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In the present work we explicate the application of 
maximum likelihood inference in the analysis of 
surveys which are the result of (possibly 
informative) stratified sampling.  In Section 1 we 
review basic ideas, including two general results 
useful for applying maximum likelihood to sample 
data.  Ideas are illustrated by a simple through the 
origin regression model.  In Section 2, we discuss 
the application of these ideas to the situation of 
(possibly) informative stratified sampling.  The 
variable of interest Y depends linearly on 
covariates x, and the stratification variable T 
depends linearly on x and Y.  For simplicity, we 
focus on the through the origin model, taking T = 
Y.  Section 3 gives results of a simulation study, 
and Section 4 states conclusions. 
 
1.  Maximum likelihood estimation in survey 
sampling.   
Survey sampling is said to have two goals: 
analysis and enumeration (Deming 1950.)  We 
illustrate the distinction with a simple example. 
 
Example 1  A through the origin regression model 
Suppose we have a population P of size N  ̧ in 
which the variable of interest Y follows the model 

iiii xxY εβ 2/1+= ,    (1) 

with ( )2,0~ σε Ni  independently for i = 1,…,N.  

Suppose the values of the auxiliary variable xi are 
available, for i = 1,…,N, and we take a sample s of 
size n < N, and determine the values of the Yi `s on 
s.  In enumeration, we aim to estimate a 

Population Value, like ∑=
P iYT .  In analysis 

we are instead concerned with estimating a model 
parameter, like β .   
 
A  major tool of analysis (in general of course, not just 
in the sampling context) is maximum likelihood 
estimation:   Suppose the available data D are the 

realization of a random variable D ~ ( )Ω;Df , where 

Ω  is a vector of unknown parameters and f is a 
probability function or density.  (In Example 

1, { }2,σβ=Ω .)   The likelihood function is just 

( )Ω;Df  taken as function of Ω .  A Maximum 

Likelihood estimate Ω̂  maximizes ( )Ω;Df , or, 

equivalently, ( )Ω;log Df .  Towards this end, it is 

convenient to calculate the score function (with respect 

to D) ( ) ( )
Ω∂

Ω∂=Ω ;log Df
scD ;  this is a vector 

with (in our example) components  

( ) ( )
β

β
∂

Ω∂= ;log Df
scD , etc.   

We set ( ) 0=βDsc , etc. and solve, to get the 
maximum likelihood estimates.   
 
In the sampling context, the data include not only 
the data on sampled units, but often also auxiliary 
information outside the sample, a variable I 
indicating whether particular units are sampled or 
not, inclusion probabilities π , and a response 
indicator variable R telling whether a sampled unit 
gets measured.   If we broaden the population to 
include the vectors I, R, then the available data lies 
as it were between the sample data and the full 
population data: PDs ⊂⊂ .  For example, we 
might have { }ssPPs RIxYD ,,,, π= , with 

distributions of the additional variables 
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parameterized by nuisance parameters nuisΩ , 

estimation of which can complicate estimation of 

Ω .  If  R is superfluous when we solve for Ω̂ , 
then it is said  that “non-response is non-
informative”, otherwise “informative ”.  If π,I  are 
superfluous, then “sampling is non-informative”, 
otherwise “informative”    (Rubin 1976).  In what 
follows we shall assume non-informative non-
response, and ignore it. 
 
Here are two Results, which hold in general, but 
are especially useful in the sampling context:  
 
Result 1. ( ) ( )( )DscEscUD UD |Ω=Ω⇒⊂   

(Breckling et al. 1992, Orchard & Woodbury, 
1972,…) 
 
Result 2. UD ⊂ .  Suppose 

 ( ) ( )DgscU =Ω⇒=Ω ˆ0 .  Then ( ) 0ˆ =ΩDsc . 

