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Abstract:

There are many situations in which it is desirable to de-
rive reliable estimators for small geographical areas or
small subpopulations, from existing survey data. The
basic random e�ects model and corresponding small area
predictors for small area estimation is introduced. There
are also many situations in which it is necessary to have
the total of the small area predictors equal to the total of
the direct survey estimates for many small areas. This
motivates the small area estimation under a restriction,
which forces the sum of the small area predictors equal
to certain benchmark. Several small area predictors un-
der a restriction are reviewed. A criterion that uni�es
the derivation of these restricted predictors is proposed.
The predictor that is the unique best linear unbiased es-
timator under the criterion is derived. The derivation
of the mean square error (MSE) of the restricted predic-
tiors is discussed. Simulations are used to demonstrate
that imposing a restriction can reduce the bias compare
to that of the small area predictors without restriction.

1. Introduction

There are many situations in which it is desirable to de-
rive reliable estimators for small geographical areas or
small subpopulations from existing survey data. How-
ever, sample sizes for these small areas are typically small
due to their relative size. Therefore, the usual direct sur-
vey estimators for such small areas, based on data only
from the sample units in the area, are likely to yield
unacceptably large standard errors (compared to the in-
teresting statistic). This makes it necessary to \borrow
strength" from related area using a model-dependent es-
timator to �nd more accurate estimates for the given
area or, simultaneously, for several areas.
The random e�ects model for small area estimation is

yi = xTi � + zi bi; (1)
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and

Yi = yi + ei i = 1; � � � ; n; (2)

where yi are unobservable small area means of interest,
Yi are observable direct survey estimators, xTi are known
constants (auxillary information), zi are known positive
constants, � is the vector of regression parameters, the
bi's are independent and identically distributed random
variables with E(bi) = 0 and V (bi) = �2b , and the ei's are
sampling errors with E(eijyi) = 0 and V (eijyi) = �2ei:

Small area estimation is the construction of predictors
for yi and the estimation of the MSE of the small area
predictors.
Combining (1) and (2), we obtain the model

Yi = xTi � + zi bi + ei; i = 1; : : : ; n; (3)

which is a special case of the general mixed linear model.
When the variance components are known, the best lin-
ear unbiased predictor (BLUP) of yi is

eyHi = iYi + (1� i)x
T
i
b�; (4)

where b� =
�
X

0

V
�1
X
��1

X
0

V
�1Y, and

i = z2i �
2
b (z

2
i �

2
b + �2ei)

�1: (5)

See Henderson (1963). This result does not depend on
normality for bi and ei.

We use eyH instead of the direct survey estimator Yi
to estimate yi for each small area i because Yi has a
large variance as an estimator of yi due to small sam-
ple size. However, the direct survey estimator of the
mean across all (or several) small areas is often satis-
factory when the sample size is large. For example, the
direct survey estimator in Fuller and Wang (2000) for
urban change acres Yi has a large variance as an estima-
tor of the true urban change acres yi in the i-th small
area (HUCCO). However, the direct survey estimator for
state urban change acres

P
i Yi is design unbiased for the

true urban state change acres, and it has relatively small
variance. Therefore, it is often desirable to put a restric-
tion on the weighted total of the small area estimators
such that the weighted total of the small area estimators
is equal to the the weighted total of the direct survey
estimators.
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Equivalently, we can put the restriction on the
weighted mean of the small area estimators. Thus, we
want to modify the small area estimators such that

nX
i=1

!ibyMi =
nX
i=1

!iYi; (6)

where !i > 0; i = 1; � � � ; n, are the weights,
nX
i=1

!i = 1,

and byMi is the adjusted small area estimator. Usually the

!i are the sampling weights such that
nX
i=1

!iYi is an un-

biased estimator of the population mean. One heuristic
approach is to make a ratio adjustment to obtain

byMi =

0@ nX
j=1

!jbyHj
1A�10@ nX

j=1

!jYj

1A byHi ; (7)

where byHi is the EBLUP of yi. This adjustment was
used in Fuller and Wang (2000). The disadvantage of
this approach is that it is di�cult to assess the bias and
variance of byMi .
Pfe�ermann and Barnard (1991) proposed an alterna-

tive approach. The mixed model equation for the ran-
dom e�ects model de�ned in (3) is�
X 0��1

e X X 0��1
e Z

Z0��1
e X Z0��1

e Z+��1
b

� �
�

b

�
=

�
X 0��1

e Y

Z0��1
e Y

�
;

