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1 Introduction

Survey researchers often adjust preliminary survey
analysis weights so that sample estimates match
known control totals for auxiliary variables. These
adjustments, called raking or calibration, are attrac-
tive in that the resulting statistical estimates have
desirable properties, including reduced bias and in-
creased efficiency in some circumstances. Adjusting
survey weights to match external control totals also
confers benefits in terms of consistency, which may
be important in situations where the survey belongs
to a larger group of inter-related surveys, or when
alignment across estimates from different sources is
required. Over the years, many different approaches
for raking or calibration have been proposed. Singh
and Mohl (1996) provide a detailed description for
many of these methods.

Appropriate estimates of variances for statistics
from calibrated samples can be computed using a va-
riety of different methods. Deville and Sarndal (1992)
show that variances of many common calibration es-
timators can be estimated using standard Taylor se-
ries formulae for the generalized regression estimator.
Replication procedures such as the jackknife and the
bootstrap can also be employed.

Unfortunately, standard commercially-available
software that use Taylor-series methods (such as SU-
DAAN, SAS (Proc Surveymeans),or STATA) typi-
cally do not provide the appropriate estimates for
calibrated samples. For the replication-based es-
timates, the situation is somewhat more compli-
cated. One advantage that is often emphasized
with replication-based approaches is that post-survey
weighting adjustments such as calibration/raking and
post-stratification can be included in construction of
the replicate weights, thereby providing a ”true” esti-
mate of the variability of estimates in repeated sam-

ples. From the perspective of calibration, each repli-
cate can theoretically be calibrated to the control
totals. However, with the exception of WESVAR,
most standard software does not provide the option
to calibrate replicate subsamples. WESVAR allows
for calibration during replication using the method
of iterative proportional fitting. Other methods, in-
cluding those involving range restrictions (see Singh
and Mohl (1996) or Section 2) are not supported. As
a result, calibrating replicate weights to properly re-
flect the chosen raking method may require special
purpose software.

For secondary analysis using survey data from cal-
ibrated samples, it is also often the case that detailed
information concerning the sample and raking targets
are not provided, yet this information is required to
calculate the Taylor series variance estimates prop-
erly. For replication-based procedures, it may be diffi-
cult to properly calculate variance estimates from cal-
ibrated samples unless recalibrated replicate weights
are provided with the survey dataset. When avail-
able variance estimation procedures do not properly
reflect the calibration, variance estimates may be bi-
ased, and inferences may be altered because the cal-
ibration information has been ignored.

This paper investigates the magnitude and direc-
tion of possible biases in variance estimates when cal-
ibration information has been ignored. In particular,
we compare traditional Taylor series and replication-
based estimates with several convenient approxima-
tions that can be computed using standard software
with no information concerning external calibration
totals. The comparisons are made using simulated
samples drawn from a hypothetical population. The
paper will proceed as follows: Section 2 provides some
background concerning raking methods. Section 3
describes several methodologies for variance estima-
tion with calibrated samples, as well as some conve-
nient approximations that do not directly incorporate
information concerning the calibration constraints.
Section 4 constructs a hypothetical population and
conducts a simulation study investigating the prop-
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erties of the different variance estimates in repeated
samples. Section 5 concludes and suggests avenues
for future research.

2 Background

Deville and Sarndal (1992) and Deville, Sarndal and
Sautory (1993) (henceforth DSS) consider the follow-
ing notation. Let n, N denote the sample size and
population size respectively. Let dk represent the
usual design-based survey weight (the base weight)
for respondent k. Let yk be the value of a variable
of interest for the kth population element, and let
xk={xk1, ...xkJ} be a vector of J auxiliary variables.
For the auxiliary variables, we assume that the pop-
ulation totals or benchmark constraints are known,
i.e. τj=

∑N
i=1 xij .

The basic idea behind calibration is to develop new
weights {wk, k=1...n} for each respondent such that
the survey sample produces estimates that match the
population or benchmark totals. Following D-S, this
can be operationalized as a minimum-distance prob-
lem, with different calibration estimators employing
different distance measures.

