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Abstract:

Record Linkage (RL) refers to the use of an algorith-
mic technique to match records from different data
sets that correspond to the same statistical unit. RL
is ubiquitous in official statistics: estimation of pop-
ulation size via capture-recapture methods, testing
of disclosure strategies and coverage measurement
surveys are only few examples. A key difficulty for
any statistical analysis with RL is the intensive com-
putational burden. A Bayesian analysis of RL cor-
rectly clarifies the complexity of the problem and
it helps in finding adequate solutions. In this pa-
per we briefly discuss the validity of the more com-
mon statistical models for RL and we propose a fully
Bayesian approach. We use standard MCMC algo-
rithms to derive the marginal posterior distribution
of a matrix-valued parameter which indicates the
“configuration” of matches between the two lists.

1. Introduction

Record linkage is “the name given to any process
which identifies the common reporting units in two
different files” (Kelley, 1986). Such objective is very
important in many different disciplines; among the
others, medicine, business administration and offi-
cial statistics (see, for instance, Newcombe, 1988,
and Jabine and Scheuren, 1986). In these contexts it
may happen that a unique data set with all the nec-
essary information for a particular statistical analy-
sis is not available. Furthermore time and cost con-
straints may make unfeasible to obtain such data
set directly. Integration at the unit level of differ-
ent data sets (sample surveys and/or administrative
data sets) may solve this problem. A difficulty is rep-
resented by the lack of a unique identifier in the dif-
ferent data sets for each unit of interest. When a set
of observed variables (key variables, henceforth) may
be used as an identifier for connecting records that
refer to the same unit, particular attention should
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be paid to errors and missing values. In such a case,
many different methodologies have been introduced.
Some methods are näıve, or heuristic, i.e. are based
only on common sense (for instance the “iterative
method” described in Armstrong and Mayda, 1993),
whereas other methods refer to a typical statistical
framework: i.e. a sample space and a sample prob-
ability distribution are defined. In this framework,
usual statistical methods (estimators, tests) may be
considered and an evaluation of their performance
can be given. Generally speaking, most of these
works are based on the formal mathematical frame-
work provided by Fellegi and Sunter (1969) in a fun-
damental paper. Further advances are described in
a number of papers in the 80’s and 90’s: among the
others Jaro (1989), Winkler (1993), Belin and Rubin
(1995) and Larsen and Rubin (2001). All of these
papers assume that each single comparison between
records in two different files provides new informa-
tion, independently of the other comparisons. This
assumption, as noted by Kelley (1986), is funda-
mentally incorrect, as illustrated in section 3. Also,
Winkler (2000) states that “...because the underly-
ing true probabilities have not been accurately es-
timated, estimated error rates (of the record link-
age procedure) are not accurate”. Consequently we
propose a Bayesian model which makes comparisons
among units independent of each other. We illus-
trate our ideas in the situation of a single continu-
ous variable. Extensions to more general cases are
sketched in the last section.

2. The usual statistical model for
record linkage

For the sake of simplicity, let us consider two data
files A and B, with respectively nA and nB units.
Let us call A and B the two sets (lists) of observed
units, a = 1, ..., nA, b = 1, ..., nB . We assume that
some units are “common” to the two lists. The set
of all ordered pairs

A×B =
{

(a, b) : a ∈ A, b ∈ B
}
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can be splitted into

M =
{

(a, b) ∈ A×B : a = b
}

the set of matches, and

U =
{

(a, b) ∈ A×B : a 6= b
}

the set of non-matches. In order to decide whether
a pair (a, b) is in M or U , we may compare variables
observed in both the files (e.g. surname, name, sex,
address, etc. for individuals). Let us assume we have
k key variables, k ≥ 1, whose observations in the two
data lists are denoted by:

xa = (xa,1, xa,2, ..., xa,k), a ∈ A,

and

xb = (xb,1, xb,2, ..., xb,k), b ∈ B.

Generally speaking, the comparison yab of the ob-
served values of the key variables between two units
a ∈ A and b ∈ B is a function of xa and xb:

yab = f(xa, xb).

