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1. Introduction

In the analysis of complex survey data, one often use
a nominal pivotal quantity

t0 = v−1/2(θ̂ − θ0) (1)

in a test of the null hypothesis H0 : θ = θ0 vs. H1 :
θ 6= θ0, where θ is the univariate parameter of in-
terest and v is an estimator of the variance of the
approximate distribution of θ̂. The test will reject
H0 if

|t0| > z, (2)

where z is the (1 − α/2) quantile of standard nor-
mal distribution. Under a complex sample design

and regularity conditions v−1/2(θ̂ − θ0)
L→ N(0, 1)

(e.g., Skinner, et al. 1989, Subsection 2.14) pro-

vided E(θ̂) = θ0; the approximate distribution of

n1/2(θ̂ − θ0) is normal with mean equal to zero and
variance equal to V ; and nv → V in probability.
However, due to limitations of the sample design,
the data collection process or proposed estimation
methods, test procedures based on t0 may be af-
fected by: (1) bias of the point estimators, (2) in-
flation in the variance of the point estimator, and
(3) bias of the variance estimator. These limitations
can have a serious effect on the power curve of the
test, and the coverage rates and mean width of asso-
ciated confidence intervals. To study this issues, we
will develop several results on the asymptotic prop-
erties of t0. In addition, the corresponding power
curves and confidence bounds for the power curves
are developed. Examples will be given based on the
Consumer Expenditure Survey data.

2. Properties of the Nominal Pivotal
Quantity under Moderate Devia-
tions from Ideal Conditions

Under the assumption that θ̂ is unbiased for θ, we
may rewrite the hypothesis as

H0 : E(θ̂) = θ0 vs. H1 : E(θ̂) 6= θ0 , (3)

where the expected value is evaluated with respect to
the sample design. The following lemma shows the
asymptotic properties of the nominal pivotal quan-
tity under moderate deviations from standard ideal-
izied conditions.

Lemma 1. Assume V −1/2n1/2[θ̂−E(θ̂)]
L→ N(0, 1),

and for some constants a, b, and c,
C1 = n1/2|E(θ̂)− θ0| = O(n−a),
C2 = [E(v)/V ]1/2 = 1 +O(n−b),
C3 = [n v/E(v)]−1/2 = 1 +Op(n

−c).
Then, for t0 defined in (1), consider the following
four cases.

Case (1): If a, b, c > 0, then t0
L→ N(0, 1).

Case (2): If a, c > 0, and b = 0, then

[E(v)/V ]1/2 t0
L→ N(0, 1).

Case (3): If b, c > 0, and a = 0, then

t0 − V −1/2n1/2[E(θ̂)− θ0]
L→ N(0, 1).

Case (4): If a = b = 0, and c > 0, then

[E(v)/V ]1/2{t0 − V −1/2n1/2[E(θ̂)− θ0]}
L→ N(0, 1).

Case (1) shows that if we have unbiased point es-
timator and a variance estimator that is approxi-
mately unbiased and relatively stable, then t0 is dis-
tributed asymptotically as a N(0, 1) random vari-
able. Case (2) shows that if we use a variance es-
timator that has a nontrivial relative bias, the dis-
tribution of t0 will have a variance that will be in-
flated (deflated) depending on the value of V/E(v).
This will affect the significance levels of the hypothe-
sis tests and coverage rates for associated confidence
interval as discussed in Skinner, et al. (1989, page
29). Under Case (3), when b, c > 0, and a = 0,
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the bias [E(θ̂) − θ0] has the same order of magni-
tude as the standard error, i.e. O(n−1/2), and it will
produce a horizontal shift in the distribution of t0.
Moreover, if b, c > 0, and a < 0, then the point es-
timation bias is of larger order of magnitude than
that of the standard error. Thus, the bias will dom-
inate the asymptotic properties of t0 and the test
will have a type II error that converges to 1. Sec-
tion 3 will present more detailed discussion of the
issues of associated power of the test. Under Case
(4), we have both a nontrivial bias [E(θ̂) − θ0] and
bias in variance estimator. Notice that in addition
to Lemma 1, if a, b > 0, and c = 0, we have limited
stability in variance estimator v. The test statistic
t0 is no longer approximately distributed as a nor-
mal random variable. If dvV −1 follows a chi-square
distribution with d degrees of freedom, independent
of θ̂, then t0 has a t distribution on d degrees of
freedom. This will lead to issues of small degrees of
freedom problems in complex surveys (see, for ex-
ample, Korn and Graubard 1990; Eltinge, Parsons,
and Jang 1997).

