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1. Introduction
Complex sample designs may include multistage

sampling, stratification, and unequal selection
probabilities. A consequence of the use of a complex
sample design is that the sampling errors of the survey
estimates cannot be computed assuming that the
observed variables are independently and identically
distributed (iid) random variables. Variances of survey
estimates from complex sample designs may be
estimated correctly by replication or by a Taylor Series
linearization method (Wolter, 1985). When variances are
computed properly accounting for the complex sample
design, they typically are larger than those obtained from
standard iid formulas.

Kish coined the term "design effect" to denote the
ratio of the variance of any estimate z obtained from a
complex design to the variance of z that would apply
with a SRS or unrestricted sample of the same size
(Kish, 1965). The denominator of the Deff is the SRS
variance. An alternative to the Deff is the Deft2, which
has the same numerator but the denominator is the
variance of an unrestricted sample (Kish, 1982). The
only difference between Deff and Deft2 is whether the
fpc term is included. In our discussion, we assume that
the fpc term can be ignored and thus use Deft2. Since the
design effect depends both on the sample design and on
the survey estimate under consideration, we employ the
notation D2(z) for the design effect (Deft2) of the
estimate z (mean, proportion, total, or regression
coefficient), i.e.,

( )2

Variance of
with complex design

Variance of with unrestricted
sample of the same size

=D z

z

z
. (1)

The concept of a design effect has proven to be a
valuable tool in the design of complex samples. It has
also been used in the analysis of data from such samples,
but with modern computing facilities the role of the
design effect in analysis should diminish. Here we
restrict our attention to uses in the design of surveys,
particularly household surveys. This paper is based on a
more extensive examination of these issues contained in
a chapter prepared for a United Nations technical report
(United Nations Statistical Division, forthcoming). The
inclusion of a chapter in that report on using design

effects in designing household surveys in developing
countries attests to the practical importance of the topic.

Complex designs involve a combination of a
number of design components, such as stratification,
multi-stage sampling, and selection with unequal
probabilities. The analysis of the design effects for each
of these components individually sheds useful light on
their effects on the precision of survey estimates, and
thus helps guide the development of efficient sample
designs. We review methods of estimating the design
effects for individual components in Section 2, with
special emphasis on the assumptions that are needed to
compute design effects using these formulas. Since
modeling the overall design effects that might arise from
a specific combination of components is an important
function, we briefly review these models in Section 3.
We conclude with some general observations about the
uses of design effects in the design of surveys in Section
4.

2. Components of Design Effects
In this section, we examine separately the design

effects resulting from the following components of a
complex sample design: stratification, unequal selection
probabilities, clustering, sample weighting adjustments
for nonresponse, and population weighting adjustments
for noncoverage and for improved precision. The joint
effects are discussed in Section 3. The main statistic
considered is an estimate of a population mean Y . Since
a population proportion is a special case of a mean, the
treatment covers proportions also. The effects of
weighting and clustering on the design effects of
subgroup estimates is also discussed.

2.1 Stratification
In a stratified simple random sample, the sample

mean is

h hi
st h hh h

h

N y
y A yiN n

= =∑ ∑ ∑ , (2)

where hn is the size of the sample selected from the hN

units in stratum h, = Σ hN N is the population size,

=h hA N N is the proportion of the population in

stratum h, hiy is the value for sampled unit i in stratum

h, and = Σh i hi hy y n is the sample mean in stratum h.

In practice, sty is computed as a weighted estimate,
where each sampled unit is assigned a base weight that is
the inverse of its selection probability (ignoring for the
moment sample and population weighting adjustments).
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Here each unit in stratum h has a selection probability of

h hn N and hence a base weight of = hh hw N n . Thus

yst may be expressed as

Σ Σ Σ Σ
= =

Σ Σ Σ
h i hi hi h i h hi

st
h i hi h h h

w y w y
y

w n w
. (3)

Assuming that the fpc can be ignored, the variance of the
stratified mean is given by

( )
2 2

= ∑ h h
st h

h

A S
V y

n
, (4)

where ( ) ( )22 / 1= Σ − −i hhi hhS Y Y N is the population

unit variance within stratum h.

