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1. Introduction 

 
Public education campaigns such as that described 

by Lu et al (2001) consist of delivering small packets of 
information in a largely uncontrolled manner over a large 
area for an extended period of time. The purpose of such 
campaigns is to change the knowledge, thinking, and 
behavior of the population. Such campaigns pose some 
special problems for evaluation, particularly when the 
campaign is national in scope and evaluation efforts are 
commenced after the campaign launch. A national scope 
precludes the possibility of using control areas in 
evaluation, and a post-launch evaluation commencement 
precludes the use of before and after designs. The only 
remaining options are to study dose-response relationships 
and to monitor for continuing temporal change as the 
campaign continues. 

 
The evaluation method adopted by Hornik et al 

(2001) for the same evaluation project referenced by Lu 
and coauthors is a synthesis of analysis of temporal change 
and of the dose-response relationship between campaign 
exposure and targeted outcomes. Referring to the typology 
of designs for quasi-experimentation laid out by Cook and 
Campbell (1979), the temporal change analysis is a variant 
of the one-group pretest-posttest design, and the dose-
response analysis is a variant of the posttest-only design 
with nonequivalent groups, both of which Cook and 
Campbell classified as facing serious inferential threats. 
Given that the inferential threats are different for the two 
designs, Hornik et al adopted the stance that the campaign 
would be judged successful only if both types of analysis 
found evidence of consistent effects. We demonstrate that 
this approach is rather conservative unless the sizes of the 
tests used in each analysis are adjusted. Prior to proving 
this assertion, the well known weaknesses of each method 
are briefly reviewed as motivation for the synthetic 
analysis. 

 
2. Interpretation of Temporal Trends 

 
Temporal succession of causes and effects is a 

fundamental aspect of concepts of causation. Holland 
(1986) touches upon this in his brief review of the causal 
theories of Hume, Mill, Suppes, and Hill. If an intervention 
with persistent effects is running at a fairly even intensity 
for an extended period, then, in the absence of other forces 
on society, one would expect a time series of the population 
to show a trend in the desired direction. Obviously, 

however, the targets of a public education campaign are 
buffeted by many other forces in their daily lives. 

 
For evaluation of social interventions, the 

interrupted time series is a plausible tool. With such an 
approach, a series of observations are made during the 
course of which the intervention is turned on and off to see 
if Hume’s condition for constant conjunction is met. Since 
the uncontrolled forces would be presumed to vary over 
time, if the outcome timeseries always shifts shortly after 
restarting or interrupting the time series, then the inability 
to isolate the system from other forces would not be 
particularly worrisome. However, public education 
campaigns, like many other social interventions, are not 
easy to interrupt. These interventions require systems 
development, trained personnel and management. Costs for 
dismissing and then rehiring and retraining intervention 
workers around the interruptions may be high. Proponents 
of the intervention may lobby against interruptions. Some 
interventions may also have persistent and lagging effects, 
so the interruptions may need to be fairly long, depending 
on societal relaxation time. 

 
So the typical evaluation of any social intervention 

will involve tracking of outcomes over time as the 
intervention proceeds according to its own dynamics, 
uninfluenced by the evaluation. Other forces will also 
continue according to their own dynamics. Supporters of 
the intervention see the intervention as responsible for any 
positive trends while extrinsic forces are blamed for 
negative trends. Opponents are likely to reverse these rules. 

 
3. Interpretability of Dose-Response Relationships 

 
From data collected at a single point in time 

(meaning, in actuality, a short period of time), any effect of 
the intervention should manifest itself in a systematic 
difference between treated and untreated cases, or, in the 
case of ordinal-measured intervention intensity, a 
monotone relationship between exposure and response. The 
latter refers back to Hill’s concept of a biological gradient 
(Holland, 1986). In the study discussed by Lu et al and by 
Hornik et al, doses were not randomly assigned and were 
only measured retrospectively. The threats to inference 
here include the failure to measure common causes (which 
lead to “self-selection bias”), errors in the measurement of 
exposure (the dose), errors in the measurement of the 
outcome variable (the response), and errors in temporal 
sequencing of exposure and outcomes. These threats are 
mitigated primarily through the development of good 
measurement instruments and protocols. Of course, these 
are only limited by the imagination and skills of the 
instrument and protocol designers. However, as many prior 
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authors have discussed, the existence of unmeasured 
common causes can never be disproven from data from a 
nonrandomized study. Most famously, this was the basis of 
R. A. Fisher’s steadfast rejection of studies that claimed a 
causal link between tobacco smoking and cancer (Box, 
1978, pp 472-476). 