(Chambers, et al 1998) 
 
Result 1 is basic.  It says that if we have the score 
function with respect to data U, we can derive the 
score function with respect to data D included in U 
by conditioning on D.   Result 2 says that if the 
maximum likelihood estimator based on a data set 
needs only information available from a smaller 
data set included within it, then the maximum 
likelihood estimators for the smaller and larger 
data sets are the same.   
 
Consider again the through the origin regression 
model with normal errors. 
 
Example 1 (continued) 
The density of Yi given xi   is  

( ) ( ) ( )












 −
−=

−

2

2
2/12

2
exp2|

σ
βσπ

i

ii
iii

x

xy
xxyf  , 

leading to the score function for β  with respect to 
the population  

( ) ( )∑ −= −
P ii xYsc βσβ 2 .   

Then ( ) ⇒= 0βsc
x

Y

x

Y

P i

P i =
∑

∑=β̂ ,  

    
the maximum likelihood estimate of β , if D = P.   

Suppose what is available is the data  
{ }sPsP IYxD π,,,= .  We consider two cases:  

 
Case 1 Sampling is done probability proportional 
to size  (pps)  with size variable x, that is,  

xN

nxi
i=π , i = 1, 2, …, N .  This is an instance of 

non-informative sampling.  For units in the 
sample, it is clear that ( ) ii YDYE =| , since D 

contains Yi.  For non-sample units, we have 
( ) ( ) ( )iiPii xYfxYfDYf ||| == , since the 

inclusion probabilities add no information beyond 
what is in x. Thus we get a score function with 
respect to the data 

( ) ( )∑ −=
P iiD DxYEsc |ββ

( ) ( )( )∑ −+∑ −= r iiis ii xxYExY ββ | .   

But ( ) iii xxYE β=| , so  

( )βDsc ( )∑ −= s ii xY β   and, setting this score 

function to zero, we get 
∑

∑=
s i

s i

D x

Y
β̂  . 

Case 2  (informative sampling)  Suppose now pps 

sampling with YNnYii=π , I = 1, 2,…, N.   This 

is an extreme case of informative sampling.  (In 
practice this might arise approximately if we did 
pps sampling with respect to a 3rd variable highly 
correlated with Y that is  not available at the time 
of analysis.)  Then   

( ) ( )∑ −=
P sPsPiiD IYxxYEsc πββ ,,,|

( ) ∑∑∑ −+=
P ir siis i xxYEY βπ,| .  At first 

sight, the 2nd term looks difficult to deal with.  

However, since we know YNnYii=π  and Yi , 

for each sample unit,  any such unit determines for 

us what Y  is.  That is, implicitly DY ∈ .  And we 
were assuming also that x  is available.  Then, 
since maximum likelihood estimator with respect 

to the full data  P  was  
x

Y=β̂  , and the 

ingredients of this expression are available from D, 
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Result 2 implies that 
x

Y
D =β̂  as well.  Could any 

other sample-based estimator be more efficient?   

Note bene: Neither in the non-informative or 
informative case, did we arrive at an estimator that 
explicitly incorporates the sample weights.  In the 
non-informative case they are ignored; in the 
informative case they are merely exploited, 
unconventionally.   
 
1.1 Two s-based approaches to maximum likelihood 
Typically the available data D contains 
information beyond what is available on the 
sample units.  We here review two approaches to 
maximum likelihood that rely only on the sample 
data (even when “extra-sample” information is 
available.)  The first relies on the sample weights 
in classic fashion, and is a special case of the use 
of weighted estimating equations (Binder 1991; 
Godambe  and Thompson 1986). 

1. Pseudo-likelihood (“weighted maximum 
likelihood”) Let ( )PIf ii |1==π  be the 

probability the ith unit is in s, and .1−= iiw π  Then, 

in our example,  the weighted sample-based score 
function 

( ) ( ) ( )∑∑ −=−=
s iiiP iiiiw xYwxYIwsc βββ

 is a design-unbiased estimator of ( )βsc . Setting 

this to zero, yields the estimator 
∑

∑=
s ii

s ii

w xw

Yw
β̂ , 

that is,   













=

∑

∑

2,

1,
ˆ

Casein
Yx

n

Casein
n

xY

s ii

s ii

wβ . 

are, as one would expect, (considerably) less 
efficient than the corresponding maximum 
likelihood estimators above.  