To illustrate, DSS consider distance measures
Gk(w, d) satisfying certain regularity conditions
with gk(w, d)= ∂Gk/∂w. Calibration estima-
tors are chosen to minimize distance measured as∑n

k=1 Gk(wk, dk) subject to the J calibration con-
straints. Let λ be a vector of lagrange multipliers.
It follows that

gk(wk, dk)− x′kλ = 0. (1)

In what follows, it is useful to write this as

wk = dkFk(x′kλ). (2)

where F=G−1.
It is informative to examine the minimization us-

ing G(w,d)=
∑n

k=1(wk-dk)2/dk which corresponds to
the linear regression or unrestricted modified mini-
mum chi-square calibration method. In this situa-
tion, Equation (2) implies that

wk = dk(1 + x′kλ) (3)

where

λ = (
n∑

k=1

dkxkx′k)−1(tx − ˆtxπ) (4)

where tx is the estimator of population total for x
using the calibrated weights, and t̂xπ is the usual

design-based estimator. The generalized regression
estimator of the population total for a variable y can
be written as

t̂yreg = t̂yπ + (tx − t̂xπ)′B̂ (5)

where

B̂ = (
n∑

k=1

dk(xkx′k)−1
n∑

k=1

dkxkyk (6)

The variance of the generalized regression estimator
is ∑

k

∑
l

(πkl − πkπl)π−1
kl (ekdk)(eldl) (7)

where ek = yk − x′kB. DSS show that estimators
from a broad family of distance function are asym-
totically equivalent to the generalized regression esti-
mator, and have this variance.

3 Variance Estimators

3.1 Taylor Series

Estimates of the variances in multistage designs are
typically computed assuming that first-stage sam-
pling units are selected with replacement. For the
work that follows we will only consider simple strat-
ified designs, for which an estimate of the variance
V̂ (ŶTS)can be constructed as

H∑
h=1

nh

nh − 1
(sumnh

k=1(
∑
k∈h

dhkehk−
1
nh

nh

∑
k∈h∑

k=1

dhkehk)2

(8)
for strata h = 1...H with nh representing the sample
size in stratum h. Note also (as in Stukel, Hidiroglou,
and Sarndal (1996)), this estimator is not the true
Taylor series estimator because of the assumption of
with-replacement sampling, but we will refer to it as
the Taylor series estimator for historical reasons.

While this estimator uses the design-based weights,
an improvement can be made by substituting the
weights from the calibration estimator whk for dhk

that will depend on the distance function used in the
raking algorithm. For the empirical work presented
in Section 4, we consider two different raking algo-
rithms: 1) Unrestricted Modified Discriminant Infor-
mation (MDI-u), also called ”raking ratio” or ”iter-
ative proportional fitting”; and 2) Restricted Mod-
ified Discriminant Information (Method 6 in Singh
and Mohl). MDI-u is perhaps the most widely used
calibration method. It is attractive because the cal-
ibrated weights are non-negative, improving on the
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regression estimator where negative weights are pos-
sible. The approach is also guaranteed to converge
as the number of iterations increases, which makes it
attractive for resampling-based approaches to vari-
ance estimation. The second uses the same mea-
sure of distance but imposes range restrictions on
the degree of relative movement between the original
and final weigths. Range restrictions are motivated
by the observation that MDI-u often produces large
weights which may dominate some analyses, particu-
larly when domains are considered.

For MDI-u, the total distance function can be writ-
ten as

GMDI−u(w, d) =
n∑

k=1

(wklog(wk/dk)− wk + dk) (9)

For MDI-r, range restrictions are represented as
L<wk/dk<U for lower bound U and upper bound L,
where L<1<U, and the observation-specific distance
function can be written as

GMDI−r(wk, dk) = GMDI−u(wk, dk) (10)

for L < wk/dk < U and

GMDI−r(wk, dk) = ∞ (11)

otherwise. In our empirical work, the two variance es-
timates corresponding to these specific distance func-
tions will be denoted V̂TS(Ŷ u) and V̂TS(Ŷ r).

3.2 Jackknife

The basic idea behind the jackknife is to drop one or
more observations from the sample and to recalculate
the estimates from the remaining observations. This
process is repeated until all observations have been
dropped. If θ̂ is the survey estimate from the entire
sample, and ˆθ−i is the estimate for the sample with
observation i removed, the jackknife estimate of the
variance is calculated as

V̂J(θ̂) =
1

n− 1

∑
∀i

(θ̂−i − θ̂)2 (12)

In stratified samples, it is important to reflect the
stratification in the replications, and to calculate the
variances within each strata. (Wolter, 1985) Rust
(1985) suggests the following formula for h=1...H
strata:

V̂ (θ̂) =
H∑

h=1

nh − 1
nh

∑
∀i

(θ̂h
−i − θ̂h)2 (13)

In our empirical work, we denote jackknife estimates
from calibrated samples using MDI-u as V̂J(Ŷ u) and
using MDI-r as V̂J(Ŷ r). Both of these estimates are
recalibrated for each replicate.

