field as a generating field, if and onlyj

if and are both nonzero and of opposite sign.a rj a sj

The coefficients of the new edit, , are given bya tk

a a a a a k ntk sk rj rk sj= − =, , , . . . ,1 2

where and are so chosen that and .  r s a rj > 0 a sj < 0

Repeated application of the above procedure will derive
all essentially new implied edits.

The theorem simply states that from two linear
inequalities where the inequality signs are in the same
direction, a variable can be eliminated by taking their
linear combination if and only if the variable has
coefficients in the two inequalities which are of the
opposite sign. The essence of generating an essentially
new implied edit is elimination of a field.

In linear theory, the method as used in F-H 
Theorem 3 to generate essentially new implied edits, is
called Fourier elimination (Duffin, 1974; Fourier,
1826; Schrijver, 1986). This approach was proposed by
Fourier to solve linear programming problems by

elimination of variables. A variable, say, , can bex h

eliminated by taking positive combinations of two
inequalities which have opposite signs in the coefficient

of . By adding suitable combinations of all possiblex h

pairs of inequalities with a positive and a negative

coefficient of , and subsequently adding allx h

inequalities that did not contain in the first place,x h
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one gets a new system of inequalities which does not

contain variable . This process can continue inx h

successive elimination of other variables.
In a Fourier elimination process, the number of

inequalities can grow excessively. Moreover, by taking
all possible linear combinations of the original
inequalities during the elimination process, it could
easily occur that some inequalities become redundant.
That is, an inequality can be written as a positive linear
combination of some of the other inequalities. Duffin
(1974) in his method of analyzing systems of linear
inequalities proposed a “refined elimination” rule
which deletes any inequality which has been generated
by adding or more of the original inequalities,t +2
when variables have been eliminated. Houbiers (1999)t
applied Duffin’s method to error localization.

Fourier’s original problem of interest was 
whether a feasible solution to a specified set of linear
inequalities exists. This can be restated, in the
terminology of modern automatic data editing, as
whether a set of fields can be imputed in such a way
that a specified set of linear edits can be satisfied.
Fourier’s method of successive elimination has fostered
modern automatic data editing, as generalized in the F-
H methodology.

4. Elimination by Equality Edit 
In addressing linear editing problems, it seems that

the role of equality edits hasn’t been fully explored.
Equality edits have generally been treated as a special
case of inequality edits, without using the defining
feature, the deterministic aspect, of an equality edit.
Actually, from the implied edit point of view, there is
an important distinction between equality edits and
inequality edits in their generation of implied edits, as
shown by the two lemmas to be introduced below.    

Before stating the lemmas, we introduce the
concept of equivalent edits. Two sets of edits are
equivalent, if they imply each other, that is, each edit in
one set is implied by (some edits of) the other set. In
the linear edit context, two sets of linear edits are
equivalent if their feasible area (thus, the set of
extremal points) are identical. Two sets of equivalent
linear edits have the same contribution to a linear edit
system; they may thus replace each other. Editing
problems with respect to two equivalent sets of edits
are considered the same. 

The following two lemmas extend the statements
of Fellegi and Holt (1976) Theorem 3 in the situation
where one edit is an equality. They state that, in such
situations, it is always possible to generate an
essentially new implied edit when a common field is
involved. Furthermore, the original inequality edit can
be replaced by the essentially new implied edit

generated.

Lemma 1.  An essentially new implied edit can

always be generated from edits and , where ise r e s e s

an equality edit, using field as a generating field,j

provided the coefficients of field in the two edits arej
both nonzero.

Proof.  The lemma is clearly true. Since we can
always make the coefficient of the generating field in
the equality edit to be opposite in sign to that in the
other edit, the lemma is thus an immediate consequence
of Fellegi and Holt (1976) Theorem 3.

Lemma 2.  An inequality edit can be replaced bye r

an essentially new implied edit generated frome t e r

and an equality edit .e s

Proof.  The set of edits and is equivalent to e r e s

the set of edits and , since edit can also bee t e s e r

generated as an implied edit by edits and . Thuse t e s

we may use the set of edits and to replace thee t e s

original set of edits and ; or, equivalently, use thee r e s

essentially new implied edit to replace the originale t

inequality edit .e r

The above lemmas show how an equality 
edit can be used to simplify a linear edit system. Based
on these two lemmas, our next two theorems show that,
just as elimination of free variables can be made using
equalities in the linear system, so can elimination of
positively constrained variables using the equality edits
present in the linear edit system. The theorems are
stated in the context of linear editing through the F-H
concept of implied edit.
    

Theorem 1 (Elimination by equality edit).  
Suppose a linear edit system contains inequality editsm
and one equality edit, with positivity constraints forn
the fields involved. Then, one nonzero field of then
equality edit can be eliminated from all other edits
involving that field. The resulting new linear edit
system contains inequality edits involvingm +1 n −1
fields, with corresponding positivity constraints,n −1
and the original equality edit. The new system is
equivalent to the original one. The extremal points of
the original linear system can thus be obtained by first
obtaining the extremal points in the fields of then −1
new linear system excluding the equality edit, and then
determining the remaining field by the equality edit.  
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Proof of Theorem 1 can be found in Weng (2002),
which provides the elimination method by repeated
application of Lemma 1 and Lemma 2.   

