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1. INTRODUCTION

Taylor linearization is a popular method of variance
estimation for complex statistics such as ratio and regression
estimators and logistic regression coefficient estimators. It is
generally applicable to any sampling design that permits
unbiased variance estimation for linear estimators, and it is
computationally simpler than a resampling method such as the
jackknife. However, it can lead to multiple variance estimators
that are asymptotically design unbiased under repeated
sampling. The choice among the variance estimators,
therefore, requires other considerations such as (i)
approximate unbiasedness for the model variance of the
estimator under an assumed model, (ii) validity under a
conditional repeated sampling framework. For example, in the
context of simple random sampling and the ratio estimator,

, of the population total , Royall and

Cumberland (1981) showed that a commonly used

linearization variance estimator does

not track the conditional variance of given , unlike the

jackknife variance estimator . Here and are the sample

means, is the known population total of an auxiliary

variable , is the sample variance of the residuals

and denote the sample and population

sizes. By linearizing the jackknife variance estimator, , we

obtain a different linearization variance estimator,
, which also tracks the conditional variance as

well as the unconditional variance, where is the mean
of . As a result, or may be preferred over . Yung

and Rao (1996) considered generalized regression and ratio-
adjusted post-stratified estimators under stratified multistage
sampling and obtained a jackknife linearization variance
estimator, , by linearizing . Valliant (1993) also

obtained for the post-stratified estimator and conducted

a simulation study to demonstrate that both and

possess good conditional properties given the estimated post-
strata counts. Särndal, Swensson and Wretman (1989) showed
that is both asymptotically design unbiased and

asymptotically model unbiased in the sense of

, where denotesmodelexpectation and

is the model variance of under a “ratio model”:

; and the ‘s are independent with

model variance , . Thus, is a good

choice from either the design-based or the model-based
perspective. Demnati and Rao (2001) proposed a new
approach to variance estimation that is theoretically justifiable
and at the same time leads directly to a -type variance

estimator for general designs. This method is presented in
section 2.

In the presence of missing responses, weighting
adjustment is often used to compensate for complete
nonresponse while imputation is commonly used with the goal
of making the data complete and obtaining estimates from the
complete data. However, treating the adjusted weights as the
design weights, the imputed values as true values and
applying standard variance estimation formulas can lead to
serious underestimation if the nonresponse rate is appreciable.
In recent years, several methods that correctly estimate the
variance of an estimator under imputation have been proposed.
Rao (1996), Shao and Steel (1999) and others studied variance
estimation under ratio imputation, while variance estimation
under both weighting adjustment and imputation remains
unexplored.

The main purpose of this paper is to extend the
Demnati and Rao (2001) method to the case of missing
responses when adjustment for complete nonresponse and
imputation based on smooth functions of observed values, in
particular ratio imputation, are used. Section 2 gives a brief
account of the method for the case of full response. The
method of Shao and Steel (1999) is described in section 3,
while section 4 presents the extension of Demnati-Rao
method.

2. FULL RESPONSE

To motivate the Demnati-Rao (2001) method for full
response, suppose an estimator of a parameter can be

expressed as a differentiable function of estimated totals

, where is an estimator of the

population , , where if the unit is not in

the sample , is the set of population units, and
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with . We may write as and

, where is an matrix with column

, , and is

the -vector of 1's. For example, if denotes the ratio

estimator , then ,

, and reduces to the total , noting

that . Note that is a function of , and

and the known total , but we dropped for simplicity and

write . If the Horvitz-Thompson weights are

used, then for , where is the probability of

selecting unit in the sample .

Let for arbitrary real numbers

, and . Demnati and Rao (2001)

showed that the Taylor linearization of , namely

,

is equivalent to

(2.1)

w h e r e a n d
with . It follows from (2.1)

that a variance estimator of is approximately given by the
variance estimator of the estimated total ; that
is, , where denotes the variance estimator of

in operator notation. Now we replace by
, since ’s are unknown, to get a

linearization variance estimator

. (2.2)

Note that given by (2.2) is simply obtained from the
formula for by replacing by for . Note
that we do not first evaluate the partial derivatives
at to get and then substitute estimates for the unknown
components of . Our method, therefore, is similar in spirit to
Binder(1996)’s approach. The variance estimator is
valid because is a consistent estimator of .

