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1. Introduction 

Multiple steps in weighting are common in 
survey estimation. Each step usually introduces a 
source of variability in an estimator that may be 
important to reflect when estimating variances. A 
typical sequence of weighting steps in a probability 
sample is this: 
1. Compute base weights. 
2. Adjust weights to account for units with unknown 

eligibility. 
3. Adjust weights for nonresponse. 
4. Use auxiliary data. 

The variance of an estimator is affected by the 
population structure of the variables being estimated, 
the complexity of the design used to collect data, and 
the form of the estimator itself, including the weighting 
steps above. Intuition may lead us to believe that a 
variance estimator that somehow incorporates all of 
these complications is better than one that does not. 
However, literature that directly addresses this question 
is limited. The collection on survey nonresponse by 
Groves, Dillman, Eltinge, and Little (2002), for 
example, does not include any articles on the effect on 
variance estimates of multiple steps in weighting. 

The two major competitors in finite population 
variance estimation are replication and linearization. 
For replication variance estimators there is evidence in 
particular cases that it is necessary to repeat each step 
of estimation separately for each replicate subsample in 
order to produce a consistent or approximately unbiased 
variance estimate. Empirical results, however, are not 
uniform. Lemeshow (1979) is an early paper illustrating 
by simulation that this is necessary for the BRR 
method.  

Valliant (1993) showed theoretically and 
empirically that poststratification factors must be 
recomputed for every replicate in order for the BRR or 
jackknife estimators to be consistent in two-stage 
sampling. Yung and Rao (1996) obtained similar results 
for the jackknife in stratified, multistage sampling. 
Yung and Rao (2000) studied the poststratified 
estimator when weighting class nonresponse 
adjustments were made. They proved that the jackknife 
is consistent if the nonresponse adjustment factors and 
the poststratification factors are recomputed for each 
replicate subsample.  

There are a number of articles that cover some, 
but not all, of the four steps when applying Taylor 
series variance estimators. Lundström and Särndal 

(1999) study the use of a linearization estimator for the 
general regression (GREG) estimator when there is 
nonresponse. Rao (1996) derived a modified 
linearization variance estimator that accounted for mean 
imputation.  

Shortcut implementations of linearization 
estimators, that ignore some steps in weighting, are 
fairly common in practice for at least two reasons. First, 
linearizing complex estimators is difficult and 
commercial software packages limit how faithfully a 
user can reflect the complexities of a design and an 
estimator. Few studies report direct comparisons of 
shortcut linearization estimators and more elaborate 
replication estimators. This paper attempts fill that gap 
by empirically comparing some alternative variance 
estimators systematically for various combinations of 
eligibility rate, response rate, type of estimator, and 
sample size. 

 
2. Notation and an Estimator of a Total 

For the illustrations in this paper we consider 
only stratified and unstratified, single-stage sampling 
but include all four of the weighting steps listed in 
section 1. Suppose that the strata are numbered 

1, ,h H= K , the frame size in stratum h is hN , the 

number of initial sample units is hn , and the set of 

initial sample units is hs . Denote the base weight for 

sample unit hi as hiw . Define the following sets of 
sample cases: 

ERs  = set of eligible sample respondents; 

ENRs  = set of eligible sample nonrespondents; 

INs  = set of sample units known to be ineligible; 

and 

UNKs  = set of sample units whose eligibility status is 

unknown. 
The full sample s is the union of these four sets. The set 
of units whose eligibility status is known is 

KN ER ENR INs s s s= ∪ ∪ . 
Suppose that the sample is also divided into 

classes, 1, ,c C= K , that are used for the unknown 
eligibility adjustment. Another set of classes, 

1, ,d D= K , is used for the nonresponse adjustment. 
Both of these sets of classes may cut across strata. In 
practice, the eligibility adjustment and nonresponse 
adjustment classes may often be the same. Let cs  
denote the set of sample units in class c and 

,c KN c KNs s s= ∩  the set with known eligibility in class 
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c. Then, the unknown eligibility adjustment for sample 
units in class c is 
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and the eligibility-adjusted weight for a unit with 
known eligibility in class c is  
 ( )1 1 ,hi hi c c KNw w a hi s= ∈ . 