 
Nor can the nonexistence of measurement errors be 

proven. If exposure measurement errors are independent of 
all other variables, then their only effect is to bias the study 
toward finding no effect. However, if exposure 
measurement errors are correlated with outcomes, it is 
possible to have strong biases toward findings of effects or 
counter-effects (where the opposite of the desired effect is 
observed). This is of particular concern when the outcomes 
are cognitive rather than behavioral and where exposure is 
measured retrospectively. If cognitive dissonance degrades 
memory (Festinger, 1957; and Wickland and Brehm, 
1976), then the effect of the campaign will be exaggerated 
in that people who already agreed with the messages report 
higher levels of exposure and those who already disagreed 
report lower levels of exposure. These threats could be 
partially addressed by collecting retrospective data on prior 
states of the outcome variables (i.e., “how did you feel 
before you saw the commercial?”), but this is a messy 
process with cognitive outcomes. If reports of past levels of 
a cognitive outcome are biased toward harmony with 
current levels, then such a corrective approach would be 
defeated. Perhaps this difficulty can be surmounted by 
identifying and measuring common causes for past 
cognitions and measurement errors, but uncertainty will 
remain. 

 
Finally, there are questions about event sequencing. 

Since both exposure and cognitive outcomes develop over 
time but are measured only once in a retrospective study, it 
is possible that changes in cognitive variables lead to 
changes in true exposure. An obvious example would be an 
advertising campaign that encouraged people to turn off 
their TV sets. For those subjects where the campaign was 
successful, there would be no recent exposure to report. 

 
Thus, if a significant dose-response relationship is 

found, supporters of the intervention will tend to believe 
that all relevant common causes were measured, that there 
were no important correlations between measurement 
errors and other variables, and that time sequence 
information is correct. Opponents of the intervention are 
more likely to invent plausible unmeasured common 
causes, correlated measurement errors, and time-sequence 
errors, or to simply insist that nothing is proven without 
randomization. 

 
4. Synthesis 

 
Given the weakness of both methods, the procedure 

of performing both types of analysis has some appeal. 
Since the threats to inference are completely different for 

the two methods, if the two methods agree, then one might 
feel somehow more confident in one’s conclusions. Along 
these lines, Rosenbaum (2001) advocated replicating 
scientific studies in ways that disrupt features so as to 
induce different biases. We suspect that this greater 
confidence has to do with personal subjective probabilities. 
Somehow it seems less likely that both sets of threats are 
present even though no formal assessment of that 
likelihood is possible and there is certainly nothing to rule 
out the possibility that both types of inferential threats are 
present. There are echoes here of Campbell (1963) that 
experiments probe theory, but do not prove theory. The 
problem with requiring significant results from both of the 
two methods is that this synthesis dramatically changes the 
balance between formal type I and type II errors unless the 
standard of significance is relaxed for one or both of the 
tests. How this balance changes will depend on the nature 
of the stochastic process induced by the campaign on the 
population. In Section 5, we present a reasonable model for 
this process and then demonstrate that, for this model at 
least, the tests for temporal change and a dose-response 
relationship are asymptotically independent of each other.  