3. Power of the Test

The power of a statistical test is defined as the prob-
ability that the test leads to rejection of H0 given
a specific true value of the parameter θ. A power
curve may display power to reject H0 for different
possible true values θ defined in the H1, or display
the power to reject H0 for a fixed value of the pa-
rameter θ specified in the point alternative hypoth-
esis H1 but with different possibly wrong null values
θ0. The curve displays the sensitivity of the test in
distinguishing between specific null and alternative
hypothesis value of θ.

Power curves provide a useful graphical tool to ex-
plore the inferential effects of point estimation bias,
variance estimation bias, and variance estimator in-
stability. Bias in a point estimator leads to a cor-
responding horizontal shift in the associated power
curve. A positive (negative) bias in a variance es-
timator will produce a downward (upward) vertical
shift in the power curve. Moreover, inflation in the
true variance of a point estimator will attenuate the
slope of the power curve at a given horizontal dis-
tance from θ0.

In this section we consider power of the test given
in (3) with the test statistic and the decision rule as
given in (1) and (2), respectively.

Lemma 2. Assuming that V −1/2n1/2[θ̂ − E(θ̂)]
L→

N(0, 1) and define γ(θ0) = pr(|t0| > z | θ0), the
power of the nominal level-α hypothesis test (3) with
test statistic defined in (1) and decision rule given in

(2), for various possible values of θ0. Then γ(θ0) =
1− Φ(BU ) + Φ(BL) + o(1), where

(BL, BU ) =
(
V −1/2n1/2[E(θ̂)− θ0]±

z [E(v)/V ]1/2[v/E(v)]1/2
)
. (4)

and Φ(·) is the standard normal distribution func-
tion.

For the cases outlined in Lemma 1, we will now dis-
cuss the approximation and estimation of the asso-
ciated power functions.

3.1 The Effect of Bias in Point Estimators

We first consider the power of a test that uses a
biased point estimator, and an approximately unbi-
ased and relative stable variance estimator.

Corollary 3.1. Assume conditions C1, C2 and C3

for some b, c > 0, and a = 0. In addition, as-

sume that V −1/2n1/2[θ̂−E(θ̂)]
L→ N(0, 1). Then the

power function of the nominal level-α hypothesis test
of H0 : E(θ̂) = θ0 with test statistic defined in (1)
and decision rule given in (2), for various possible
values of θ0 is given as

γ(θ0) = 1− Φ(BU ) + Φ(BL) +O(max(n−b, n−c)),

where

(BL, BU ) =
{
V −1/2n1/2[E(θ̂)− θ0]± z

}
. (5)

The estimated of the true power curve (5) may be

obtained by direct subtitution of θ̂ for its expectation
and v0 for V , so that γ̂(θ0) = 1 − Φ(B̂U ) + Φ(B̂L),
where

(B̂L, B̂U ) =
{
v
−1/2
0 n1/2[θ̂ − θ0]± z

}
. (6)

Suppose now we have another point estimator θ̃,
say, for θ. Under the assumption that V −1/2n1/2[θ̃−
E(θ̂)]

L→ N(0, 1), the estimated power for testing

H0 : E(θ̃) = θ0 is given as γ̂(θ0) = 1 − Φ(B̂U ) +

Φ(B̂L), where

(B̂L, B̂U ) =
{
v
−1/2
0 n1/2[θ̃ − θ0]± z

}
. (7)