With proportionate allocation, the weights for all
sampled units are the same and the stratified mean
reduces to the simple unweighted mean

/= ΣΣ hiy y nprop , where = Σ hn n is the overall sample

size. Its variance reduces to

( )
2 2Σ

= =h h w
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A S S
V y

n n
, (5)

where 2
wS denotes the average within-stratum unit

variance. The design effect for propy for a proportionate

stratified simple random sample is
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2

2
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S
D y

S
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Since the average within-stratum unit variance is no
larger than the overall unit variance (provided that Nh is
large), the design effect for the mean of a proportionate
sample is no greater than 1. Thus, proportionate
stratification cannot lead to a loss in precision, and
generally leads to some gain in precision. A gain in
precision occurs when the strata means hY differ: the
larger the variation between the means, the greater the
gain.

In many surveys a disproportionate stratified
sample is needed to meet the needs of the survey to
provide estimates for particular domains. The gain in
precision from proportionate stratification does not
necessarily apply with a disproportionate allocation of
the sample. To simplify the discussion for this case, we
assume that the within-stratum population variances are

constant, i.e., 2 2= chS S for all strata. Under this

assumption equation (4) simplifies to
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The design effect in this case is
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In addition to the assumption of constant within-
stratum variances used in deriving equation (8), it may
be reasonable to assume approximately equal stratum
means, that is to assume that =hY Y for all strata. This
type of assumption is often useful in multipurpose
surveys and when strata are defined to provide estimates
for domains such as regions. With this further

assumption, 2 2=cS S and the design effect reduces to
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Kish (1992) presents a formula for design effect
due to disproportionate allocation under the above
assumptions in a form that is very useful in practice:

( ) ( ) ( )2 = ∑ ∑st h h h h h hD y A w A w . (10)

Equation (10) is widely used in sample design to assess
the effect of the use of disproportionate allocation on
national estimates. In employing it, however, the
assumptions of equal within-stratum means and
variances are often ignored. When the assumptions are
ignored, the predicted design effects may be
inappropriate. For example, consider the situation where
the means are different but the variances are not. In this
case, the design effect from disproportionate
stratification is given by equation (8), which is equation

(10) with the additional factor 2 2
cS S . Since this factor

is less than 1, the design effect is overestimated using
equation (10). If we wish to isolate the effect of the
disproportionate allocation without the stratification
effect, the appropriate comparison is between the
disproportionate stratified sample and a proportionate
stratified sample of the same size. The ratio of the
variance of sty for the disproportionate design to that of

propy is derived from equations (5) and (7) with

2 2=w cS S ,

( ) ( ) ( ) ( )= = ∑ ∑st prop h h h h h hR V y V y A w A w .

Thus, in this case, formula in equation (10) can be
interpreted as the effect when the weights varying across
the strata.

The second assumption of equal within-stratum
unit variances is more critical than the equal means
assumption. While disproportionate allocation leads to a
loss of precision in overall estimates when within-
stratum unit variances are equal, this result does not
necessarily hold when the within-stratum unit variances
are unequal. Indeed, when within-stratum variances are
unequal, the optimum sampling fractions to use are
proportional to the standard deviations in the strata
(Cochran, 1977). This type of disproportionate allocation
is widely used in business surveys. It can lead to
substantial gains in precision over proportionate
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allocation when the within-stratum standard deviations
differ markedly.

2.2 Clustering
Another source of design effects is selecting

clusters of units. Household samples are clustered to
reduce data collection costs. Typically two or more
stages of sampling are employed, where the first-stage
units or primary sampling units (PSUs) are geographical
areas sampled with probabilities proportional to the
estimated numbers of households or persons. Within the
selected PSUs, one or more additional stages of area
sampling may be conducted, but for the purposes of this
discussion we assume a household survey with only two
stages of sampling (PSUs and households). The
extension to multiple stages is direct.