(8)
where �b = diag(z21�

2
b ; � � � ; z

2
n�

2
b ) and �e =

diag(�2e1; � � � ; �
2
en). Let eyH = (eyH1 ; � � � ; eyHn )T denote the

BLUP estimator of y = (y1; � � � ; yn)T . We have

eyH =X b� + Zbb; (9)

where b� and bb are any solutions to the mixed model
equation (8). Note that �nding a solution to the mixed
model equation (8) is equivalent to �nding a solution to
the minimization problem

min
�; b

�
(Y �X� �Zb)T��1

e (Y �X� � Zb)

+bT��1
b b
o
: (10)

To make (6) hold, Pfe�ermann and Barnard (1991) pro-
posed the modi�ed estimator

byM =X b�M + ZbbM ; (11)

where b�M and bbM are any solutions to the minimization
problem (10) with � and b subject to the constraint

nX
i=1

!i(x
T
i � + zibi) =

nX
i=1

!iYi: (12)

This leads to the estimator

byMi = eyHi + [V ar(ey:)]�1cov(eyHi ; ey:)[ nX
j=1

!jYj � ey:]; (13)

where ey: = nX
i=1

!ieyHi : Pfe�ermann and Barnard did not

give the expression for cov(eyHi ; ey:) and V ar(ey:) in their
paper.
The Pfe�ermann-Barnard (1991) approach is a natural

way to make the estimator byMi satisfy (6). The deriva-
tion of (13) relies on the fact that b can be treated as a
�xed parameter. When there is no restriction, Hender-
son (1950) showed that we can solve the mixed model
equation (8) and estimate b as a �xed parameter. How-
ever, (12) puts a constraint on the random vector b. The
constraint (12) makes the distribution of b a degenerate
one. Thus, the variance structure of b is changed and
V ar(b) 6= diag(z21�

2
b ; : : : ; z

2
n�

2
b ). The underlying model

assumptions about the random e�ects model (1) have
been changed by the constraint. It is not clear that the
estimation of b as a �xed parameter is still justi�ed.
Isaki, Tsay and Fuller (2000) imposed the restriction

by a procedure that, approximately, constructed the best
predictors of n � 1 quantities that are estimated to be

uncorrelated with
nX
i=1

!iYi. Let

! = (!1; � � � ; !n)
T ; (14)

and
� = �b +�e = V ar(Y ): (15)

Let b� be the estimator of � and let �C = �AT , where

T =

�
!0

0n�1 In�1

�
; (16)

�A =

�
1 00n�1

��an�1 In�1

�
;

�an�1 =
�
!T b�!��1 �

0n�1 In�1

� b�!:
The modi�ed estimator of y is

byM = Y � �C
�1
B �C(In � b�)(Y �X b�); (17)

where b� = b�b
b��1

, and

B =

�
0 00n�1

0n�1 In�1

�
: (18)