 
If two independent tests of size α of the same set of 

hypotheses are carried out, then it is obvious that the size of 

the synthesized test is 2α . If the power of the change test 
at a specified point in the alternative hypothesis universe is 

11 β−  and the power of the dose-response test at the same 

point is 21 β− , then it is also obvious that the power of the 

synthesized test at that point will be ( ) ( )1 21 1β β− − . If 

standard testing procedures are followed with 0.05α =  
and the sample sizes are large enough that 1 2 0.2β β= = , 
such a double hurdle will result in a synthesized test of size 
of 0.0025 and power of 0.64. For some applications where 
it is desired to give a very strong benefit of the doubt to the 
null hypothesis of no effect, this may be a sensible testing 
procedure. However, it is a more stringent standard of 
evidence than is usually set in biopharmaceutical research, 
epidemiological research, psychometric research, and 
indeed, most types of research. While this may be 
appropriate in the evaluation of some interventions, this 
adoption of a more stringent criterion should be made 
consciously. We suggest that if this double-hurdle approach 
is to be used, then the size of each test should be adjusted 
so that the size of the synthesized test is α and a more 
appropriate balance between type I and type II errors is 
thereby achieved. One obvious choice would be to set the 

size of each at α , but any factorization 1 2α α α=  could 
be used. For example, if the inferential threats to the trend 
analysis were viewed as more serious than those to the 
dose-response analysis, then a factorization of 
(0.5)(0.1)=0.05 might be used, meaning that an effect 
would be concluded if the sign of the trend test was 
consistent with a dose-response test that would ordinarily 
be characterized as merely presenting some evidence. 
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5. A Model for the Effects on a Continuing Public 
Education Campaign 
 
A model for the effect of an ongoing media 

campaign is that each successive exposure has a small 
incremental effect. One hopes that the effects persist 
(although some relaxation is to be expected with time). 
Assume that the confounders for exposure and the outcome 
of interest have been identified so that the exposed-at-
random assumption is justified. This requires that all 
analyses control on that set of confounders through 
stratification or other means. To simplify notation, the 
model in this paper is set up within a single stratum of such 
a stratification and the stratum notation is suppressed. Also, 
time is treated as discrete. We first deal with a simple pre-
post measurement in conjunction with a dose-response 
relationship and then extend it to multiple post-
implementation measurement points without a pre-
campaign measurement. With this preamble, the first model 
to be studied here is that  
 0 0 0i iy u e= + , and  

      1 1 1 1 1i i iy u d e= + ∆ +  
where 

tiy  is the outcome variable1 at time t for subject i; 

tn  is the sample size at time t;  

( )0 1,u u  is the stochastic process that would have 

occurred in the absence of the campaign with 
mean ( )0 1,λ λ , and arbitrary covariance 

structure; 

1∆  is the effect of the campaign on an exposed 
subject at time 1; 

1id  is a binary flag for exposure up between items 0 

and 1 for subject i with 1 1E id p= , 

1 1 1Var id p q= , where 1 11q p= − , and the flag is 
independently and identically distributed across 
subjects;  

( )0 1,i ie e  is a random error vector for the i-th subject that is 

independent across subjects with constant mean 

(0,0), variance ( )2 2
0 1,σ σ , and arbitrary 

autocorrelation; and 

1id , ( )0 1,u u and ( )0 1,i ie e are all mutually independent. 

In the simple case where there is a pretest and a 
single post-test and 1 0λ λ= , an unbiased estimate of 1∆  
based on temporal change is  

 1 1 0 0
1

1 1

/ /ˆ
/

i i

i

y n y n

d n

−∑ ∑′∆ =
∑

, 

                                                       
1 A similar model can be developed for a binary outcome using a logit or 

probit transform. 

and an unbiased estimate of 1∆  based on the dose-response 
relationship is  

 
( )

( )
1 11 1

1
1 1

1ˆ
1

i ii i

i i

d yd y

d d

−∑∑′′∆ = −
−∑ ∑

. 

In this simple case, one could test for 1 0∆ ≠  by separately 

performing Z-tests with both 1
ˆ ′∆  and 1

ˆ ′′∆ , but if one were to 
conduct such a pair of tests, it is easy to demonstrate that 
the two statistics are uncorrelated.  
 
Theorem 1. If the samples at times 0 and 1 are independent 

of each other, then 1 1
ˆ ˆ( , ) 0Cov ′ ′′∆ ∆ = . 