3.3 Some Convenient Alternatives

In this section we present some variance estimators
that use the calibrated weights but do not directly
employ the calibration constraints in the analyses.
The first alternative uses Taylor series formulae avail-
able in most standard software, but ignores the cal-
ibration information entirely. We assume that stra-
tum identifiers are available, as well as the calibrated
weights. In this situation, the variance of the total is
calculated as:

V̂ a
TS(ŶT ) =

H∑
h=1

(1− fh)nhS2
h (14)

where S2
h is the variance of the appropriate linearized

value, i.e.

S2
h =

1
nh − 1

∑
k∈h

(wkyk − ȳk
h)2 (15)

For the empirical work we present below, Taylor se-
ries estimates that ignore the calibration information
but use corresponding calibrated weights are denoted
V̂ a

TS(Ŷ u) and V̂ a
TS(Ŷ r). For the jackknife, we also

consider the convenient approximations V̂ a
J (Ŷ u) and

V̂ a
J (Ŷ r), where the replicate samples are not recali-

brated in each iteration. (The weights are adjusted to
account for the dropped observation in each replicate
however).

4 Simulation Study

4.1 Design

We investigate the properties of the different vari-
ance estimators in repeated samples using a hypo-
thetical population. We do not attempt to provide a
comprehensive investigation of the behavior of alter-
native variance estimators, as in Stukel, Hidiroglou
and Sarndal (1996). Instead, we focus on the relative
performance of the convenient approximations when
compared with the estimates that properly account
for the calibration.

A hypothetical population was constructed us-
ing 20,000 households, sampled without replacement,
from the March 2001 Current Population Survey pub-
lic use dataset. The hypothetical population was
stratified into four geographic regions (Northeast,
Midwest, South, and West) and three income groups
based on household income (<35K,35K-70K,70K+).
One thousand simple stratified random samples were
selected from the population (each without replace-
ment). Each sample comprised 1008 households, with
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equal allocations across the 12 geographic/income
strata. For external calibration controls, we consid-
ered control totals for total household income and the
total number of households with at least one person
uninsured. We examined estimates for the total num-
ber of children under the age of 18, the total num-
ber of married families, and the total of wages and
salaries income.

The control information is probably not terrifically
useful in explaining (or forecasting) the number of
children under 18 or the number of married families.
For these variables, one would expect only modest
differences between the approximation methods and
the properly calculated Taylor series and Jackknife
estimates. However, since wages and salaries are a
substantial portion of household income (the popu-
lation correlation is 0.72), there should be significant
differences between the approximations and the ap-
propriate variance estimates for this variable.

We report the following statistics that summarize
the behavior of the total estimates, and the associated
variances estimates:

1) Percent Relative Bias of Total Estimator, Ŷ u
T and

Ŷ r
T when compared to the true population value. This

is calculated as

(
E(ŶT )− YT

YT
) ∗ 100 (16)

where

E(ŶT ) = (
1
R

)
∑

ŶT (17)

ŶT =Ŷ u
T or Ŷ r

T , and where the average is evaluated
over R=1000 samples.

2) Percent Relative Bias of the Variance Estimator,
when compared to the true variance. This is calcu-
lated as

(E(V̂ (ŶT ))− VTrue)/VTrue ∗ 100 (18)

where

E(V̂ (Ŷ )) =
1
R

R∑
r=1

V̂r(ŶT ) (19)

and

VTrue =
1
R

R∑
1

(Ŷr − E(Ŷ ))2 (20)

where V̂r(ŶT ) is the variance estimate for each sub-
sample for each method, and VTrue is the true sam-
pling variability of the calibrated estimates as mea-
sured by their variability across the 1000 samples.

4.2 Results

Table 1 presents results for the relative bias of the
estimates of totals for the two raking methods. Note
that the relative bias is extremely small, on the order
of one tenth to two tenths of one percent, for both
raking methods. It is clear that the neither raking
method introduces extreme biases in the total esti-
mates themselves.