2.  Sample Likelihood (“Weighted Distribution 
Maximum Likelihood”) (Krieger and Pfeffermann 
1992)   

The sample density of Yi  is the density of Yi  
conditional on unit i being in the sample:  

( ) ( ) ( ) ( )
( ) .

|1

|,|1
1,||

ii

iiiii
iiiiis xIf

xyfyxIf
Ixyfxyf

=
=

==≡

To this there corresponds the sample likelihood: 

( ) ( )∏=
s iiss xyfL |β  and a corresponding 

score function.  In Case 1 (the non-informative 
case) we have ( ) ( )iiiii xIfyxIf |1,|1 ===  

⇒ ( ) ( )iiiis xyfxyf || =

( ) ( )∏=⇒
s iis xyfL |β

∑

∑=⇒

s i

s i

s x

Y
β̂  , thus 

getting the same estimator  as  in the full 
information case.  

In Case 2 (the informative case), 

( ) ( ) ( ) ( )
( ) ,

|1

|,|1
1,||

ii

iiiii
iiiiis xIf

xyfyxIf
Ixyfxyf

=
=

==≡

with 

( )
Y

ii
iii N

nY

YN

nY
yxIf

µ
≈== ,|1 , where Yµ  is the 

marginal mean of Y.  It follows that 

( ) ( )
Y

i
i

Y
ii N

xn
dYxYf

N

nY
xIf

µ
β

µ
=∫≈= ||1 .  

Thus 

( ) ( ) ( ) ( )
,

2
exp2|

2

2
12/12













 −
−= −−

σ
ββσπ
i

ii
iiiii

x

xY
xxYxYf

and ( ) ( ) ββσβ nxYsc
s iis −−= ∑

−2 . 

Setting this equal to 0, and multiplying through by 
β , we get a quadratic equation, with solutions 

( )
∑

∑ ∑−∑±
=

s i

s s is ii

x

xnYY

2

4ˆ
22 σ

β . 

 The negative solution corresponds to a minimum 
of the sample likelihood function. 

 The downward σ  adjustment (we here assume 
for simplicity that σ  is known.) under the radical 
seems appropriate, since pps sampling with size 
variable y would tend to select disproportionately 
the larger Y’s.  We note the estimate  converges to 
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the Case 1 solution as 02 →σ .   In our 
experience, this estimator tends to be more 
efficient than the pseudo-likelihood estimator and 
less efficient than the full information maximum 
likelihood estimator (Chambers et al.  1998).  This 
is certainly true for the informative case here. 
 

2. ML under Informative Stratification 

The general regression situation we would 
consider is 

hihi
T
hihi vxY εβ 2/1+= ,  h = 1,…,H, i = 1,…,Nh,  

with ( )2,0~ σε Nhi  independently,  and 

independently of the   x’s.   
 
We follow Schema D2, Krieger and Pfeffermann 
(1992).  Stratification is determined by a variate T, 
which is possibly in part determined by Y: 

hihi
T
hihihi wcxbYT η2/1++= hihi

T
hi wz ηγ 2/1+≡ , with  

( )2,0~ τη Nhi  independent, and independent of 

the Y’s and x’s.  Strata are determined by the H+1 
stratum boundaries 
 ∞− = t(0) <t(1) < t(2) < …< t(H-1) < t(H) = ∞ , so that 
t(h-1) < ti ≤ t(h) ⇒  population unit i  in stratum h    
Nh  = number of units in the hth stratum  
nh  = number of units sampled from this stratum 
using SRSWOR  
sh : sample labels in stratum h, 
rh : corresponding non-sample labels.   
 