Isaki et. al. argued that the estimator in (17) gave

the BLUP of the n� 1 quantities orthogonal to
nX
i=1

!iYi
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when variance components parameters are known, but
no other theoretical justi�cation was provided for the
particular choice of �an�1.
In light of this fact, it is desirable to develope the-

ory for small areas estimation under restriction (6). We
consider restriction (6) as an adjustment problem in-
stead of a constraint problem proposed by Pfe�ermann
and Barnard. Suppose we have the small area estima-
tor byi. To make the modi�ed (adjusted) estimator byMi
satisfy (6), we construct byMi by allocating the di�er-

ence
nX
j=1

!jYj �

nX
j=1

!jbyj to the small area estimators

byi, i = 1; � � � ; n, according to a rule de�ned by

byMi = byi + ai

24 nX
j=1

!jYj �

nX
j=1

!jbyj
35 ; (19)

where
nX
i=1

!iai = 1. Clearly, the modi�ed estimator sat-

is�es (6).
The estimator de�ned in (7) is an estimator of the

form (19) since

byMi = byHi + ai

0@ nX
j=1

!jYj �

nX
j=1

!jbyHj
1A ; (20)

where ai =

0@ nX
j=1

!jbyHj
1A�1 byHi . The estimator de�ned

in (13) is also of the form (19) though the estimator
is derived from a constraint minimization problem. An
estimator similar to (13) proposed by Battese, Harter
and Fuller (1988) is

byMi = byHi + ai

0@ nX
j=1

!jYj �

nX
j=1

!jbyHj
1A ; (21)

where ai =

24 nX
j=1

!2
j
dV ar(byHj )

35�1

!idV ar(byHi ).

For the random e�ects model de�ned in (1) and

(2), b� = diag(z21b�2b + b�2e1; � � � ; z2nb�2b + b�2en), b� =
diag(b1; � � � ; bn); and bi = (z2i b�2b + b�2ei)�1z2i b�2b . After
some matrix operation, we can rewrite (17) in compo-
nent form, rather than matrix form, as

byMi = byHi + ai

0@ nX
j=1

!jYj �

nX
j=1

!jbyHj
1A ; (22)

where ai =

24 nX
j=1

!2
j
dV ar(Yj)

35�1

!idV ar(Yi). Therefore,

the Isaki, Tsay and Fuller estimator in (17) also has the

form of (19). We will discuss the properties of the mod-
i�ed estimator of the form (19) in this paper.

2. Best linear unbiased estimator under

a restriction

We want to �nd the \best" linear unbiased estimator
for y that satis�es restriction (6). Just as in the deriva-
tion of BLUP, we �rst assume the parameters for the
variance components are known. Let R(by) denote the
collection of all linear unbiased estimators that satis-
�es (6). Suppose the BLUP of y = (y1; � � � ; yn)T iseyH = (eyH1 ; � � � ; eyHn )T and eyH 62 R(by).
First, we need to de�ne the meaning of \best". Given

the constraint (6), we cannot obtain the BLUP for all

yi; i = 1; : : : ; n. Consider a family of estimators ey(k),
where

ey(k)i =

8>><>>:
eyHi if i 6= j;

eyHi + !�1
i

24 nX
j=1

!jYj �

nX
j=1

!jeyHj
35 if i = k:

(23)

In other words, ey(k) is the estimator in which every com-
ponent is the BLUP of yi except the k-th component is

the BLUP of yk plus !�1
k

24 nX
j=1

!jYj �
nX

j=1

!jeyHj
35. It is

easy to see that ey(k) 2 R(by). For any byM 2 R(by), there
is at least one component byMi 6= eyHi since eyH 62 R(by).
For any ey(k), where k 6= i,

V ar(byMi � yi) > V ar(ey(k)i � yi) = V ar(eyHi � yi) (24)

because eyHi is the BLUP of yk. Therefore, for anybyM 2 R(by), there are always at least another n � 1
estimators in R(by) with smaller prediction variance for
at least one component. This indicates that no estimator
can be found in R(by) with smallest prediction variance
for every component.
Since it is impossible to compare estimators in R(by)

component-by-component to �nd the best estimator,
some kind of overall criterion is desirable. A natural
choice is to �nd byM 2 R(by) that minimizes