Theorem 1 can be extended to linear edit 
systems containing multiple equality edits, as follows.

Theorem 2.  Suppose a linear edit system 
contains inequality edits and equality edits, withm q

positivity constraints for the fields involvedn n
( ). Assume the equality edits are of full rank.q n≤ q
Then, a new linear edit system, which is equivalent to
the original one, can be formed through elimination
using the equality edits. The new system containsq

inequality edits involving fields, withm q+ n q−
corresponding positivity constraints, and then q−

original equality edits. The extremal points of theq
original linear system can thus be obtained by first
obtaining the extremal points in the fields of then q−
new linear system excluding the equality edits, andq
then determining the remaining fields using theq q
equality edits.

Theorem 2 is established by repeated application of
the elimination method of Theorem 1. A formal proof
can be found in Weng (2002).   

5. Error Localization
The error localization problem is stated as: for a

failed record, anticipating the F-H principles, which
components of the record must be changed in order
that, with as few as possible changes, the record can be
made to pass the edit system?  

In linear editing, the linear programming approach
to solving the error localization problem (Sante, 1978,
1979; Schiopu-Kratina and Kovar, 1989) has adopted
Rubin’s (1975) version of Chernikova’s algorithm in
the formulation of a cardinality constrained linear
program problem, expressed as:

m a x d xτ

subject to

, (9)A x b≤
    ,x 0≥

,| |x + ≤η

where and are , is , is ,x d n ×1 A m n× b m ×1 | |x +

denotes the cardinality ((the number of strictly positive
elements of a nonnegative vector) of , and is ax η

positive integer less than . The linearm in { , }m n
programming directly produces the extremal points of
the feasible area thatG = ≤ ≥{ | , }x A x b x 0

satisfy , and then the optimal extremal point isx |+ ≤η
determined. As Tanahashi and Luenberger (1971)
showed, an optimal solution to (9) can always be found
in . G

Implementation of such an approach has included
GEIS (Sande, 1978; Schiopu-Kratina and Kovar, 1989)
and CherryPi (De Waal, 1996).  

Houbiers (1999) applied Duffin’s method on
Fourier’s analysis of linear inequality systems to error
localization. He compared Duffin’s method with
Chernikova’s algorithm - two similar algorithms with
different control rules for excessive growth of the
matrix, and showed that Duffin’s method is expected to
be more efficient. Quere (2000) developed a new
algorithm which performs Fourier elimination in a tree
search process, instead of a Chernikova’s algorithm-
like process, to determine all optimal solutions to the
error localization (see also Quere and De Waal, 2000).

In the presence of equality edits in the linear edit
system, by the elimination methodology provided in last
section, we can solve the error localization problem
with respect to a simplified system in reduced
dimension, as described below.

Through elimination by the equality edits, the
linear edit system is restructured into the following
form : 

: ,L1 A x b1
1 1( ) ( )≤

      ,x 01( ) ≥
                 

and
 

: ,L 2 A x b2
2= ( )

where ( ),x
x

x

1

2
=











( )

( )
n ×1 x 1( ) ( )n q− ×1

consisting of the fields involved in the inequality edits

in , ( ) consisting of the fields eliminatedL1 x ( )2 q ×1

from the inequality edits; ,A 1 m n q1 × −( )

( ) of full rank, ( ),A 2 q n× b 1( ) m 1 1×
and ( ).b 2( ) q ×1

Let be a failed record. The correction x
x

x
0

0
1

0
2

=










( )

( )
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procedure is: if the subrecord fails , performx 0
1( ) L1

error localization and imputation for with respectx 0
1( )

to the system . And then correct by theL1 x 0
2( )

imputed using the equality edits of . If isx 0
1( ) L 2 x 0

1( )

feasible with respect to , but fails , we onlyL1 x 0 L 2

need to correct , again, by using the equalityx 0
2( ) x 0

1( )

edits of , a deterministic imputation. L 2

Benefits in computational efficiency for error
localization can be significant from application of the
elimination methodology.  In processing a row with
Chernikova’s algorithm, excessive growth of the
number of columns depends on the number of fields,
which causes the storage problem. Reduction of the
number of fields reduces the magnitude of computation.
Also, the computer code does not need to handle
equality edits, which also simplifies the computation. 

6. Implementation
In linear editing, elimination of fields by equality

edits restructures the linear edit system. This
restructuring is conducted prior to data editing, since
data are not involved. A separate module can be created
to perform the elimination.  

Generally, when (linearly independent) equalityq
edits are present in the linear edit system, any subset
of fields may be selected for elimination from theq
inequality edits, provided the elimination process is
valid according to Theorems 1 and 2. That is, the

variables are linearly independent. When performingq
a successive elimination, at each stage, there is no
additional theoretical  criterion for choosing a field for
elimination, besides the general requirement of a
nonzero field. Practically, some strategies may be 
developed for choosing the fields for elimination. At
each stage of elimination, maximizing the number of
zeros in the coefficients of  inequality edits, appears a
practical criterion. Aggregate variables seem natural
candidates for elimination. Other strategies may be
developed based on the structure of the edit system.

In computer implementation of the elimination
process, either successive elimination or simultaneous
elimination can be performed. 
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