Proof: Using standard conditioning arguments, 

Cov ( )1 1
ˆ ˆ, ,′ ′′∆ ∆ = Cov ( ) ( )1 1

ˆ ˆE , , E ,u d u d ′ ′′∆ ∆  
 

 + E ( ) ( ){ }1 1
ˆ ˆCov E , , E ,u d u d u ′ ′′∆ ∆

 
 

 + ( ){ }1 1
ˆ ˆE E Cov , ,u d u ′ ′′∆ ∆

 
. 

Each of these three terms is equal to zero. To see this for 
the first two terms, note that 

( ) ( ) ( )
( )

1 1 1 1 1
1 1

1 1

1ˆE , E ,
1

i i

i i

u d u d
u d u d

d d

 + ∆ −∑ ∑′′∆ = − = ∆ 
 −∑ ∑ 

depends on neither u nor d, so the covariance of it with 

( )1
ˆE ,u d′∆  must be zero—both unconditionally (as in the 

first term) and when conditioned on u (as in the second 
term).  

By the independence of the two samples, the 
conditional covariance within the third term is equal to  

 ( )1 1
ˆ ˆCov , ,u d′ ′′∆ ∆ = 1 1 1

1 1
Cov , ,i i i

i

d e e
d u

d n

 ∑ ∑
 

∑  
 

 
( )

( )
1 1 1

1 1

1
Cov , ,

1
i i i

i

d e e
d u

d n

 −∑ ∑−  
−∑  

 

  =
( )

( )
22

1 11 1

1 1 1 1

1

1
ii

i i

dd

n d n d

σσ −∑∑ −
−∑ ∑

= 0. 

QED 
In the case of study discussed by Lu et al and by 

Hornik et al, there was, however, no pretest, and there was 
a series of post measurements to capture what was 
theorized to be a gradual progression. So moving now to an 
arbitrary number of post-campaign implementation 
measurements, a more general model is that  

1

t

ti t s si ti
s

y u d e
=

= + ∆ +∑  for t=1,… and i=1,…, tn , 

where 

{ }t tu  is the stochastic process that would have 

occurred in the absence of the campaign with 
mean tλ , and arbitrary covariance structure; 

Joint Statistical Meetings - Section on Statistics in Epidemiology

1719



t∆  is the effect of the campaign on an exposed 
subject at time t; 

{ }ti td  is a series of independent2 binary flags for 

exposure3 up through time t for subject i with 
E ti td p= , Var ti t td p q= , where 1t tq p= − , 
and the series are independently4 and identically 
distributed across subjects;  

{ }ti te  is a stochastic error process for the i-th subject 

that is independent5 across subjects with constant 

mean 0, variance 2
tσ , and arbitrary 

autocorrelations; and 

{ }ti td , { }t tu and { }ti te  are all mutually independent.6 

 
Note that the expected outcome at time t for subjects 

who were exposed between times t-1 and t is 

 
1

1

t

t t s s t
s

pϕ α λ
−

=
= + + ∆ + ∆∑ , 

the expected outcome for those not exposed between those 
times is 

 
1

1

t

t t s s
s

pθ α λ
−

=
= + + ∆∑ , 

and that the overall expected outcome is  

 
1

t

t t s s
s

pµ α λ
=

= + + ∆∑ . 

An unbiased estimator for the mean of the recently 
treated subjects is  
 

 ˆ
ˆ

ti ti
i

t
t t

d y

n p
ϕ

∑

= , where ˆ
ti

i
t

t

d

p
n

∑

= . 

An unbiased estimator for the mean of the recently 
untreated subjects is 

                                                       
2 If there was any serial correlation within this series, then past exposure 

would become an unmeasured common cause since it would affect both 
exposure at time t and the counterfactual outcome pertinent to a 
stoppage of the campaign at time t-1.  For the dose-response analysis at 
time t to be valid, it is required that the stratification be fine enough so 
that there are no remaining systematic sources of variability in exposure 
within each stratum. 