The summations over ( )hi A∈  for some set A means to 

sum over all strata and the units within each stratum 
that are members of the set. After this step, the units 
with unknown eligibility are eliminated.  

Next, denote the set of cases in class d as ds , 
those that are known to be eligible in class d as 

( ),d E d ER ENRs s s s= ∩ ∪  and the set of eligible 

respondents in class d to be ,d ER d ERs s s= ∩ . The 

nonresponse adjustment for units in class d is 
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The nonresponse adjusted weight is then 
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i.e., the weights for eligible respondents are adjusted 
while the weights for known ineligibles remain the 
same as they were after the unknown eligibility 
adjustment. The nonrespondents, ENRs , are eliminated. 
After this step, the units with nonzero weight, which are 
used in estimation, are ERs  and INs . The known 
ineligibles are retained on the grounds that their 
presence in the sample is a reflection of other 
nonsample ineligibles in the frame.  

To illustrate the use of auxiliary data, we take the 

case of the poststratified estimator, denoted by P̂ST , in 

single-stage sampling. If we let 1, ,k K= K  index the 
poststrata and ,PS ks  be the set of population units in 

poststratum k, then define the g-weight for a unit as 

 
( ) ( ),

ˆ

0 otherwise

k k PS k ER IN
hi

N N hi s s s
g
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where kN  is the population count in poststratum k 
(which may include some ineligibles) and 

( ) ( ),
2

ˆ
PS k ER IN

k hihi s s s
N w∈ ∩ ∪=∑ , i.e., the estimate of 

the poststratum count based on eligible responding 
sample units and the sample units that are known to be 
ineligible. 

Computing hig  using ER INs s∪  presumes that 

the population control counts, kN , include some units 
that are actually ineligible but cannot be separated out. 

This can occur if the population counts are made from a 
frame that is somewhat out-of-date. If the population 
controls include only eligibles, then the g-weight would 
be computed based only on the eligible respondents, 

ERs . After the g-weight adjustment, the weight for 
sample unit i is  
 3 2hi hi hiw w g=     ( ) ER INhi s s∈ ∪ . 

The final weights after the three stages of 
adjustment would, thus, be defined by 
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For estimation the eligibles are treated as a domain, and 
the ineligibles are assigned data values of zero both for 
point estimation and variance estimation. After these 
sequential adjustments, even an estimated total of the 

form ( )
ˆ

ER IN
hi hihi s s

T w Y∗
∈ ∪=∑  is nonlinear in the 

design-based sense because the weights involve various 
sample-dependent ratio adjustments. 

 
3. Variance Estimators 

We will study several variance estimators that, in 
varying degrees, account for the complexity of the 
design and the estimator of the total.  

One is a variation of the jackknife that divides 
the units within a stratum into random groups and 
deletes one group at a time. If the initial sample is 
divided into hG  random groups within each stratum, 
then the delete-one-group jackknife is defined as 

 ( )
2

1

1 ˆ ˆ
hG

h
J hg

hh g

G
v T T

G =

−  = −  ∑ ∑ , (6) 

where ( )ˆ
hgT  is the estimated total based on deleting 

group (hg). All weighting steps—base weight 
calculation, adjustment for unknown eligibility, 
nonresponse adjustment, and use of auxiliary data using 
the retained units—are repeated in the calculation of 

( )ˆ
hgT . This is done without regard to the disposition of 

the initial unit as a respondent, a nonrespondent, an 
unknown, or an ineligible. This procedure is available 
in WesVar® (Westat 2000) and SUDAAN® (Shah, et 
al 1996).  

The total number of groups is hh
G G=∑ . If 

h hG n=  and the groups are disjoint, then (6) is just the 
standard delete-one jackknife. Many variants of the 
grouped jackknife may be used in practice (e.g., see 
Rust and Rao 1996). For example, the random groups 
may include sample units from different strata. In the 
simulations we will consider only the case of disjoint 
random groups formed within each stratum with 
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hG G= , i.e., an equal number of groups per stratum. 
The union of the groups in a stratum is the initial 
stratum sample. 