The population score functions are: 
 

( ) ( )
∑∑

−
=

=

− H N

i hi

hi
T
hihih

v

xxY
sc

1 1

2 βσβ  

( ) ( )
( )∑∑

−
+−=

=

H N

i
hi

T
hihi

h

v

xYN
sc

1 1
22

2

2
2

2

1

σ
β

σ
σ  

( ) ( )
∑∑

−
=

=

− H N

i hi

hi
T
hihih

w

zzt
sc

1 1

2 γτγ  

( ) ( )
( )∑∑

−
+−=

=

H N

i
hi

T
hihi

h

w

ztN
sc

1 1
22

2

2
2

2

1

τ
γ

τ
τ ,  

the last two equations accommodating the 
nuisance parameters.  To keep technical matters 
relatively simple, we again focus on the through-

the-origin-model, assume the variance constant 
2σ is known, and take Y itself as T, the 

stratification variable: 
Example 2  

hihihihi xxY εβ 2/1+= ,   ( )2,0~ σε Nhi  

independently h = 1,…,H, i = 1,…,Nh,  
xi’s are available, h = 1,…,H, i = 1,…,Nh, Ti = Yi, 
and the data is thus  

( ){ }( )2;,...,1;,,,,, σHhNnyIxYD hh
h

PPs == . 

 
The population score function is given by 

( ) ( )∑ −= −
P ii xYsc βσβ 2 .  A weighted sample 

version of this leads at once to the pseudo-
likelihood estimator of β ,  

∑ ∑

∑ ∑

∈
−

∈
−

=
h shi hihh

h shi hihh

w
xnN

YnN
1

1

β̂ . 

To get the maximum likelihood estimate given the 
data D, we note    
     

( ) ( ){∑ ∑ +−= −
h sh hihiD xYsc βσβ 2    

( ) ( )( )( )}hir hi
h

hi
h

hi xxyYyYE
h

β−≤≤∑
− ,| 1  

implying  

{ += ∑s iD Yβ̂  
( ) ( )( )} ./,| 1

∑∑ ∑ ≤≤−
P lh r hi

h
hi

h
hi xxyYyYE

h

Thus we need the expectation of the non-sample 
Y’s conditional on their being within the stratum 
bounds.  We have 
 

( ) ( )( )hi
h

hi
h

hi xyYyYE ,| 1 ≤≤−   

= ( ) ( )( )dyxyyyyyf hi
hh

∫ ≤≤− ,| 1  

( )( )

( )

( )( )

( )

∫

∫

−

−

=
h

h

h

h

y

y hi

y

y hi

dyxyf

dyxyyf

1

1

|

|
  

 
 

+= hixβ  
( )( ) ( )( ) ( )( ) ( )( )112/1 −− Φ−Φ− h

hi
h

hi
h

hi
h

hihi AAAAx ϕϕσ , 

  [eqtn (2)] 
 

where ( ) ( ) 2/1*)(*
hihi

hh
hi xxyA σβ−= , and  
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 ( ) ( ) ∫ ∞−

−








−=Φ

z
du

u
z

2
exp2

2
2/1π , 

( ) ( ) 







−= −

2
exp2

2
2/1 u

z πϕ  are the standard 

normal cdf and density respectively (In the 
simulations described below these were readily 
calculated in Splus© using the functions pnorm 
and dnorm.).  The derivation of equation (2) is 
given in Appendix 1.    
 

Substituting (2) into the expression above for Dβ̂  
we have  

( ) {[ ∑ ∑∑ ∑∑ ++= −

h r hih s hiP lD
hh

xYx ββ 1ˆ

( )( ) ( )( ) ( )( ) ( )( )}]112/1 −− Φ−Φ− h
hi

h
hi

h
hi

h
hihi AAAAx ϕϕσ  

Since the very quantity β  we seek appears on the 
right hand side (explicitly and also as part of the A 
terms), we proceed iteratively: 

( ) ( ) [ += ∑ ∑∑
−+

h s hiP l
k

D
h
Yx

11β̂
( ){∑ ∑ +

h r hi
k

h
xβ

( )( ) ( )( ) ( )( ) ( )( )}]kh
hi

kh
hi

kh
hi

kh
hihi AAAAx 112/1 −− Φ−Φ− ϕϕσ , 

with ( ) ( )( ) 2/1*)(*
hihi

khkh
hi xxyA σβ−= .  We begin 

the process by setting ( )
wD ββ ˆˆ 0 = . 