S u p p o s e i s t h e r a t i o e s t i m a t o r
, where denotes summation

over . Then

and

.

For simple random sampling, agrees with
.

Demnati and Rao (2001) applied the method to a
variety of problems, covering regression calibration estimators
of a total and other estimators defined either explicitly or
implicitly as solutions of estimating equations. They obtained
a new variance estimator for a general class of calibration
estimators that includes generalized raking ratio and
generalized regression estimators. They also extended the
method to two-phase sampling and obtained a variance
estimator that makes fuller use of the first phase sample data
compared to traditional linearization variance estimators.

3. ITEM NONRESPONSE

Following Fay (1991), Shao and Steel (1999)
proposed a method of deriving variance estimators for the
Horvitz-Thompson-type estimated total, , with imputed
item nonresponse values. They assumed that the estimated
total can be expressed as a smooth function of totals,

, where , is the value of
or the value of some other variable used to impute , and

is a vector of response indicator variables. For
example, consider ratio imputation when the auxiliary
variable is available for all . A missing is then
imputed by , where
and is the response indicator for , i.e. if is
observed and if is missing. The imputed estimator
is given by

(3.1)

where and . It follows from (3.1) that
is of the form with and .

We assume deterministic imputation. We have
, w h e r e ,
, and stand for the expectation

and variance with respect to the response mechanism, and
and stand for the expectation and variance with respect
to sampling under a given design. Shao and Steel (1999)
obtained a variance estimator, , of using a standard
linearization variance estimator of for given ’s. They
a l s o o b t a i n e d a n e s t i m a t o r , , o f

, where ,
by deriving with element
and by substituting estimators for the unknown quantities. For
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simple random sampling and ratio imputation, Shao and Steel
(1999) obtained as

,(3.2)

where and are the sample mean and sample variance
of the ‘s, is the mean of ’s for the
respondents, is the number of respondents,

, and .

Further, under the assumption of uniform response (i.e., that
the ’sare independentand identicallydistributed withmean
and variance ), Shao and Steel (1999) obtained
as

, (3.3)

where . The sum of (3.2) and (3.3) gives
the variance estimator of .

Shao and Steel’s (1999) method is based on the
classical linearization approach which consists of (i)
expressing the estimator in terms of elementary components,
(ii) evaluating the partial derivatives at the population level
and (iii) then estimating the unknown parameters in the
formula. As a result, the corresponding variance estimator
may not be unique. Our method avoids expressing the
estimator in terms of elementary components and thus leads
directly to a unique variance estimator with desirable
properties. We present our method for ratio imputation in
subsection 4.1, while the case of variance estimation under
weighting adjustment for complete nonresponse and ratio
imputation for item nonresponse is investigated in
subsection 4.2.

4. NEW METHOD: MISSING RESPONSES

After weight adjustment for complete nonresponse
and imputation for item nonresponse, the population total
is estimated by a weighted sample total

, (4.1)

were is the adjusted weight and denote the imputed
value for unit . The estimator (4.1) can be rewritten as

, (4.2)

where and . In subsection
4.1, we study the case of item nonresponse only (i.e.,

) assuming can be expressed as a smooth
function of totals , where the value of
or the value of some other variable used to impute .
Subsection 4.2 deals with the more general case of weight

adjustment for complete nonresponse and imputation for item
nonresponse.

4.1. Imputation for item nonresponse

The imputed estimator is assumed to be a smooth
function of totals , as in Shao and Steel
(1999). In this case, may be expressed as ,
where is an matrix with column

, . The vector is
defined as

where is the vector of indicator variables
corresponding to the vector . For
simplicity we drop and denote . Under ratio
imputation, we have , , , , ,

and

,

with .