Several versions of linearization and related 
variance estimators might be used when the basic 
design is single-stage stratified sampling. Use of some 
of the choices would simply be a mistake but could be 
selected by a naïve user of some software packages. 
Other choices might be reasonable if some steps in 
weighting make small contributions to the variance. 
The simplest variance estimator is one that would be 
appropriate for the Horvitz-Thompson estimator in a 
stratified sample selected with varying probabilities and 
with replacement (Särndal, Swensson, and Wretman 

1992, expression 2.9.9). If we interpret the weight hiw∗  
as the inverse of an adjusted selection probability and 
add an ad hoc finite population correction factor, this 
variance estimator is 
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where 

,h ER INs ∪  = set of sample eligible respondents and 

known ineligibles in stratum h,  

,h ER INn ∪  = sample size in stratum h of eligible 

respondents and known ineligibles, and 

, ,h ER IN h ER IN hf n N∪ ∪= . 

This estimator is available in SUDAAN using 
the option DESIGN = STWOR in a procedure 
statement, in STATA™ (Stata Corporation 2001) using 
the procedure svytotal, and in SAS™ PROC 
SURVEYMEANS (SAS Institute 2001). Units that are in 

INs  (known ineligibles) have their Y values set to zero 
so that the eligibles are appropriately treated as a 
domain. We label this variance estimator “naïve” 
because it treats the resulting sample of eligible 
respondents and ineligibles as a with-replacement 
sample and ignores the adjustments for unknown 
eligibility and nonresponse along with the 
poststratification step (or other use of auxiliary data).  

Another variant would be to exclude the INs  

cases and treat ERs  as a stratified without-replacement 
(stwor) sample. This estimator would be 
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where , , ,,  ,  and  h ER h ER h ERs n f  are defined in terms of 

the set of eligible respondents in stratum h. This 
estimator will typically be smaller than 1naivev  since the 
ineligibles do not enter the calculation as zeroes. It is 
possible to compute this estimator in SAS, STATA, and 
SUDAAN by restricting the dataset to the eligible 
respondents only.  

The variance estimator that is usually referred to 
as the linearization estimator is  
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where ˆ
hi hi hir Y Y= −  with ˆ ˆhi kY µ=  for 

( ) ( ),PS k ER INhi s s s∈ ∩ ∪ , ˆkµ  = 

( ) 2
ˆ

ER IN
hi hi khi s

w Y N
∪∈∑ , and 2hiw  is the weight for 

unit hi after adjustment for unknown eligibility and 
nonresponse.  

The jackknife linearization estimator is very 

similar to (9), but uses the hiw∗  weights: 
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Yung and Rao (2000) defined JLv  without the finite 
population correction factor (fpc); insertion of the fpc in 

JLv  may be useful when the sampling fraction is large. 
The jackknife linearization estimator does not make 
separate adjustments for unknown eligibility and 
nonresponse for each replicate.  

The special case of JLv  that is appropriate for 

poststratification is available in SUDAAN, using the 
POSTWGT and POSTVAR options of some procedures. 
For poststratification, the difference between the 
linearization estimator Lv  and the jackknife 

linearization estimator is that JLv  includes a factor 

( )2ˆ
k kN N  for each unit that is in poststratum k. This 

inclusion imparts better conditional properties to JLv  in 

samples where ˆ
k kN N  is not near 1. Accounting for 

poststratification does not appear to be possible in 
STATA v.7 or SAS v.8 unless the user writes his/her 
own code. 
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Another, related approximation to the jackknife 
was derived by Valliant (2002). This estimator adjusts 
each weighted residual using a leverage, 

1
2hi hi hi hi hiw v−′∆ = x A x , associated with sample unit 

(hi): 
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Since 1hi∆ < , Jv∗  will be larger than JLv , which will 
typically lead to higher confidence interval coverage 
rates. As the number of eligible respondents and known 
ineligibles increases, 0hi∆ →  so that the difference 

between Jv∗  and JLv  will diminish. 
 

4. Empirical Evaluation 
To compare the different variance estimators, we 

conducted a simulation study using a poststratified 
population similar to ones found in human populations 
in which groups of units have different means.  