Overlaid power curves for testingH0 : E(θ̂) = θ0 and

H0 : E(θ̃) = θ0 can be used to explore the effect of
possible bias in a point estimator to the power. For
example, under assumption that θ̃ is an unbiased
estimator for θ0, the horizontal shift of the power
curve (6) relative to the power curve (7) indicates

that θ̂ is biased for θ0. If the bias [E(θ̂)− θ0] is of a
larger order of magnitude than that of the standard
error, i.e. condition C1 with a < 0, then the test will
have a type II error that converges to 1.
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3.2 The Effect of Bias in Variance Estima-
tors

Consider two different estimators of the true vari-
ance V . First, let v = v0 be a consistent estimator
of V . For example, v0 may be a design based vari-
ance estimator constructed using the linearization
method or related replication methods (see, for ex-
ample, Shao 1996). Also, consider a second variance
estimator v = v1 that may be biased. For example,
v1 may not fully account for all features of sample
design. In keeping with Case (2) and (4) of Lemma
1, now consider a hypothesis test when we have not
only a nontrivial bias in point estimator, but also a
nontrivial bias in its variance estimator. An example
of such a case arises when we use a biased variance
estimator v1.

Corollary 3.2. Assume conditions C2 and C3 for
some c > 0, b = 0, and assume that |E(θ̂) − θ0| ≤
Mn−1/2−a for some M > 0 and a = 0. In addition,

assume that V −1/2n1/2[θ̂ − E(θ̂)]
L→ N(0, 1). Then

the power of the test of the null hypothesis (3) is
given as γ(θ0) = 1 − Φ(BU ) + Φ(BL) + Op(n

−c),
where (BL, BU ) =

(
V −1/2n1/2[E(θ̂)− θ0]± z[E(v)/V ]1/2

)
. (8)

A bias in a variance estimator will shift the origi-
nal power curve vertically. In this work we define a
positive bias if E(v)/V > 1 and the negative bias if
E(v)/V < 1. A positive bias will produce a down-
ward vertical shift, reflecting the conservative prop-
erty of the associated test. On the other hand, a
negative bias will produce an upward vertical shift,
reflecting the fact that the associated test has a type
I error in excess of its nominal level α. For example,
for a level-α test, at E(θ̂) = θ0 if the variance esti-
mator bias is positive, then γ(θ0) < α. On the other
hand, if the bias is negative, γ(θ0) > α.

Direct substitution of θ̂ for its expectation, v1 for
E(v), and v0 for V leads to a point estimator of

γ(θ0), γ̂(θ0) = 1− Φ(B̂U ) + Φ(B̂L), where

(B̂L, B̂U ) =
(
v
−1/2
0 n1/2(θ̂ − θ0)± z

√
v1/v0

)
. (9)

Overlaid power curves of (6) and (9) can be used
to explore the effect of bias in variance estimator to
the power. A vertical shift of power (9) relative to
(6) indicates that v1 is biased for V . In addition, if
v0 < v1, then the slope of estimated power function
(6) is steeper than that of (9).

4. Confidence Bounds for a Power
Curve

Note that in the work given above, we are assum-
ing that our power is a function only of some known
parameters, and the unknown parameter θ. For ex-
ample, in Subsection 3.1 for the power given in ex-
pression (5) we are assuming that γ(θ) is a function
of a known variance V and the unknown parameter
E(θ̂).

Let ΘC be a (1 − ω)100% confidence set for θ.
Then a corresponding (1 − ω)100% confidence set
for γ(θ) is
{

min
θ∈ΘC

[γ(θ)] , max
θ∈ΘC

[γ(θ)]

}
= (γL , γU ), say. (10)

Therefore, for a fixed null hypothesis,

P [γ(θ) ∈ (γL , γU )] ≥ P [θ ∈ ΘC ] ≥ 1− ω

due to the definitions of (γL , γU ) and ΘC .