Because the estimator is a function of
totals, we can use Demnati and Rao (2001) approach to
approximate its variance by the variance of a linear function

with
,

where is the vector of derivatives of with respects to
evaluated at , where is a matrix of
arbitrary real numbers, is obtained by replacing by
in the formula for and is a column vector of . The
total variance of can then be estimated by

, (4.4)

where is the vector of derivatives of the estimator
with respects to evaluated at , and is an
estimator of . Under independent response
mechanism,

, (4.5)

where is an (approximately) unbiased estimator of
.

Under ratio imputation, we have

(4.6)
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It follows from (4.6) that

. (4.7)

Therefore, equals . Under simple random
sampling, with given by (4.7) agrees with (3.2) of
Shao and Steel (1999). Further,

,

where is an estimator of probability of response for unit .
Therefore, , given by (4.5), reduces to

. (4.8)

Under simple random sample and uniform response
mechanism (4.8) reduces to

(4.9)

which is the Shao and Steel (1999) estimator given by
(3.3).

4.2. Weight adjustment and imputation for item
nonresponse

Let be the partial response indicator variable for
the unit, i.e. if there is complete nonresponse and

if there is partial response. The partial response
indicator variable is related to the item response variable
indicators , by

. (4.10)
We have

,

for any response variable indicator . Noting that
for any ,

.

Hence,
.

An estimator of maybe taken as

with and denotes an estimator for .

A widely-used approach to adjust for complete
nonresponse is to employ a new set of weights, , with

element equals to

, (4.11)

where is known as the g-weights in the context
of regression estimator and a matrix of auxiliary variables
known for all units in the sample. The ratio estimator is a
special case of (4.11) for which the g-weight reduces to

, (4.12)

where and . The weight
adjustment using the ratio (4.12) is a special case of the class
of calibration weights obtained through the regression
estimator. Generalized raking weights are also used to
compensate for complete nonresponse. Another way to adjust
for complete non-response is to weight each observation by
the inverse probability of responding in which case

,

where
,

is the estimator of probability of response defined as solution
to an estimating equation of the form

.

In the logistic case, we have

,

where
,

,

and is the vector of predictor variables.

Under the above weight adjustment methods, the
variance can be obtained along the line of Demnati and Rao
(2001) method by expressing as and then by
differentiating with respect to . Details are omitted for
simplicity but we illustrate the calculation for the estimator
(4.1) under the ratio weight adjustment (4.12) and ratio
imputation, i.e.,

,
with

,
and

.

We have
,
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,

and

.

5. CONCLUDING REMARKS

We have presented a new approach to variance
estimation under missing responses. A valid variance estimator
is given under a variety of weighting adjustment methods
often used for unit nonresponse as well as under imputation
based on smooth functions of observed values, in particular
ratio imputation, which often used for item nonresponse.
Extensions to nearest neighbor imputation and panel surveys
are under investigation.

6. SUMMARY

In survey sampling, Taylor linearization is often used
to obtain variance estimators for nonlinear finite population
parameters such as ratios, regression and correlation
coefficients which can be expressed as smooth functions of
totals. Taylor linearization is generally applicable to any
sampling design, but it can lead to multiple variance
estimators that are asymptotically design unbiased under
repeated sampling. The choice among the variance estimators
requires other considerations such as (i) approximate
unbiasedness for the model variance of the estimator under an
assumed model, (ii) validity under a conditional repeated
sampling framework. Demnati and Rao (2001) proposed a
new approach to deriving Taylor linearization variance
estimators that leads directly to a unique variance estimator
that satisfies the above considerations. In this paper, we
extended the work of Demnati and Rao (2001) to deal with
missing data problem. We derived valid variance estimators
under weighting adjustment, which is often used to
compensate for complete nonresponse, as well as under
imputation based on smooth functions of observed values, in
particular ratio imputation, which is often used to produce a
complete data set.
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