 
4.1 Poststratified Population 

A stratified population, with specifications 
shown in table 1, was generated in which 
poststratification was appropriate. The population has 
five design strata and five classes that are used as 
poststrata. The poststrata cut across the strata. The 
variable Y used in estimation is a 0-1 Bernoulli variable 
with means, kP , ranging from 0.1 to 0.5 across the 
poststrata. The proportion of the population in each 
poststratum ranges from 0.30 to 0.12. For each unit in 
the population, a poststratum indicator was generated 
independently of design stratum membership. Each 
design stratum has 1000hN =  units and the mean of Y 
in the realized population ranges from 0.243 to 0.259 
across the design strata. In other words, there is little 
difference among the design strata in the means of the 
estimation variable while there is considerable 
difference in the poststrata. 

Parameters in the simulation were the proportion 
by design-stratum whose status was known, the 
proportion eligible, and the proportion responding as 
shown in table 2. For each unit in the population 
Bernoulli random variables were generated with 
probabilities given in table 2 to determine whether a 
unit had a known status, was eligible, and was a 
respondent. This procedure was repeated for every 
sample that was selected.  

 

Table 1. Specifications for the poststratified 
population 

 Design stratum or poststratum 
 1 2 3 4 5 

hN  1000 1000 1000 1000 1000 

hP  0.247 0.259 0.256 0.248 0.243 

kN N  0.30 0.24 0.18 0.16 0.12 

kP  0.1 0.2 0.3 0.4 0.5 
 

Table 2. Simulation parameters for the proportions 
known, eligible, and responding in the 
poststratified population 

 Design stratum 
 1 2 3 4 5 
Known status 0.70 0.75 0.80 0.85 0.90 
Eligible 0.70 0.75 0.80 0.85 0.90 
Responding 0.60 0.65 0.70 0.75 0.80 

 
Stratified simple random samples (stsrs) of size 

n = 100, 250, and 500 were selected without 
replacement. An equal number of sample units was 
allocated to each of the five design strata. Four versions 
of the grouped jackknife were computed: G = 10, 25, 
50, 100. In each case, the initial sample within each 
stratum was divided into 5G  random groups. For the 
jackknife, 1000 stsrs’s were selected for each sample 
size. For the other variance estimators, 4000 samples 
were selected. 

The adjustment for unknown eligibility, defined 
by (1), and the nonresponse adjustment, defined by (2), 
were made within each design-stratum. The eligible 
responding units and the known ineligible units were 
then poststratified as shown in (4). 

 
4.2 Simulation Results—Ignorable Nonresponse 

Figure 1 summarizes results for the poststratified 
population for ignorable nonresponse. The figure gives 
columns for the relative bias (relbias) of a variance 
estimator with respect to the mean square error, 
coverage of 95 percent confidence intervals (CI’s), 
mean half-width of the confidence intervals, and the 
standard error of the half-widths.  (The estimators 
labeled v.Pi and v.ssw shown in the figure were part of 
a larger simulation study and are not discussed here.) 

The 95 percent confidence interval using a 

variance estimate v was calculated as ŝ DFT t v±  

where DFt  is a multiplier from the t-distribution with 
DF degrees of freedom, and DF is the degrees of 
freedom associated with v. The half-width of an interval 

is DFt v . For the jackknife variance estimates, we 

used ( )1hh
DF G G H= − = −∑ . For the other 

variance estimators, we used DF = 

( ), 1h ER IN ER INh
n n H∪ ∪− = −∑ . 
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Table 3 lists the mean and range of the number 
of eligible respondents plus known ineligibles across 
the samples. There is a substantial reduction from the 
initial sample size because of cases that had unknown 
status or were nonrespondents. Thus, a major source of 
variation is the number of sample units used in 
evaluating both the estimate of the total and the 
variance of that estimate.  

 
Table 3. Sample sizes used in estimation in 

poststratified population 

 

Number of eligible respondents + known 
ineligibles, ER INn ∪  

n Mean Range 
100 61.5 (42, 77) 
250 153.6 (126, 181) 
500 307.2 (270, 345) 

 
The variance estimators are sorted in figure 1 by 

the relbias obtained for samples of size n = 100. For n = 
100 Lv , JLv , vπ , and SSWv  all have negative biases 
with the linearization variance estimator being the worst 
at –15.7 percent. The relbiases for the other estimators 
range from 8.4 percent for ( )10Jv G =  to 20.4 percent 

for ( )100Jv G = . The full delete-one jackknife, thus, 

has the largest relbias when n = 100. The biases 
diminish for n = 250 and 500 although the pattern of 
negative biases for Lv  and JLv and positive biases for 
the other variance estimators persists. 

