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1. INTRODUCTION

Taylor linearization is a popular method of variance
estimation for complex statistics such asratio and regression
estimators and logistic regression coefficient estimators. It is
generally applicable to any sampling design that permits
unbiased variance estimation for linear estimators, and it is
computationally simpler than aresampling method such asthe
jackknife. However, it canlead to multiplevariance estimators
that are asymptotically design unbiased under repeated
sampling. The choice among the variance estimators,
therefore, requires other considerations such as (i)
approximate unbiasedness for the model variance of the
estimator under an assumed model, (ii) validity under a
conditional repeated sampling framework. For example, inthe
context of simple random sampling and the ratio estimator,

Y.=(/x)X, of the population tota Y, Royal and
Cumberland (1981) showed that a commonly used
linearization variance estimator v, = N%(n '~ N"')s} does
not track the conditional variance of I?R given x, unlike the

jackknife variance estimator v,. Here y and x arethe sample

means, X is the known population total of an auxiliary
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variable x, is the sample variance of the residuals

z,=y,- W/x)x, and (n,N) denote the sample and population
sizes. By linearizing the jackknife variance estimator, v, we
obtain a different linearization variance estimator,
v, = (X/x)*v, , which also tracks the conditional variance as

well asthe unconditional variance, where X = X/N isthemean
of x. Asaresult, v, or v, may be preferred over v, . Yung
and Rao (1996) considered generalized regression and ratio-
adjusted post-stratified estimators under stratified multistage
sampling and obtained a jackknife linearization variance

estimator, v, by linearizing v,. Valiant (1993) aso

obtained v, for the post-stratified estimator and conducted

a simulation study to demonstrate that both v, andv,

possess good conditional properties given the estimated post-
stratacounts. Sérndal, Swensson and Wretman (1989) showed
that v, is both asymptoticaly design unbiased and

asymptotically model unbiased in the sense of
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E (v,)= Varm(? »),Where E denotesmodel expectationand
Var,(Y,) isthemodel variance of ¥, under a“ratio mode!”:
E (y)=Bx; i=1,..,N and the y,'s are independent with
model variance Var, (v) = 0x,, 6>>0. Thus,v,, isagood

choice from either the design-based or the model-based
perspective. Demnati and Rao (2001) proposed a new
approachto variance estimation that istheoretically justifiable
and at the same time leads directly to a v, -type variance

estimator for general designs. This method is presented in
section 2.

In the presence of missing responses, weighting
adjustment is often used to compensate for complete
nonresponsewhileimputationiscommonly used withthe goal
of making the datacomplete and obtaining estimatesfrom the
complete data. However, treating the adjusted weights as the
design weights, the imputed values as true values and
applying standard variance estimation formulas can lead to
seriousunderestimation if the nonresponserateisappreciable.
In recent years, several methods that correctly estimate the
varianceof an estimator under imputation have been proposed.
Ra0 (1996), Shao and Steel (1999) and othersstudied variance
estimation under ratio imputation, while variance estimation
under both weighting adjustment and imputation remains
unexplored.

The main purpose of this paper is to extend the
Demnati and Rao (2001) method to the case of missing
responses when adjustment for complete nonresponse and
imputation based on smooth functions of observed values, in
particular ratio imputation, are used. Section 2 gives a brief
account of the method for the case of full response. The
method of Shao and Steel (1999) is described in section 3,
while section 4 presents the extension of Demnati-Rao
method.

2. FULL RESPONSE

Tomotivatethe Demnati-Rao (2001) method for full
response, suppose an estimator 0 of a parameter 0 can be

expressed asadifferentiablefunction g(¥) of estimated totals
)M

T=F,..7 ), wherefj= -

dfs)y, isanestimator of the

population Y.j= L,...m, where d(s)=0 if theunit 7 isnotin
the sample s, U isthe set of population units, and 0 = g(¥)
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with Y= (Y,,...,Y,)'. Wemay write 8 as 8 =f{d(s),4,) and

0 =f(L,4y), where Ay isan mxN matrix with j # column

zj=(ylf""*ymj)T’ J=1..,N, ds) = (d(),...d(s))" and 1 is
the N-vector of 1's. For example, if § denotes the ratio
estimator ¥, =[(X, ,d(s) y)(E,d(s)x)| X, then m=2,
Y=V, Vy=x,and fL.4) reduces to the total ¥, noting
that (Y/X)X=Y. Note that f’R isafunction of d(s), y and x
and the known total X, but we dropped X for smplicity and
write ¥, = fld(s),v.%). If the Horvitz-Thompson weights are

used, then d(s) = 1/x, for ies, where m, isthe probability of
selecting unit 7 inthesample s .