Q(byM) =
nX
i=1

'iE(byMi � yi)
2; (25)

where the 'i; i = 1; : : : ; n are positive weights. Usually,
'i depends on the variance components. To obtain a
general result, we do not specify 'i now. We will discuss
the choice of 'i later. We give the major theorem of this
paper.
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Theorem 1 Assume the random e�ects model

Yi = xTi � + zibi + ei; i = 1; : : : ; n;

where the bi have independent identical distributions
with mean zero and variance �2b , the ei have indepen-
dent distributions with mean zero and variance �2ei, and
b = (b1; : : : ; bn)T is independent of e = (e1; : : : ; en)T .
Assume zi, �2b , and �2ei are known and � is unknown.
Let eyHi be the BLUP of yi de�ned in (4). Let

byMi = eyHi + �ai

0@ nX
j=1

!jYj �

nX
j=1

!jeyHj
1A ; (26)

where �ai =

 
nX
i=1

'�1
i !2

i

!
�1

'�1
i !i and !i are the �xed

weights of (6). Then byM = (eyM1 ; : : : ; eyMn )T is the
unique estimator among all linear unbiased estimators
that satis�es (6) and minimizes criterion (25). In other

words, byM is the unique best estimator in R(by) under
criterion (25).

Proof: See Appendix A.
Remark 1. When the variance components are unknown,
we replace the variance components in (5) with estima-
tors to obtain the empirical BLUP or EBLUP, denoted
by byHi . To impose the restriction (6), we de�ne the mod-
i�ed estimator

byMi = byHi + âi(
nX

j=1

!jYj �

nX
j=1

!jbyHj ); (27)

where byHi is the EBLUP.
Remark 2. If 'i = !iY

�1
i , we have that the ratio esti-

mator de�ned in (20) minimizes the criterion (25). Since
Yi could be less than zero and it is not reasonable to
have negative 'i, we can see that the ratio adjustment
is not always a good choice. If 'i = !i[cov(eyHi ; ey:)]�1,

where ey: =
nX

j=1

!jeyHj , we have the estimator (13) de-

rived by Pfe�ermann and Barnard (1991). The estima-
tors in (21) and (22) are estimators when the variance

components are unknown. When 'i = [dV ar(byHj )]�1, we
have the Battese, Harter and Fuller estimator of (21).
The Isaki, Tsay and Fuller estimator in (22) results from

'i = [dV ar(Yi)]�1. Therefore, Theorem 1 provides a uni-
�ed way to derive the estimators described in the intro-
duction part of this paper.

3. Choice of Criteria

Since the \best" estimator depends on the 'i used in
the criterion (25), we desire a reasonable choice of 'i.

To gain insight into the problem, we �rst assume all the
variance components to be known.
We argue that 'i = [V ar(Yi)]

�1 is the most reasonable
choice by showing the properties of the corresponding
modi�ed estimator. Let

_an�1 = (_a2; : : : ; _an)
0 =

�
!T�!

��1 �
0n�1 In�1

�
�!;

where ! is de�ned in (14) and � is de�ned in (15). Let
_C = _AT , where

_A =

�
1 00n�1

� _an�1 In�1

�
and T is de�ned in (16). We want to estimate y. Equiva-
lently, we can estimate _Cy = (�y; y2� _a2�y; : : : ; yn� _an�y)0,

where �y =
nX
i=1

!iyi. When there is no restriction, the

BLUP of _Cy is _CeyH by the property of BLUP. In other
words,

g_Cy = _CY � _C(In � �)(Y �Xb�): (28)

Let �Y =
nX
i=1

!iYi and observe that _CY = (�Y ; Y2 �

_a2 �Y ; : : : ; Yn � _an �Y )0. Note that Yi � _ai �Y ; i = 2; : : : ; n
are uncorrelated with �Y , i.e., (Y2 � _a2 �Y ; : : : ; Yn� _an �Y )

0

is a basis for the space that is orthogonal to �Y in the
space spanned by Y . Let _c01 be the �rst row of _C, _c01y =