 
3. Simulation study  
A series of simulation studies was carried out on 
populations generated in accord with the model of 
Example 2.   Each study consisted of 200 runs, in 
each of which such a population of size was 
generated having size N = 1000, β = 10,  
 σ = 3 , with the x’s the square of realizations of a 
normally distributed random variable z (so x is 
positive and skewed).  The population was 

stratified into H = 2 strata, bounded by ( )hy : ∞− , 
median(Yi), ∞  (so N1 = N2 = 500.)   From these, 
samples were taken of size  n1 = 20, and n2 = 80.  
 
Case 1. Population values available for auxiliary 
variable x 
In this case,  

( ){ }( )2;,...,1;,,,,, σHhNnyIxYD hh
h

PPs == .  

Simulation results are given in  
 

Table 1 
estimator means rmse 
pop 10.005 0.114 
crude 10.820 0.880 
pseudo 10.032 0.438 
max1 10.022 0.278 
max5 10.006 0.164 
max10 10.004 0.162 
max20 10.004 0.162 
 
Here “pop” refers to ideal estimation using all the 
population data, “crude” to an unweighted ratio 
estimator, “pseudo” to the pseudo-likelihood 
estimator, and “maxk” to the kth iteration estimate 
of the maximum likelihood estimator based on 
equation (2);  estimates appear to level out at about 
the 10th iteration.  The maximum likelihood 
estimator is about 7 times as efficient as the 
pseudo-likelihood estimator. 
 
Case 2. Population density available for auxiliary 
variable x  
Everything is the same as in Case 1, except that 
the non-sample x values are missing, and a density 
function representing the distribution of the x’s is 
available (in practice, of course, this would be 
unusual).  Thus we have  

( ){ } ( )( ),,;,...,1;,,,,, 2
xhh

h
Pss fHhNnyIxYD σ==

and the maximum likelihood estimator gets 
modified to  

( ) ( ) ( )( )
( ) ( ) ( )( )∑∑

∑∑
≤<−+

≤<−+
=

−

−

h

h
hi

h
hihhs i

h

h
hi

h
hihhs i

D
yYyxEnNx

yYyYEnNY

1

1

|

|
β̂

. 

( ) ( )
( )∑∑

∑∑
−

−

−+

+−+
=

h hhhhs i

h hhhhhs i

BDnNx

CBDnNY
1

1 σβ
, 

with   
 

( )( ) ( )( )( ) ( )∫
∞

∞− −Φ−Φ= dxxfxAxAD hhh 1 , 

( )( ) ( )( )( ) ( )∫
∞

∞− −Φ−Φ= dxxfxAxAxB hhh 1  

( )( ) ( )( )( ) ( )∫
∞

∞− − −= dxxfxAxAxC hhh φφ 1
2/1 ,  

( ) ( )( ) ( )2/1xxyxA h
h σβ−= .  In the case of the 

squared normal density of our simulations, we 
have 
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( )
























 −−
+













 −
=

u

u

u

u

u

xx

x
xf

σ
µφ

σ
µφ

σ2

1
, 

where uu σµ ,  are the mean and standard 

deviation of the root of X, assumed known.  The 
integrals were calculated using the function 
integrate in Splus©.  Simulation results are in 
 
    Table 2 
estimator means rmse  
pop 10.000 0.128 
crude 10.870 0.955 
pseudo 10.066 0.466 
max1 10.057 0.381 
max10 10.026 0.242 

 
The maximum likelihood estimator is now about 4 
times as efficient as the pseudo-likelihood 
estimator. 
 