Let Y=Xby for abitray red numbers

b=(by...b,)" and fib,4,) = k). Demnati and Reo (2001)

showed that the Taylor linearization of 8 -0 , namely

0-0=g(h) -2 ~ (dg@/00)"] _, (- 7).
isequivaent to
6- (afw/an s ([49-1) o
= ‘T(cJ(s) 1),
wh ere dg(@)/dg=(9g(@/da,,...0g@0a) and

= ,zN) with Z, = 0f(b /abk|b . 1t follows from (2.1)
tham avariance eﬂlmator of O is apprOX|ma¢er glven by the
variance estimator of theestimated total Ed(s) Z= 7(3); that
is, var(0) = v(2), where v(y) denotesthevarianceestimator of

Y= Y(y) in operator notation. Now we replace Z, by
z,= af(b)/abk|b i© since z,’'s ae unknown, to get a
linearization vanance estimator

v,(0)=v(z).

Note that vL(e) given by (2.2) is simply obtained from the
formulav(y) for Y=Y(y) by replacing y, by z, for ies. Note
that we do not first evaluate the partial derivatives ofb)/ob,
a b=1 toget Z and then substitute estimatesfor the unknown
componentsof Z. Our method, therefore, issimilar in spirit to
Binder(1996)’s approach. The variance estimator vL(é) is
valid because z, is a consistent estimator of Z,.

(2.2)

Suppose 0 is the ratio estimator
Py X[(Edi(s) yt.)/(Edt.(s)xi)], where X denotes summation
over ielU. Then
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fb) =X[(Eb .y.)/(Ebt.xi)] =X ¥(b)/X(b) and

z,=3/(b) /o b)) ( Ve~ ka)

For smple random samplmg,vL( R)—v(z) agrees with
vy = (Xx)?v, .

bd()

Demnati and Rao (2001) applied the method to a
variety of problems, covering regression calibration estimators
of atotal Y and other estimators defined either explicitly or
implicitly as solutions of estimating equations. They obtained
a new variance estimator for a general class of cdibration
estimators that includes generalized raking ratio and
generalized regression estimators. They also extended the
method to two-phase sampling and obtained a variance
estimator that makes fuller use of the first phase sample data
compared to traditional linearization variance estimators.

3. ITEM NONRESPONSE

Following Fay (1991), Shao and Steel (1999)
proposed a method of deriving variance estimators for the
Horvitz-Thompson-type estimated total, ¥°, with imputed
item nonresponse values. They assumed that the estimated
total ¥° can be expressed as a smooth function of totals,
7' =¢(T) where I =Xd(s)diag(o)t, , t,, isthevaueof y,
or the value of some other variable used to impute y,, and

=(0,5,--,0, )T isavector of r&ponsemdmatorvanables For
example consider ratio imputation when the auxiliary
variable x, |s available for al jes. A missing y, is then
imputed by P, =R X, where R (Ed(s)oy )/(2d(s)ox)
and o, is the r&ponse indicator for y,ie o=1 if v, s
observed and 0,=0 if y, ismissing. Thelmputed estimator ¥°
isgiven by

¥ =X d(s)oy,+Xd(s)1-0)R x,

=X d(s)o,y 1+ Xd(s)oyx,/Xd(s)o,x,) (3.2)

where o, =0, and 0,=1-o0,. It follows from (3.1) that v
isof theform y(7) With 0,=(0,,0,,0,)" and 1,= (y,x,.x).

We assume deterministic imputation. We have
Var(Y" -Y)= Vi+ 7, where V,=E [Var(Y 1,
V,=Var [E(Y -Y)],E, and Var, stand for the expectation
and variance with r&epect to the r&eponse mechanism, and £
and Var, stand for the expectation and variance with r&pect
to sampling under a given design. Shao and Steel (1999)
obtained a variance estimator, v, , of V, using a standard
lineari zation variance estimator of q;(g‘o) for given o,'s. They
also obtained an estimator, v, of
V,= [VO(E, TO)]TC[Vd)(E 7)1, where ¢(T)=V(ET)-7Y,
by deriving C with ki ™ dement cy=cov, (2ot 2.0.L,)
and by substituti ng estimatorsfor the unknown quantities. For
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simplerandom sampling and ratio imputation, Shao and Steel
(1999) obtained v, as

—\2 .2

N2(1 n/N) Sa
n(n 1) x_o X,
where x and s are the sample mean and semple variance
of the x,'s, x, Emofx/” is the mean of x,'s for the
respondents n_is the number of respondents,
s2=Xo,~Rx)n,~1), and s, =Xox(y-R x)(n -1).

i€s

22
ox

 Rs
= 9 X ToTdx (3.2)

n n n

[

ics

Further, under the assumption of uniform response (i.e., that
the o,’ sareindependent and identically distributed withmean P,

and variance p, (1 -p, )), Shao and Steel (1999) obtained v2
as

= [XIX Pp (3.3)

b, (1-p )N 5q dr
wherep, Eloldt(s)/z d{s). Thesumof (3.2)and (3.3) gives
the vari ance estimator of ¥ .