�y =
nX
i=1

!iyi. To impose the restriction (6) on _Cy, we

only need to replace g_c01y with
nX
i=1

!iYi and use BLUP to

estimate the other n� 1 quantities in _Cy. This leads to
the modi�ed estimator

_CeyM = _CY �B _C(In � �)(Y �X b�); (29)

where B is de�ned in (18). To obtain the modi�ed esti-

mator for y, we multiply equation (29) by _C
�1

on both
sides to obtain

eyM = Y � _C
�1
B _C(In � �)(Y �X b�): (30)

This estimator does not depend on the choice of the
basis of the subspace (of the space spanned by Y ) that
is orthogonal to �Y . Therefore, (30) is derived by apply-
ing the restriction and making estimation based on the
information from the space that is orthogonal to �Y .
There are exactly n � 1 linearly independent BLUPs

in any n � 1 dimensional subspace spanned by Y that

does not contain �Y =
nX
i=1

!iYi. Let Cn�1Y be the space
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spanned by the n � 1 linearly independent BLUPs and
let Ca =

�
!;C0

n�1

�
0

: Similar to the derivation of eyM
in (30), we can impose the restriction (6) by using the

linear combination of
nX
i=1

!iYi and the n� 1 BLUPs to

construct the modi�ed estimator

fyaM = Y �C�1
a BCa(In � �)(Y �X b�): (31)

It is possible to derive some linear unbiased estima-
tors for y by using less than n � 1 linearly independent
BLUPs in the space spanned Y . Obviously, these esti-
mators are less e�cient than the estimators in the form
of (31). Therefore, the question, \which estimator for y
is the most reasonable estimator?" is equivalent to the
question, \which n� 1 BLUPs are the most reasonable
choice for constructing the restricted estimator?" If we

interpret restriction (6) as meaning that �Y =
nX
i=1

!iYi

is the best estimator for �y =
nX
i=1

!iyi, we should choose

to evaluate the n� 1 components that are orthogonal to
�Y . This indicates that the estimator in (30) is the most
reasonable estimator. Therefore, 'i = [V ar(Yi)]

�1 is the
most sensible choice for 'i. When the variance compo-
nents are unknown, we replace the variance components
with the corresponding estimated value. This leads to
the estimator in (22).
We further establish the relationship between the esti-

mators of the form (31) and estimator of the form (19).
Let a be the �rst column of C�1

a and let

by = (by1; : : : ; byn)0 = [Y � (In � �)(Y �Xb�)]
be a small area estimator of y. Then

eyMa = Y �C�1
a BCa(In � �)(Y �Xb�)

= [Y � (In � �)(Y �Xb�)] (32)

�C�1
a (In �B)Ca(In � �)(Y �Xb�)

= by � a[
nX
j=1

!jYj �

nX
j=1

!jbyj ] (33)

because C�1
a (In � B)Ca = [C�1

a (In � B)][(In �
B)Ca] = a!0: In other words, any estimator of the form
(31) can be written in the form of (19). On the other
hand, any estimator of the form (19) can be written in
the form of (31) by letting Ca = AaT , where

Aa =

�
1 00n�1

�an�1 In�1

�
;

an�1 = (a2; : : : ; an)
0:

Therefore, (19) and (31) are di�erent representations of
the same family of estimators.
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5. Appendix

Proof of Theorem 1 Let R0(eya) denote the collection
of all estimators that have the form

eyMia = eyHi + ai

0@ nX
j=1

!jYj �

nX
j=1

!jeyHj
1A ; (34)

where
nX
i=1

!iai = 1. Clearly, R0(eya) is a subset of R(by).
We �rst �nd the best estimator in R0(eya). For anyeyMa 2 R0(eya), let
f(a1; : : : ; an) = Q(eyMa ) =

nX
i=1

'iEf[(eyHi � yi)

+ai(
nX

j=1

!jYj �

nX
j=1

!jeyHj )]2g:

Note that cov
n
(1� i)x

T
i (
b� � �); !j(1� j)

o
= 0 and

covf(i�1)bi+iei; !j(1�j)[(bj+ej )�x
T
j (
b���)]g = 0,

where i is de�ned in (5). This leads to

E
�
(eyHi � yi)(Yj � eyHj )

�
= 0 (35)

for i = 1; :::; n and j = 1; :::; n. Therefore,

f(a1; : : : ; an) =
nX
i=1

'iE
�
(eyHi � yi)

2
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+E

8><>:
24 nX
j=1

!j(Yj � eyHj )

352
9>=>;

nX
i=1

'ia
2
i : (36)

Using Lagrangian multiplier methods to minimize

f(a1; : : : ; an) subject to the restriction
nX
i=1

!iai = 1, we

obtain the system

2ai'iE

8><>:
24 nX
j=1

!j(Yj � eyHj )

352
9>=>;+ �!i = 0; i = 1; : : : ; n:

The solution to the linear system subject to the restric-

tion
nX
i=1

!iai = 1 is

�ai =

 
nX
i=1

'�1
i !2

i

!
�1

'�1
i !i: (37)

Therefore, byM de�ned in (26) is an estimator of the form
(34) and minimizes criterion (25).
Let by be any linear unbiased estimator of y that sat-

is�es (6), i.e., by 2 R(by). By standard results for BLUP
(See, for example, Robinson (1991) and Harville (1976)),
we have

cov(eyHi � yi; byi � eyHi ) = 0:

This leads to

E
�
(byi � yi)

2
	
= E

�
(eyHi � yi)

2
	
+E

�
(byi � eyHi )2

	
:

(38)
Therefore,

Q(by) = nX
i=1

'iE
�
(eyHi � yi)

2
	
+

nX
i=1

'iE
�
(byMi � eyHi )2

	
:

(39)

Since by satis�es (6), we have
nX
i=1

!ibyi = nX
i=1

!iYi. For

the byM de�ned in (26),

byMi = eyHi + �ai

24 nX
j=1

!j(byj � eyHj )

35 :
By (36), we have

Q(byM ) =
nX
i=1

'iE
�
(eyHi � yi)

2
	

+E

8><>:
24 nX
j=1

!j(byj � eyHj )

352
9>=>;
 

nX
i=1

'�1
i !2

i

!
�1

:(40)

Note that

E

8><>:
24 nX
j=1

!j(byj � eyHj )

352
9>=>; �

nX
j=1

nX
k=1

!j!kgjgk

=

 
nX
i=1

!igi

!2

; (41)

where gj =
q
E
�
(byj � eyHj )2

	
. By Cauchy's inequality,

0@ nX
j=1

!jgj

1A2

�

 
nX
i=1

'�1
i !2

i

! 
nX
i=1

'ig
2
i

!

=

 
nX
i=1

'�1
i !2

i

!"
nX
i=1

'iE
�
(byj � eyHj )2

	#
: (42)

Combining (40), (41) and (42), we have Q(byM ) � Q(by).
To show the uniqueness of byM , we need to check when

the inequalities (41) and (42) become equalities. Inequal-
ity (41) becomes an equality if and only if

byj � eyHj = c0j + c1j (by1 � eyH1 ) (43)

for some constants c0j and c1j ; j = 2; : : : ; n. Inequality
(42) becomes an equality if and only ifq

'�1
i !2

i

q
vjg

2
j �

q
v�1
j !2

j

p
'ig

2
i = 0;

or, equivalently,

'2
i!

�2
i E

�
(byi � eyHi )2

	
= v2j!

�2
j E

�
(byj � eyHj )2

	
: (44)

Also,
nX
i=1

!ibyi = nX
i=1

!iYi: (45)

Combining (43), (44), and (45), we have that the equal-
ity holds if and only if byj = byMj . Thus, we have shown

that byM is the unique linear unbiased estimator that
satis�es (6) and minimizes criterion (25).
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