In most household surveys, PSUs vary in size and
are sampled with probability proportional to estimated
size (PPES) to reduce the variance of the estimates. In
addition, the sample sizes selected from selected PSUs
may vary between PSUs. However, for simplicity, we
start with the assumption that the population consists of
A PSUs, each of which contains B units. An SRS of a of
the A PSUs is selected and an SRS of b of the B units is
selected in each selected PSU. We assume that the fpc
can be ignored. Since the sample is epsem, the
population mean can be estimated by the simple

unweighted sample mean αβα β= ∑ ∑
a b

cly y n , where

n ab= and the subscript cl is for cluster. The variance
of cly can be written as

( ) ( )[ ]
2

1 1 ρ= + −cl
S

V y b
n

, (11)

where 2S is the unit variance in the population and ρ
is the intra-class correlation coefficient that measures the
homogeneity of the y-variable in the PSUs. In practice,
units within a PSU tend to be somewhat similar to each
other for most variables, although the degree of
similarity is usually low. Hence, typically ρ is positive
and small. The design effect in this simple situation is

( ) ( )2 1 1 ρ= + −clD y b . (12)

Since ρ is generally positive, the design effect tends to
be greater than 1 with clustered samples. Frequently ρ
is inversely related to the size of the PSU because larger
clusters tend to be more diverse, especially when PSUs
are geographic areas. These types of relationships are
exploited in the optimal design of surveys, where PSUs
that are large and more diverse are used when there is an
option. Estimates of ρ for key survey variables are
needed for planning sample designs. These estimates are
usually based on estimates from previous surveys for the
same or similar variables and PSUs, and the belief in the

portability of the values of ρ across similar variables
and PSUs.

In more practical settings, PSUs are not of equal
size and they are selected using PPES sampling. As a
result, equation (12) does not directly apply. However,
the approximation may still be a useful model of the
design effect due to clustering for epsem sample designs,
provided suitable modifications are made in the
interpretation of ρ . These situations are covered below.

We now consider an unstratified sample of PSUs
selected with probability proportional to size (PPS),
where the exact measures of size are known. The
assumption of an unstratified PPS sample of a of the A
PSUs and an epsem sample of b of the B units from each
sampled PSU results in an overall epsem sample. With
such a design, equation (12) still holds, but with ρ now
interpreted as a synthetic measure of homogeneity
within the ultimate clusters created by the subsample
design (Kalton, 1979). The value of ρ is, for instance,
different for a subsample design that selects b units by
systematic sampling from one in which the subsample
design divides each sampled PSU into subareas
containing b units each and selects one subarea (the
value of ρ is likely to be larger in the latter case). This
extension thus deals with both PPS sampling and with
various alternative forms of subsample design.

Now we relax the design assumption to allow
stratification of the PSUs. Kalton (1979) shows that the
design effect due to clustering in an overall epsem
design in which a stratified sample of a of A PSUs is
selected and b of B elementary units are sampled with
equal probability within each of the selected PSUs can
be approximated by

( )2 1 ( 1)ρ+ −�clD y b , (13)

where ρ is the average within-stratum measure of
homogeneity, provided that the homogeneity within each
stratum is roughly of the same magnitude. The gain from
effective stratification of PSUs can be substantial when b
is sizable because the overall measure of homogeneity in
(12) is replaced by a smaller within-stratum measure of
homogeneity in (13). In other words, the reduction in the
design effect of ( ) ( )1 ρ ρ− −b can be large when b is
sizable.

In practice, unequal-sized PSUs are sampled by
PPES, with estimated measures of size that are
inaccurate to some degree. In this case, the application
of the subsampling rates in the sampled PSUs to give an
overall epsem design results in some variation in
subsample size. Provided that the variation in the
subsample sizes is not large, then equation (13) may still
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be an adequate approximation with b being replaced by
the average subsample size, that is

( ) ( )2 1 1clD y b ρ+ −� (14)

where α= ∑b b a and αb is the number of elementary
units in PSU α . Equation (14) has proven to be of great
practical utility for situations in which the number of
sampled units in each of the PSUs is relatively constant.