Shao and Stedl’s (1999) method is based on the
classical linearization approach which consists of (i)
expressing the estimator in terms of elementary components,
(i) evaluating the partial derivatives at the population level
and (iii) then estimating the unknown parameters in the
formula. As aresult, the corresponding variance estimator
may not be unique. Our method avoids expressing the
estimator in terms of elementary components and thus leads
directly to a unique variance estimator with desirable
properties. We present our method for ratio imputation in
subsection 4.1, while the case of variance estimation under
weighting adjustment for complete nonresponse and ratio
imputation for item nonresponse is investigated in
subsection 4.2.

4. NEW METHOD: MISSING RESPONSES

After weight adjustment for complete nonresponse
and imputation for item nonresponse, the population total ¥
is estimated by aweighted sampletotal

7' =X (s) 0y, + L (s)(1-0,)9;, (4.1)
were v (s)is the adjusted weight and $; denote the imputed
valuefor unit 7 . The estimator (4.1) can be rewritten as

=27%(),

where § = (9,,...0,)" and $,=0,y,+(1-0,)9; . In subsection
4.1, we study the case of item nonresponse only (i.e,
w(s)=d(s)) assuming Y" can be expressed as a smooth
function of totals Ld (s)diag(o)t,, where #,, the value of y,
or the value of some other variable uwd to impute y;.
Subsection 4.2 deals with the more genera case of Weight

7 =X(s), (4.2)
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adjustment for complete nonresponse and imputation for item
nonresponse.

4.1. Imputation for item nonresponse

Theimputed estimator ¥ isassumed to beasmooth
function of totals Xd, (8)diag(o)!;, as in Shao and Sted
(1999). In this case, Y may be expressed as f(Nw,Ny)
where 4 = diag(d(s)) 4, isah mxN matrix with j % column

w(s) = (le(s) wm](s))T j=L...N. The vector y(s) is

défined
() = (W, (5), ... W, ()]
= (0yd(8),.-1,0,,d(s)) =0,d(s),
where g, = (0;,...,0, )T is the vector of indicator variables

corresponding to the vector _y (y1 ,ym Y. For
simplicity we drop 4, and deno jI(A ). Under ratio
imputation, we have m= 2, y 0,;=1, 0y=0,

w, () = (W ()wy () = (4, (S) o d/(s ’
Y =Xw,(s) ,-R,x)+Xw,(5)R x,,

with R = (Xw, () )/(Zw,(s)x,).

Because the estimator ¥* =f(4,) is afunction of
totals, we can use Demnati and Rao (2001) approach to
approximate its variance by the variance of alinear function

Var(Y")= Var(¥,)
with
" =3 (0,d

~i

O z,=Xw/ )z,

where z; isthevector of derivativesof f{4,) withrespectsto b,
evaluated at 4,=E(4,), where 4, isa Nxm matrix of
arbitrary redl numbers f(A ») isobtai ned byreplacing 4, by 4,
in the formulafor ¥* and b, isacolumn vector of A The
total variance of Y can then be estimated by

v(¥;)=v e 2)+v (2),

where z, isthe vector of derivatives of the estimator f{4,)
with respects to b, evaluated at 4,=4,, and v (z) isan
estimator of V(fdzag(ol)z) Under mdependent response
mechanism,

(4.9

v,(2)= E cov (0)z (4.5)

Nty

where gov (@) is an (approximately) unbiased estimator of
E(9,0,)-E(2)E(e,)-

Under ratio imputation, we have

4y=4,

(4.6)

2= aib(zbﬁ(yi_ﬁo@b)xiﬁzbn o(‘/ilb)x>
Oy

- (ﬁoxk (K1) (v~ R ) -
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It follows from (4.6) that

z,= ok(/X‘}//XA’o)(yk—Iéoxk) + ﬁoxk. 4.7
Therefore, v (o "z) equals v,=v(z). Under smple random
sampling, v(z) with z, given by (4.7) agrees with (3.2) of
Shao and Steel (1999). Further,

0 0

covie)= d"(s)[ 0 o(1-¢, )] !

where € isan estimator of probability of responsefor unit 7 .
Therefore, v, (z), given by (4.5), reduces to
v ()= XX YXd(s)o,(1-E )¥,-R,x ). (4.8)

Under smple random sample and uniform response
mechanism (4.8) reduces to

v(z

which is the Shao and Steel (1999) estimator v, given by
(3.3).