3 With discrete time, exposure at time t is conceptualized as exposure 
above some threshold  between times t-1 and t.   

4 We think that the independence of exposure across subjects could 
probably be weakened without altering the principal result of the paper.   

5 Similarly, we think that the results would generalize to a situation where 
there was intra-class correlation of outcomes.   

6 The assumption that { }ttid  is independent of both { }ttu  and { }ttie is the 

key assumption that exposure is conditionally independent of the process 
that would have occurred in the absence of the campaign.  As noted 
earlier, this is only assumed to hold within strata, the notation for which 
is suppressed.   

 

(1 )
ˆ

ˆ

ti ti
i

t
t t

d y

n q
θ

−∑

= , where 

(1 )
ˆ

ti
i

t
t

d

q
n

−∑

= . 

An unbiased estimator for the mean of all subjects at 
time t is 

 ˆ
ti

i
t

t

y

n
µ

∑

= .  

An unbiased estimator for the average short-term 
effect of treatment /s t∆ = ∆∑  up through time t is  

 ( )
1

1 ˆˆ ˆ
t

s s
st

ϕ θ
=

∆ = −∑ .  

An unbiased estimator of the average change per 
unit time from time 1 to time t is 

 
( )1ˆ ˆ

ˆ
1

t

t

µ µ−
Ψ =

−
. 

 
Note that if the underlying stochastic process is 

stationary so that tλ λ≡ , then  

 
( )

( )
1

2

ˆ ˆ
ˆ

ˆ1

t s s

s st p

µ µ −

=

−
Ω = ∑

−
 

is also an unbiased estimator of ∆  so that one could 
synthesize the two types of analysis by using a linear 

combination of ∆̂  and Ω̂  to estimate ∆ . However, such a 
statistic would be vulnerable to both types of inferential 

threats—those that threaten ∆̂ and those that threaten Ω̂ .  
 
The prime question for this paper is the relationship 

between ∆̂  and Ψ̂ . Due to the fact that a large value of ∆  
in the absence of underlying process drift will tend to make 
both ∆̂  and Ψ̂ large, some researchers’ intuition is that the 
two statistics are positively correlated. It is proven in the 
appendix that this is false. They are, in fact, asymptotically 
uncorrelated, as stated in Theorem 2. If the two statistics 
have a joint asymptotic bivariate normal distribution, this is 
enough to demonstrate asymptotic independence. 

 
Theorem 2. If 2t =  and if 2n is large enough and 2p is 

sufficiently far from 1 so that 2 2

2 2

ˆ
O(1 / )

ˆ

p p
E n

q q

 
= + 

 
 and 

2 2

1 1
O(1/ )

ˆ
E n

q q

 
= + 

 
, then Cov ( )ˆ ˆ, 0 O(1/ )n∆ Ψ = + .  

Proof: See appendix. 
 
Note: If the sample sizes and exposure probabilities are 
such that the chance of a sample where everyone is either 
exposed or unexposed is not vanishingly small, then in 
practice, the stratum would be collapsed with another 
stratum. 
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6. Summary 
 
For the evaluation of public education campaigns 

that are national in scope and start before the evaluation 
starts, it might be reasonable to measure both temporal 
trends and dose-response relationships. If both approaches 
are used, then at some point, it will be necessary to try to 
reconcile results from the two. When this is done, it is 
important to consider the joint properties of test statistics 
from the two approaches. Using a typical standard of 
evidence for each of the two prior to synthesis results in a 
nearly insuperable standard of evidence for the efficacy of 
the campaign. We have indicated how to adjust the sizes of 
the hypothesis tests associated with each approach so as to 
attain the desired overall test size. The details depend on 
the perceived inferential threats attendant upon each 
approach. Unless there is substantial doubt that a 
reasonably adequate set of confounders has been measured 
and there is great confidence that the time series would 
have been flat in the absence of the campaign, our 
preference would be to maintain a high standard of 
evidence for the dose-response analysis and largely ignore 
the temporal analysis. If the study were to continue for 
several years, one might consider eventually giving more 
weight to the temporal analysis. However, for early reports, 
the dose-response analysis seems to be the best approach. 
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Appendix 
 