Table 1: % Relative Bias, Ŷ u
T , Ŷ r

T

Total Ŷ u
T Ŷ r

T

Children U18 -0.14 -0.11

Married Families 0.21 0.29

Wages + Salaries -0.12 -0.11

Tables 2 and 3 present the relative biases for the vari-
ance estimates for each of the four methods, using
the raked weights from MDI-u and MDI-r. Previ-
ous research (Stuckel et. al, (1996)) has focused on
the differences between V̂TS and V̂J , concluding that
the bias associated with the Taylor series estimates
is usually larger than the bias for the Jackknife. Our
estimates are roughly consistent with this finding, al-
though we note that for both methods there appears
to be more bias for the wages and salaries estimate
(15.75 percent for MDI-u, 18.66 percent for MDI-r)
and the number of children under 18 (9.78 percent for
MDI-u, 9.69 percent for MDI-r) than for the number
of married families. Wages and salaries is a continu-
ous variables, while the number of children under 18
is a count variable concentrated on a relatively small
number of integers. The married family variable is bi-
nary (0,1) indicator. The degree of adjustment to the
individual weights under raking will be more sensitive
to those variables whose values vary across all indi-
viduals in each sample. Put differently, matching ex-
actly to a control target when the auxiliary informa-
tion is continuous may introduce a higher potential
for bias than if the auxiliary information is categor-
ical. The average sizes of the biases for V̂TS and V̂J

are consistent with other empirical results (Stuckel
et al. (1996)) for the categorical variable (married
family) but not for the other variables.

The bias for the convenient approximation variance
estimates are larger than the biases for the proper
Jackknife and Taylor series estimates in most cases,
but for children under 18 and married families the
biases are of similar order of magnitude. For the
wages and salaries variance estimates, the convenient
approximations have enormous biases, over 150 per-
cent in each case. The intuition behind this result
is clearly illustrated by equation (8), which uses the
”raking regression” residuals rather than the values
of the variable of interest. For situations where a
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significant portion of the variability of the estimate
can be ”explained” by variations in the control totals,
the residuals will exhibit substantially less variability,
and the corresponding variance estimates under cal-
ibration should be much lower. The convenient ap-
proximations miss this correction, and substantially
overestimate the variance of the wages and salaries
total estimate as a result.

Table 2: % Relative Bias, V̂ (ŶT ), MDI-u

Total V̂TS V̂J V̂ a
TS V̂ a

J

Children U18 14.98 9.78 15.36 4.95

Married Families 7.59 -0.84 9.48 -1.05

Wages + Salaries -16.89 15.75 164.40 174.22

Table 3: % Relative Bias, V̂ (ŶT ), MDI-r

Total V̂TS V̂J V̂ a
TS V̂ a

J

Children U18 14.01 9.69 15.04 4.63

Married Families 7.31 -0.91 9.43 -1.11

Wages + Salaries -15.42 18.66 156.31 169.13

5 Conclusions

We have presented results from a small simulation
study examining the behavior of variance estimates
in calibrated samples. Jackknife and Taylor series
variance estimates that properly account for the cal-
ibration information were compared with convenient
approximations using some of the sample design in-
formation but ignoring the calibration totals. For
situations where the estimates of interest are primar-
ily unrelated to the calibration information, the con-
venient approximations using Taylor series or Jack-
knife methods produced biases that were similar in
magnitude to the more complicated procedures that
correctly account for the calibration. For situations
where the estimates of interest are related to the cal-
ibrating variables, the approximations seriously over-
estimated the true sampling variability of the esti-
mates.

From a practical perspective, the choice between
the approximations and the appropriate (but more
cumbersome and perhaps time consuming) Taylor se-
ries and Jackknife procedures will depend on the re-
lationship between the specific variables under inves-
tigation and the control information. In many cali-
bration applications, the control totals may not ”ex-
plain” a substantial portion of the survey items of
interest. For example, surveys that are part of larger
information system may be calibrated to ensure con-
sistency across system components. In this situation,
calibration will probably have a limited impact on the
variances of most items, and the approximations will
be acceptable. When the auxiliary information that
is used for calibration is highly correlated with items

of interest, the fact that the convenient approxima-
tions will overstate true sampling variability implies
that inferences using these variance estimates will be
conservative. If the nature of the calibration con-
trols is known, some analysts may also decide to use
the approximations for items where the risk of bias
is low, and invest time and resources in the correct
calculations when the risk is high.
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