Y@ty (1- ngmEo,0-Rxy (49
n

4.2. Weight adjustment and imputation for item
nonresponse

Let r, be the partia response indicator variable for
the i # unit, i.e. r,= 0 if there is complete nonresponse and
r,=1 if there is partia response. The partial response
indicator variable r, is related to the item response variable
indicators 0, p=l.m by

r=1- H;"Zl(l—oip).

)~ E(r)E(o,).

for any responsevariableindicator 0, Noting that r0,=0,
for any 0,

(4.10)
We have

ro.
iip

Cov(ri,ol.p) =E(

ro,=[1- (1- in)Hq*p(l —oiq)]ot.P =0,

Hence,
Cov(rt.,ot.p) = E(oip)—E(ri)E(oip) =E(o

p

Y(1-E(r).
An estimator of CO"(",-»O,-,,) maybe taken as

cov(ri,ol.p) = in( 1- élr)
with €_=E(r)) and £(.) denotes an estimator for E(.).

A widely-used approach to adjust for complete
nonresponseisto employ anew set of weights, %(s), with 7 #
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element equalsto

Wis)=d(s)r,g(ds).r.4,), (4.11)
where g(d(s),r.4 J() isknown asthe g-weightsin the context
of regression estimator and 4, amatrix of auxiliary variables
known for al units in the sample. The ratio estimator is a
special case of (4.11) for which the g-weight reduces to

Yd(s)x,
g{d(s).z.4,)= % = Xl (4.12)
where £ =Xd(s)x, and Xfidt(;);ixi. " The weight

adjustment using the ratio (4.12) isa special case of the class
of calibration weights obtained through the regression
estimator. Generalized raking weights are aso used to
compensatefor complete nonresponse. Another way to adjust
for complete non-response is to weight each observation by
the inverse probability of responding in which case

2(ds).r.4,)=8,",

where

8, =E,(.d() = Pr(r=11d(s).4).

isthe estimator of probability of response defined as solution
to an estimating equation of the form

0(Er) = Edi(s) ulr, X, >£ir) =0.

In the logistic case, we have

0(§r) = Edi(s)(ri - Eir)xui =0,

where

ui(ri’Xi’gir) =(r;- Eir)xJi '
E, = exp(x; B)/(1+exp(x; B)=Pr(r,~1lx,.B),
and y, isthe vector of predictor variables.

Under the above weight adjustment methods, the
variance can be obtained along the line of Demnati and Rao
(2001) method by expressing ¥* as fid,) and then by
differentiating f{4,) withrespectto b, . Detailsareomitted for
simplicity but we illustrate the calculation for the estimator
(4.1) under the ratio weight adjustment (4.12) and ratio
imputation, i.e.,

e =Eioiﬁ/i(s)yi + Ej(l —oj)ﬁ/j(s)léoxj,

with Py Ewi(s)oiyi
and ° Eﬁ/i(s)oixi 7

wis)=d(s)r, R/,
We have

W)= (10,7 Y d(s),
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2= (xR UR), Q1) RY2) 0 Rox), QIR - (B3 00)

and

0 0 0

covo(QiT) =d(s) 0 o(1- Eio) 0,(1- Eir) .
0 0[.(1 - Etr) ri(l - Etr)

5. CONCLUDING REMARKS

We have presented a new approach to variance
estimation under missing responses. A valid variance estimator
is given under a variety of weighting adjustment methods
often used for unit nonresponse as well as under imputation
based on smooth functions of observed values, in particular
ratio imputation, which often used for item nonresponse.
Extensions to nearest neighbor imputation and panel surveys
are under investigation.

6. SUMMARY

Insurvey sampling, Taylor linearizationisoften used
to obtain variance estimators for nonlinear finite population
parameters such as ratios, regresson and correlation
coefficients which can be expressed as smooth functions of
totals. Taylor linearization is generaly applicable to any
sampling design, but it can lead to multiple variance
estimators that are asymptotically design unbiased under
repeated sampling. The choice among the variance estimators
requires other considerations such as (i) approximate
unbiasednessfor the model variance of the estimator under an
assumed model, (i) vaidity under a conditiona repeated
sampling framework. Demnati and Rao (2001) proposed a
new approach to deriving Taylor linearization variance
estimators that leads directly to a unique variance estimator
that satisfies the above considerations. In this paper, we
extended the work of Demnati and Rao (2001) to ded with
missing data problem. We derived valid variance estimators
under weighting adjustment, which is often used to
compensate for complete nonresponse, as well as under
imputation based on smooth functions of observed values, in
particular ratio imputation, which is often used to produce a
complete data set.
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