For simplicity, the proof is restricted to two 

timepoints. Assume that two nonoverlapping samples are 
selected at the two time points and that the population is 
large enough so that the finite population correction factor 
can be ignored. Note that we have two samples of { tid } at 

time 1. These will be denoted as { 1id ′ } and { 1id ′′ }, 

respectively. Their sample means will be denoted as 1p̂′  

and 1p̂′′ . Before demonstrating the main result, it will be 
useful to state several lemmas. 

 
Lemma 1. The conditional expectation of ∆̂  given {d} and 

{u} is E ( ) ( )1
1

2

ˆ ˆ,
ˆ2

d u Z p
q

∆ ′∆ = − + ∆ , 

where 
2 1

2

i i
i

i
i

d d

Z
d

′′∑

=
∑

. 

Lemma 2. E ( )ˆ u∆ = ∆ .  

Proof: Since both samples are unbiased, ( ) 1E pZ =  and 

( ) 11ˆE pp′′ = . 

Lemma 3. E ( ) ( )2 2 2 1
ˆ ˆ,d u p u uΨ = ∆ + +−  ( )1 1 1ˆ ˆp p′′ ′∆ −  

and E ( ) 2 2 2 1
ˆ ( )u p u uΨ = ∆ + − . 

Theorem 2. If 2t =  and if 2n  is large enough and 2p  is 

sufficiently far from 1 so that 2 2

2 2

ˆ
O(1 / )

ˆ

p p
E n

q q

 
= + 

 
 and 

2 2

1 1
O(1/ )

ˆ
E n

q q

 
= + 

 
, then Cov ( )ˆ ˆ, 0 O(1/ )n∆ Ψ = + . 

Proof: Using standard conditioning arguments,   

Cov ( )ˆ ˆ,∆ Ψ  = Cov ( ) ( )ˆ ˆE , Eu u ∆ Ψ
 

 

 +E ( ) ( ){ }ˆ ˆCov E , , E ,u d u d u ∆ Ψ
 

 

+ ( ){ }ˆ ˆE E Cov , ,u d u ∆ Ψ
 

. (1) 

We examine each of the three covariances in turn 
from left to right. Using Lemmas 2 and 3, the first term of 
(1) is: 

Cov ( ) ( )( )ˆ ˆE , Eu u∆ Ψ =Cov ( )2 2 2 1, ( )p u u∆ ∆ + − =0 

Now taking the middle term of (1), 

E ( ) ( ){ }ˆ ˆCov E , , E ,u d u d u ∆ Ψ
 

 

= E ( )1
1

2
ˆ ,Cov

ˆ2
Z p

q

 ∆ ′′− + ∆ 

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( ) ( ) }2 1 12 1 1 1ˆ ˆ ˆp uu u p p′′ ′′ ′∆ + + ∆ − −   

= ( )1
1 2 2 1 1

2
ˆ ˆ ˆ,Cov

ˆ2
Z p p p

q

∆ ′′ ′′− ∆ + ∆ 
 

 

1
2 12 1

2 2
ˆ ˆ, ,Cov Cov

ˆ ˆ2

Z Z
p p

q q

 ∆    ′′= ∆ + ∆ +    
    

 

1 1
2 12 1

2 2

ˆ ˆ
ˆ ˆ, ,- Cov Cov

ˆ ˆ
p p

p p
q q

′′ ′′    ′′∆ − ∆    
   

. (2) 

Taking each of these terms in turn,  

{ }2 2 2
2 2

1
2

2

2
1 2

22

ˆ ˆ, ,Cov E Cov
ˆ ˆ

ˆ,+ Cov
ˆ

ˆ 1
0 E E

ˆˆ

0 O(1/ );

Z Z
p p d

q q

p
p
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Having demonstrated that the first and third 

component of (1) are exactly 0, and the second term is 
approximately zero, this completes the proof.  
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