4.1 Unbiased Variance Estimator

Consider the special case defined by the test H0 :
E(θ̂) = θ0 where we assume that our variance esti-
mator is unbiased and stable. Recall from Corollary
3.1 that under these conditions,
γ(θ0)

.
= 1− Φ(BθU ) + Φ(BθL), where (BθL, BθU ) =

bθ ± z and bθ = V −1/2n1/2[E(θ̂) − θ0]. Suppose
we have a design based (1 − ω)100% confidence

set ΘC for E(θ̂). For example, under the usual
normal approximations, ΘC can be calculated as
θ̂ ± z(1−ω/2)

√
v0. In addition, let

BC = {bθ : θ ∈ ΘC} = (bθL, bθU )

be the corresponding confidence set for bθ. Applica-
tion of (10) leads to the confidence interval for γ(θ)

(γL, γU ) =

{
min
bθ∈BC

[1− Φ(BθU ) + Φ(BθL)] ,

max
bθ∈BC

[1− Φ(BθU ) + Φ(BθL)]

}
.

Arguments similar to those for the power func-
tion of a two-sided uniformly most powerful unbiased
level α test (Lehmann 1986, pp. 101-103) show that
γ(θ) = 1 − Φ(bθ + z) + Φ(bθ − z) is not monotone
in bθ. However, for bθ ∈ (−∞, 0), γ(θ) is strictly
decreasing; and for bθ ∈ (0,∞), γ(θ) is strictly in-
creasing. In particular, limbθ→−∞ Φ(bθ± z) = 0 and
limbθ→+∞ Φ(bθ ± z) = 1, so γ(θ) ↑ 1 as |bθ| → ∞,
and γ(θ) will reach its minimum value of α at bθ = 0.
Thus, an approximate (1−ω)100% confidence inter-
val for γ(θ) as defined in (10) can be constructed as
follows
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(a) If (bθL, bθU ) 3 0, γL = α, and

γU = max[1− Φ(bθU + z) + Φ(bθU − z) ,

1− Φ(bθL + z) + Φ(bθL − z)].

(b) If bθU < 0, then γL = 1−Φ(bθU+z)+Φ(bθU−z)
and γU = 1− Φ(bθL + z) + Φ(bθL − z).

(c) If bθL > 0, then γL = 1−Φ(bθL+z)+Φ(bθL−z)
and γU = 1− Φ(bθU + z) + Φ(bθU − z).

Figure 1 shows confidence bounds of power curve
with several values of confidence levels under the as-
sumption that the variance estimator used in the
test is unbiased and relatively stable.
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Figure 1: The 95%, 90%, and 50% confidence
bounds on power curve of the α = 5% test.

4.2 Biased Variance Estimator

Now consider the hypothesis test (3) where we have
bias in the variance estimator v; for example, v = v1.
Recall from Corollary 3.2, γ(θ0)

.
= 1 − Φ(BθU ) +

Φ(BθL), where (BθL, BθU ) = bθ ± z[E(v)/V ]1/2. In
addition, assume that we have a second variance esti-
mator ṽ that is approximately unbiased for V . Such
an example is ṽ = v0. In addition to condition in
Lemma 1, we assume condition C4 as follows

C4 = {nṽ}−1/2 E(ṽ)1/2 = 1 +Op(n
−d)

for some constant d.

Now consider two cases,
Case (I): Assume conditions C2, C3, and C4 such
that b, c, d > 0, so that the variability in v and ṽ

is small relative to the variability in θ̂. Then a
(1 − ω)100% confidence interval for γ(θ0) follows

from a (1−ω)100% confidence set for E(θ̂) and from
expression (8). Similar to those in Subsection 4.1, let
ΘC be the (1− ω)100% design based confidence set

for E(θ̂), and let BC = {bθ : θ ∈ ΘC} = (bθL, bθU )
be the corresponding confidence set for bθ. Then,
an algorithm similar to that for the confidence set
in Subsection 4.1 can be constructed as follows

(a) If (bθL, bθU ) 3 0, then
γL = 1− Φ(+z

√
v/ṽ) + Φ(−z

√
v/ṽ),

and
γU = max

[
1− Φ(bθU + z

√
v/ṽ)+

Φ(bθU − z
√
v/ṽ) ,

1− Φ(bθL + z
√
v/ṽ) + Φ(bθL − z

√
v/ṽ)

]
.