When the variation in the subsample sizes per
PSU is substantial, however, the approximation involved
in equation (14) becomes inadequate. Holt (1980)
extends the above approximation to deal with unequal

subsample sizes by replacing b in (14) by a weighted
average subsample size. The design effect due to
clustering with unequal cluster sizes can be written as

( ) ( )2 1 1 ρ′+ −�clD y b , (15)

where 2
α α′ = ∑ ∑b b b . (The quantity b′ can be thought

of as the weighted average α α α′ = Σ Σb k b k , where

( )α α=k b .) This approximation, as well as all of the

others considered for clustering thus far, assumes an
overall epsem sample design.

The results given above can also be applied to
subgroup estimates, but careful attention to the
underlying assumptions is required. For handling
subgroup estimates we introduce a three-fold
classification of types of subgroups according to their
distributions across the PSUs. At one end, there are
subgroups that are evenly spread across the PSUs,
known as crossclasses. For example, age/sex subgroups
are generally crossclasses. At the other end of the
spectrum, there are subgroups, that are concentrated in a
subset of PSUs, called segregated classes. Urban and
rural subgroups are examples of this type. In between,
there are subgroups that are somewhat concentrated by
PSU, called mixed classes.

As noted above, crossclasses have, by definition,
the same distribution as the total sample across the
PSUs. If the total sample is fairly evenly distributed
across the PSUs, then equation (14) may be used to
compute an approximate design effect from clustering

for a crossclass. However, in this case b is the average
crossclass subsample size per PSU rather than the full
sample size. Because the crossclass estimate has a
smaller cluster sample size, design effects for crossclass
estimates are smaller than those for total sample
estimates.

Segregated classes comprise all or most of the
units in a subset of the PSUs in the full sample. Since the
subclass sample size for a segregated class is the same as
that for the total sample in that subset of PSUs, the
design effect for an estimate for a segregated class are

approximately equal to the design effects for a total
sample estimate. The design effect for an estimate for a
segregated class will differ from that for a total sample
estimate only if the average subsample size per PSU in
the segregated class differs from that in the total sample,
or if the homogeneity differs. The homogeneity might
differ if, for example, the subsample design in the
segregated class is not the same as the subsample design
for other sampled groups. If the total sample is evenly
spread across the PSUs, equation (14) may again be

applied, with b and ρ being values for the set of PSUs
in the segregated class.

The uneven distribution across the PSUs
associated with a mixed class implies that equation (14)
is not applicable. For estimating the design effect from
clustering for an estimate from a mixed class, equation
(15) may be a reasonable approximation, with bα being
the number of sampled members of the mixed class in
PSU α .

2.3 Weighting Adjustments
As discussed earlier, designs with unequal

selection probabilities between strata with
disproportionate stratification require the use of weights
in the analysis of the survey data. Equations (9) and (10)
give the design effect arising from the disproportionate
stratification and resulting unequal weights under the
assumptions that the strata means and unit variances are
all equal. Variable weights are needed in the analysis to
compensate for unequal selection probabilities, but these
do not arise only from disproportionate stratification.
Even without oversampling of certain domains, sample
designs usually deviate from equal probability of
selection method (epsem) because of frame problems.
For example, if households are selected with equal
probability from a frame of households and then one
household member is selected at random in each selected
household, household members are sampled with
unequal probabilities. In addition, the base weights, the
inverses of the probabilities of selection, are often then
adjusted to compensate for nonresponse and to make
weighted sample totals conform to known population
totals. As a result, final weights are almost always have
more variability than implied by disproportionate
stratification.

It is important to consider the effects these later
adjustments of the weights may have on the precision of
the estimates when the sample is being designed,
because otherwise the estimates may not have the
appropriate precision. The same formulas may also be
used after the data are collected in the analysis stage, but
that is not the focus of this review.

Virtually all surveys encounter some amount of
nonresponse. A common approach used to reduce
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possible nonresponse bias involves differentially
adjusting the base weights of the respondents. These
weighting adjustments cause the weights to vary from
the base weights and the effect is often an increase in the
design effect of an estimate.