Case 3. Moments, but not the form, of the 
population density available for auxiliary variable  
We assume we know the mean and variance 

2, xx σµ  respectively of x, but not the form of the 

actual density.  On the supposition that x has a 
skewed distribution, we model the density with the 
(incorrect) gamma distribution with these (correct) 
moments.  Results are given in  
 
       Table 3 
estimator means rmse 
pop    9.988 0.113 
crude 10.787 0.841 
pseudo 10.007 0.351 
max1 10.023 0.282 
max10 10.055 0.199 
 
The relative efficiency of the maximum likelihood 
estimator to the pseudo-likelihood estimator is now 
about 3. 
   
Case 4. Moments available of the population 
values for the auxiliary variable x. 
 The form of the density is unknown;  we use the 
gamma density and finite population moments x , 

2
xs  as estimates of the unknown “super-

population” parameters 2, xx σµ .  Results are in  

 
         Table 4 
estimates means rmse  
pop   9.997 0.114 
crude 10.813 0.874 

pseudo 10.028 0.390 

max1 10.038 0.321 

max10 10.057 0.199 
 
The relative efficiency of the maximum likelihood 
estimator to the pseudo-likelihood estimator is 
about 4. The improvement over Case 3 is probably 
due to random variation. In other words, case 3 
and case 4 are roughly equivalent. 
 
Case 5.  Mean of the population values for the 
auxiliary variable x is available. 
 
Here we lack information on the population 2nd 
moment.  We use the gamma density, with the 
finite population estimate x  of ,uµ  and the 

weighted estimate of variance  

2ˆ xσ = ( )
2

1
∑ ∑ −∩

−
h hs i

h

h xx
n

N
N  of 2

xσ .  Results 

are given in  
 
       Table 5 
estimator means rmse 
pop  10.011 0.124 

crude 10.830 0.904 

pseudo 10.052 0.379 

max1 10.054 0.314 

max10 10.056 0.215 
 
The relative efficiency of the maximum likelihood 
estimator to the pseudo-likelihood estimator is 
about 3. 
 
Case 6.  No population information on x is 
available outside the sample. 
Results using weighted sample estimates of mean 
and variance of are given in  
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        Table 6 
estimator means rmse 
pop    9.992 0.116 

crude 10.788 0.852 

pseudo   9.987 0.416 

max1 10.001 0.403 

max10 10.038 0.452 
 
There is clear deterioration of the maximum 
likelihood estimator.  The weighted estimator 
indeed seems preferable.   However,… 
 
Case 7.  Same set-up as Case 6.  
We estimate x-mean using maximum likelihood 
estimator, given by 

 ( )( )∑∑
−− −+=

h hhhhs ix BDnNxN 11µ̂    

( )( ) ( )( )( ) ( )∫
∞

∞− −Φ−Φ= dxxfxAxAxB hhh 1 , 

using the corresponding  weighted estimator as 

seed.  We  get new estimates of  both  β̂  and xµ̂  

in each  iteration.  Results are in 
 
        Table 7  
estimator means rmse 
pop  10.011 0.129 

crude 10.868 0.928 

pseudo 10.052 0.372 

max1 10.077 0.354 

max10 10.071 0.335 
     
This seems to marginally improve things for the 
maximum likelihood estimator.  However, it is 
clear that without some population information, it 
is as well to use the pseudo-likelihood estimator. 
 
 
 
 
4. Conclusions  
We have constructed the form of the maximum 
likelihood estimator of a regression coefficient in a 
particular case of informative stratified sample.  

The methodology is extendable to the  general 
regression case described at the beginning of 
Section 2, although formulae can be complicated.  
The maximum likelihood estimator is much more 
efficient than the conventional pseudo-likelihood 
estimator which uses sample weights, when there 
exists information on the population beyond what 
is contained in the sample, as is often in practice 
the case.  
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