(b) If bθU < 0, then
γL = 1− Φ(bθU + z

√
v/ṽ) + Φ(bθU − z

√
v/ṽ)

and
γU = 1− Φ(bθL + z

√
v/ṽ) + Φ(bθL − z

√
v/ṽ).

(c) If bθL > 0, then
γL = 1− Φ(bθL + z

√
v/ṽ) + Φ(bθL − z

√
v/ṽ)

and
γU = 1− Φ(bθU + z

√
v/ṽ) + Φ(bθU − z

√
v/ṽ).

Case (II): Assume conditions C2, C3, and C4

such that b, c > 0, but assume that ṽ has a nontrivial
amount of variability. Then a confidence interval for
γ(θ0) is developed based on confidence set of vector
of parameters ψ = (θ, V )′. Suppose Ψ1−ω is an ap-
proximate (1−ω)100% confidence set for ψ treating
v as known and equal to E(v). Then, a confidence
interval for γ(θ0) is defined as

(γL , γU ) =

{
min

ψ∈Ψ1−ω
[γ(θ)] , max

ψ∈Ψ1−ω
[γ(θ)]

}
. (11)

Since ψ contains two parameters θ and V , then we
have three possible confidence sets for Ψ1−ω based
on dependency/independency of θ and V . First, let

Θ1−ω = [θ̂ ± z(1−ω/2)ṽ
1/2] be the usual normal ap-

proximation (1 − ω)100% confidence interval for θ.
Second, if we assume that dṽV −1 is distributed as a
chi-square random variable on d degrees of freedom,
then pr[c−1

1−ω/2,d d ṽ < V < c−1
ω/2,d d ṽ] = 1 − ω,

where c1−ω/2,d is the (1 − ω/2) quantile of a chi-
square distribution on d degrees of freedom. Thus,
the corresponding (1 − ω)100% confidence interval
for V is V1−ω = (c−1

1−ω/2,d d ṽ , c
−1
ω/2,d d ṽ).

Now, three possible confidence sets for Ψ1−ω can
be computed as follows.
Case (IIa): Assume that n1/2(θ̂ − θ) ∼ N(0 , V )
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independent of V −1d ṽ ∼ χ2
d . Then

Ψ
(I)
1−ω = {(θ, V ) : θ ∈ Θ(1−ω)1/2 and V ∈ V(1−ω)1/2}

where Θ(1−ω)1/2 and V(1−ω)1/2 are (1 − ω)1/2100%
confidence sets for θ and V respectively.

Case (IIb): If we can not reasonably assume that

ṽ is independent of θ̂, then we can construct the
Bonferroni confidence set

Ψ
(B)
1−ω = {(θ, V ) : θ ∈ Θ1−ω/2 and V ∈ V1−ω/2} .

Case (IIc): When d is large, we may assume that

n1/2[(θ̂, ṽ)′ − (θ, V )′] ∼ N(0,Ω). Given an approxi-

mately unbiased estimator Ω̂ of Ω, we may construct

a Scheffé type confidence set Ψ
(S)
1−ω =

{(θ, V ) : [(θ̂, ṽ)− (θ, V )]nΩ̂−1[(θ̂, ṽ)− (θ, V )]′

≤ (2d)/(d− 1)Fω2,d−1}

where Fω2,d−1 is the upper ω point of an F distribu-
tion with 2 and (d − 1) degrees of freedom. Then,
the confidence interval for γ(θ0) follows from (11).

5. Test of the Expected Value of
the Mean Estimators for the Con-
sumer Expenditure Survey

Empirical example in this paper is motivated based
on the work in Eltinge, Sukasih, and Weber (2002),
where the authors proposed a model-assisted esti-
mator for the annual means of group expenditures
(known as the six digit Universal Classification Code
or UCC) from the U.S. Consumer Expenditure Sur-
vey (CES) data. CES collects the data through two
modes of data collection, known as the diary and
the interview, respectively. Some UCCs are collected
through the interview only, some others are collected
through the dairy only, and still some others are col-
lected through both the diary and the interview. For
some UCCs that are collected through both the di-
ary and the interview, data are available from five
potential data sources: (1) interview data for the
most recent record month, (2) interview data for the
second recent record month, (3) interview data for
the most distant record month, (4) diary data from
the first week, and (5) diary data from the second
week of data collection. However, the currently pub-
lished estimates are based only on the diary data,
where the variances are calculated through the Bal-
anced Repeated Replication (BRR) method.