When related population information is available
from some other source, the nonresponse-adjusted
weights may be further adjusted to make the weighted
sample estimates conform to the population information.
For example, if good estimates of regional population
sizes are available from an external source, the sample
estimates of these regional populations can be made to
coincide with the external estimates. A poststratification
or some other calibration adjustment of the weights is
often used for this population adjustment. The
adjustment can help to compensate for noncoverage and
can improve the precision of some survey estimates.
However, it adds further variability to the weights and
this can adversely affect the precision of survey
estimates that are unrelated to the population variables
employed in the adjustment.

Kish (1992) presents another way of expressing
the design effect for a stratified mean that is a different
way of expressing equations (9) and (10) . This
expression is based on the same assumptions given
earlier for those equations. We denote it with a small d
since it is often computed after the sample is observed.

( )
( )

( )
2

2
2

1
∑ ∑

= = +
∑ ∑

h i hi
st hi

h i hi

n w
d y rv w

w

, (16)

where ( )hirv w is the relvariance of the weights and w

is the mean of the weights. A more widely used form of
this equation is

( )
( )

( )
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2 2
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∑

= = +
∑

jj
st j

jj

n w
d y cv w

w
, (17)

where each of the n units in the sample has its own
weight ( )1, 2, ...,=jw j n .

As noted above, the design effect due to unequal
weighting given by equation (17) depends on the
assumptions of equal strata means and unit variances,
particularly the latter. This equation can provide a good
measure of the effect of weighting if these assumptions
hold at least approximately.

Nonresponse adjustments are generally made
within classes defined by auxiliary variables known for
both respondents and nonrespondents. To be effective in
reducing nonresponse bias, the variables measured in the
survey do need to vary across these weighting classes.
However, generally the variation is not great,
particularly in the unit variance. As a result, equation

(17) is widely used to examine the effect of nonresponse
weighting adjustments on the precision of survey
estimates. At the planning stage, the expected response
rate and experience with previous nonresponse
adjustments may be used to predict the effect of the
nonresponse weighting adjustments on the design effect.

While equation (17) is reasonable for most
nonresponse sample weighting adjustments, it is often
not a good approximation for the effect of population
weighting adjustments. In particular, when the weights
are poststratified or calibrated to known control totals
from an external source, then the design effect for the
mean of y is poorly approximated by equation (17) when
y is highly correlated with the one or more of the control
totals. For example, assume the weights are
poststratified to control totals of the numbers of persons
in the population by sex. Consider the extreme case that
the survey data are used to estimate the proportion of
women in the population. In this case of perfect
correlation between the y variable and the control
variable, the estimated proportion is not subject to
sampling error and hence has zero variance. In practice,
the correlation will not be perfect, but it may be sizable
for some of the survey variables.

All the results presented in this section and
Section 2.1 can be applied straightforwardly to give the
design effects for subgroup estimates simply by
restricting the calculations to subgroup members.
However, care must be taken in trying to infer the design
effects from weighting for subgroup estimates from
results for the full sample. For this inference to be valid,
the distribution of weights in the subgroup must be
similar to that in the full sample.

3. Models for Design Effects
The previous section presented some results for

design effects associated with weighting and clustering
separately, with a primary focus on design effects for
means and proportions. Those results can be extended to
the design effects from a combination of weighting and
clustering and the design effects for some other types of
estimates. A number of models have been used to
represent the design effects for these extensions, both in
the design and analysis of complex sample designs
(Kalton, 1977; Wolter, 1985). We briefly mention here
that the calculation of the design effect

( ) ( ) ( )2 = c ud y v y v y encompasses the combined
effects of weighting and clustering. However, in using
the data from the current survey to plan a future survey,
the two components of the design effect need to be
separated. For example, the future survey may be
planned to be an epsem one whereas the current survey
may have oversampled certain domains. Also, although
using the same PSUs and stratification, the future survey
may want to change the subsample size per PSU.
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Here we give a model that may be used when the
weights are random or approximately so. In this case,
the overall design effect can be decomposed
approximately into a product of the design effects of
weighting and clustering:

( ) ( ) ( )2 2 2.= w cld y d y d y (18)

where ( )2
wd y is the design effect from weighting as

given by equation (17) and ( )2
cld y is the design effect

from clustering given by equation (14) or (15). Using
this model with equation (14), ρ is thus estimated by

( ) ( )2 2 1
ˆ

1
ρ

 − =
−
wd y d y

b
. (19)

Generally, ρ is a more important parameter to estimate
for planning purposes than the design effect from
clustering because it is more portable across different
designs. The design effect for one survey can be directly
applied in planning another only if the subsample size
per PSU remains unchanged.

4. Conclusion
An understanding of design effects and their

components is valuable in developing sample designs for
new surveys. For example, the magnitudes of the overall
design effects for key survey estimates may be used in
determining the required sample size. The sample size
needed to give the specified level of precision for each
key estimate may be computed for an unrestricted
sample, and this sample size may then be multiplied by
the estimate’s design effect to give the required sample
size for that estimate with the complex sample design.
When a disproportionate stratified sample design is to be
used to provide domain estimates of required levels of
precision, the resultant loss of precision for estimates for
the total sample and for subgroups that cut across the
domains can be assessed by computing the design effect
due to variable weights. If the loss is found to be too
great, then a change in the domain requirements that
leads to less variable weights may be indicated. If the
design effect from clustering is very large for some key
survey estimates, then the possibility of increasing the
number of sampled PSUs (a) with a smaller subsample
size (b) may be considered.

Estimating design effects from clustering requires
estimates of ρ values for the key survey variables.
These estimates are inevitably imperfect, but reasonable
estimates may suffice. To err towards the use of a value
of ρ larger than predicted leads to the specification of a
larger required sample size, and hence this is a
conservative strategy.

Finally, it should be noted that the purpose of
using these design effect models is to produce an
efficient sample design. A failure of the models to hold
exactly will result in some loss of efficiency. However,
the use of inappropriate models to develop the sample
design does not affect the validity of the survey
estimates. With probability sampling, the survey
estimates remain valid estimates of the population
parameters.

Examples of design effects, more discussions of
models of design effects, and a complete list of
references can be found in the UN report on the
operating characteristics of household surveys in
developing and transition countries (United Nations
Statistical Division, forthcoming).

5. References
Cochran, W.G. (1977). Sampling Techniques. 3rd ed.

Wiley, New York.

Holt, D. H. (1980). Discussion of the paper by Verma,
V., Scott, C. and O’Muircheartaigh, C. Sample
designs and sampling errors for the World Fertility
Survey. Journal of the Royal Statistical Society A,
143, 468-469.

Kalton, G. (1977). Practical methods for estimating
survey sampling errors. Bulletin of the International
Statistical Institute, 47, 495-514.

Kalton, G. (1979). Ultimate cluster sampling. Journal of
the Royal Statistical Society A, 142, 210-222.

Kish, L. (1965). Survey Sampling. Wiley, New York.

Kish, L. (1982). Design effect. In Encyclopedia of
Statistical Sciences, S. Kotz and N.L. Johnson eds.,
Volume 2, 347-348. Wiley, New York.

Kish, L. (1992). Weighting for unequal Pi. Journal of
Official Statistics, 8, 183-200.

Kish, L. (1995). Methods for design effects. Journal of
Official Statistics, 11, 55-77.

United Nations Statistical Division. (Forthcoming). An
Analysis of Operating Characteristics of Household
Surveys in Developing and Transition Countries:
Survey Costs, Design Effects, and Non-sampling
Error. (Provisional title)

Wolter, K.M. (1985). Introduction to Variance
Estimation. Springer-Verlag, New York.

Joint Statistical Meetings - Section on Survey Research Methods

2012


	Return to Main Menu
	=================
	Search CD-ROM
	================
	Next Page
	Previous Page
	=================
	Program book
	Table of Contents
	=================
	Full Text Search
	Search Results
	Print
	=================
	Help
	Exit CD