Underestimation by Lv  and JLv  leads to CI’s 
that cover at less than the nominal rate. When n = 100, 
the coverage rate with these choices is at most 92 
percent. For n = 500 coverage for these estimators is 
near 95 percent. For the jackknife choices, 
overestimation of the mse does not necessarily lead to 
overcoverage by the CI’s. When n = 100, 15-20 percent 
relbias produces coverage rates of 93.9 to 94.6 percent 
for ( )25,  50,  100Jv G = . The least biased of the 

grouped jackknife choices, ( )10Jv G = , has the worst 

CI coverage at 91.5 percent for n = 100. For the two 
larger sample sizes, ( )25,  50,  100Jv G =  all have at 

least 95 percent coverage. The approximate jackknife, 

Jv∗ , performs well, having relbias less than 5 percent 
for n = 250 and 500 and has coverage rates of 94.0, 
94.9, and 95.2 at the three sample sizes. 

The average half-widths and standard errors of 
the half-widths show some differences between the 
variance estimates. Average lengths are somewhat 
longer for the jackknife estimates and the related 

estimate Jv∗ , especially for n = 100. Longer intervals 
are due to the variance estimates and the multipliers 
from the t-distribution being larger for the jackknife 

estimates. The estimate that stands out for its high 
variability is ( )10Jv G = . The stability of the grouped 

jackknife increases as the number of groups increases—
a phenomenon that is well known among practitioners 
(see also Wolter 1985, sec.4.2.5). 

The estimators, 1naivev  and 2naivev , are 
theoretically incorrect for the poststratified estimator 
but are included here since users of some software 
packages might select them. Both are overestimates 
since each uses the wrong residual for the poststratified 
estimator. The relbias of 1naivev  ranges from about 18 
percent at n = 100 to 14.6 percent at n = 250. Note that 
there is no decrease in relbias when moving from n = 
250 to n = 500. 2naivev  is smaller than 1naivev  and is 
actually less biased because it ignores the fact that the 
eligibles are a domain. The positive bias of 1naivev  
leads to overcoverage by the confidence intervals, 
although the problem is not severe. At n = 250 and 500, 
for example, the empirical coverage rate using 1naivev  
is 96.4 percent.  
 
5. Conclusion 

Two general types of variance estimators used in 
survey sampling are ones based on squared residuals, 
like linearization variance estimators, and replication 
variance estimators. The simulation results reported 
here are part of a larger study available from the author. 

Theory for the two types of estimators shows that 
asymptotically there is little difference in large samples 
with full response. The basic design-based or model-
based theory does involve some strong assumptions, 
e.g., the first-stage is selected with replacement or the 
first-stage units are independent. More importantly, the 
possibilities that there are ineligible units and that some 
units will not respond are often not considered when 
comparing the variance estimators. For the replication 
variance estimators, there is literature showing that 
adjusted data values can be used to create consistent 
variance estimators. However, these adjustments may 
vary depending on the form of the basic estimator 
(total, mean, ratio, etc.) and are not included in the 
commercial software packages now available. 

In the simulations presented here, the 
linearization estimators and several others based on 
squared residuals are underestimates. This problem is 
considerably worse when there is ignorable 
nonresponse, as opposed to full response, and leads to 
confidence intervals that cover at less than the nominal 
rate. The one exception among the squared-residual 
estimators is a leverage-adjusted estimator that 
approximates the jackknife and tends to be somewhat of 
an overestimate.  

The grouped jackknife estimator tends to be an 
overestimate and the degree of overestimation is worse 
with smaller sample sizes. This overestimation is 
accompanied by some overcoverage by confidence 
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intervals, although the excess above the nominal level is 
small.  

In summary, when there is ignorable 
nonresponse, the only estimator in this study that 
combines reasonably small positive bias with near-
nominal confidence interval coverage is the leverage-

adjusted estimator Jv∗ .  
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Figure 1. Comparisons of the relbias, mean half-widths of 95 percent confidence intervals, and standard error 

of half-widths of different estimators of variance for the poststratified estimator of a total 
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