Eltinge, et al. (2002) proposed a generalized lin-
ear model that models the relationship between es-
timated means for the five data sources and the true

mean value. Under this model, the point estima-
tor (and its variance) that combined all five data
sources can be calculated through the generalized
least-squares method. In addition, since CES pro-
vides replicates data, then the variance for the pro-
posed estimator can also be calculated through the
BRR method. Thus, for our empirical example here,
two different point estimators (let’s call them as the
direct estimator and the estimated generalized least-
squares (or EGLS) estimator) are available for com-
parison. In addition, for the EGLS estimator there
are two variance estimators available, i.e. based on
EGLSE and BRR methods.

5.1 The Effect of Bias in Point Estimators

Under the assumption that the two diaries are un-
biased, let θ̃ be the direct estimator calculated as a
simple mean of two diaries. In addition, let θ̂ be
the EGLS estimator. Let v(θ̃) and v(θ̂), respec-
tively, denotes the variance computed through the
BRR method.

The estimated power of the test

H0 : E(θ̂) = θ0 (12)

using test statistic t1 = [v(θ̂)]−1/2(θ̂ − θ0), can be
overlaid with the estimated power of the test

H0 : E(θ̃) = θ0 (13)

using test statistic t2 = [v(θ̃)]−1/2(θ̃ − θ0). Under

the assumption that θ̃ is unbiased for θ0, if θ̂ is sig-
nificantly biased, we will see a significant horizontal
shift in the estimated power curves of (12) relative
to those of (13).

Figure 2 represents overlaid power curves of test-
ing (12) and (13). In Figure 2 the dashed lines repre-

sent the power curves for testing H0 : E(θ̂) = θ0. In
addition, the solid lines represent the power curves
for testing H0 : E(θ̃) = θ0. Under the assump-

tion that θ̃ is unbiased for θ0, then for Cable TV
(figures (B) and (C)), estimator θ̂ shows some pro-
nounced bias, indicated by horizontal shift of the
power curves for testing H0 : E(θ̂) = θ0 relative to

the power curves for testing H0 : E(θ̃) = θ0. On the
other hand, for Men’s Accessories and Sewing Pat-
terns (figures (A) and (D)), there are no substantial

bias effects of θ̂ to the power curves.

5.2 The Effect of Bias in Variance Estima-
tors

Two possible variance estimators may be used to test
H0 : E(θ̂) = θ0 with test statistic t0 = (θ̂− θ0)/v1/2.
We may use variance estimator v = v0 computed
through the BRR method, or variance estimator v =
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Figure 2: Power curves of testing H0 with unbiased
and stable variance estimator, where point estima-
tor is unbiased (A and D), negative biased (B), and
positive biased (C).

v1 computed directly through the generalized least
squares method. However, under assumption that
v0 is unbiased, then the use of v1 may results in
vertical shift (upward or downward) of the power
curve as explained in Subsection 3.2.

Figure 3 represents the overlaid estimated power
curves of H0 : E(θ̂) = θ0 with test statistic t0 =

(θ̂ − θ0)/v1/2, using v = v0 and v = v1, separately.
The solid lines is calculated with v = v0, i.e. under
the assumption that v0 is the unbiased variance es-
timator, whereas the dashed lines is calculated with
v = v1. Figures (E) shows an downward vertical
shift, indicating a positive bias of v1 relative to v0.
On the other hand, figures (F) shows an upward ver-
tical shift, indicating a negative bias of v1 relative to
v0. However, in figures (G) v1 may not have a sig-
nificant bias effect relative to v0.
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