One commonly assumed comparison function is a
vector of k elements, yab = (y1

ab, ..., y
k
ab) with:

yh
ab =

{
1 if xa,h = xb,h

0 otherwise h = 1, ..., k. (1)

In order to decide whether a pair (a, b) with com-
parison vector yab is a match or not, Fellegi and
Sunter (1969) suggest to consider the distribution
of the comparison vectors in M , say m(y), and the
corresponding distribution in U , u(y). The decision
rule is based on the likelihood ratio

t(y) =
m(y)
u(y)

(2)

(see Fellegi and Sunter, 1969, for a discussion on the
optimality of such decision rule). Given that neither
m(y) nor u(y) are known, most of the literature on
record linkage studies how to estimate these distri-
butions. The usual assumptions are that both the
status of a pair (let’s say C, where C = 1 when a
pair (a, b) is a match and 0 otherwise) and the com-
parison vector (Y) are random variables (r.v.) and:

1. the status cab, (a, b) ∈ A×B, are i.i.d. observa-
tions of a Bernoulli r.v. C with P (C = 1) = p;

2. each comparison vector yab, (a, b) ∈ A × B, is
an i.i.d. observation of the r.v. Y whose distri-
bution is the mixture:

P (Y = y) = p m(y) + (1− p) u(y);

3. the pairs (cab,yab) are i.i.d. observations of the
r.v. (C,Y) whose distribution is:

P (C = c, Y = y) =
(
p m(y)

)c (
(1−p) u(y)

)1−c
,

with c = 0, 1.

The previous independence assumptions make par-
ticularly easy the computation of the likelihood func-
tion given the nA × nB observations (cab,yab):∏

(a,b)∈A×B

(
p m(yab)

)cab
(
(1− p) u(yab)

)1−cab . (3)

Maximum likelihood estimates of the distributions
m(y) and u(y) may consequently be obtained, us-
ing for instance the EM algorithm (given that the
status cab is unknown). Jaro (1989) assumes that
the components of the comparison vector Y are in-
dependent, whereas Winkler (1993) and Larsen and
Rubin (2001), among the others, consider the case
of dependent key variables comparisons.

3. A modified model for record link-
age

Kelley (1986) states: “...The decision procedure ...
was developed under the hypothesis that the com-
parison vectors between separate record pairs are
independent. However, since the record pairs that
are considered for possible matches are elements of
the cross product of the two files we are attempt-
ing to match, the comparison vectors are in fact de-
pendent...”. As a matter of fact, the r.v.’s Yab are
deterministically dependent. For instance, consider
the case of one key variable X and the compari-
son function in (1) (extensions to more than one key
variable and more complex comparison functions are
straightforward). Assume that nA = nB = 2; when

Xa1 = Xb1, Xa1 = Xb2, Xa2 = Xb1

then, necessarily, Xa2 = Xb2, i.e.:

P (Y22 = 1|Y11 = 1, Y12 = 1, Y21 = 1) = 1.

Note that the problem of dependency among the
Yab’s cannot be circumvented by eliminating redun-
dant comparisons for the likelihood function (3),
because the order with which pairs are considered
would matter! Deterministic dependency affects also
the r.v.’s Cab when each record in A may be linked
to at most one record in B (and vice versa). Such
constraints: ∑

b

cab ≤ 1, ∀ a ∈ A (4)∑
a

cab ≤ 1, ∀ b ∈ B (5)
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have been studied by Jaro (1989) and Winkler and
Thibaudeau (1991), but their procedures are only an
additional and subsequent step of a record linkage
procedure. On the other hand, a Bayesian model
would naturally take into account such constraints,
as developed in Fortini et al. (2001).

In the light of the previous considerations, we sug-
gest the following:

• the statistical model is built upon the statistical
units, a ∈ A and b ∈ B, and not over the pairs
(a, b) ∈ A×B;

• observations over different statistical units can
be considered independent.

The previous two considerations lead us to develop a
model similar to the one in Copas and Hilton (1990).
Moreover our approach refers explicitly to a mea-
surement error framework (Fuller, 1995). For the
sake of simplicity, let us consider only one contin-
uous Gaussian key variable X. Each unit is an in-
dependent realization of µ0 ∼ N(µ, σ2). Whether
observed in A or in B, a random measurement error
occurs, so that

X|µ0 ∼ N(µ0, τ
2).

Denoting the r.v. X with the symbol XA when ob-
served on a unit a ∈ A and XB when observed on
b ∈ B, we have that, marginally,

XA ∼ N(µ, σ2 + τ2), XB ∼ N(µ, σ2 + τ2).

Consequently, when we consider a pair (a, b), the bi-
variate variable (XA, XB) follows a bivariate Gaus-
sian distribution according to the following rule:

1. when the pair (a, b) is not a match (cab = 0),
XA and XB are independent and:

(XA
a , XB

b ) ∼ N2

(
µ1, (σ2 + τ2)I

)
,

where 1 is a vector of 1’s and I is the identity
matrix of the appropriate dimension.

2. when the pair (a, b) is a match (cab = 1), only
the random measurement errors in the two oc-
casions are assumed independent; consequently
XA and XB are correlated, with covariance
equal to σ2:

(XA
a , XB

b ) ∼ N2(µ1, σ2 + τ2I).

Copas and Hilton (1990) adopt the previous set up
using a Fellegi-Sunter approach, i.e. discriminating
each couple distinctly via the likelihood ratio (2).

Following the approach in Fortini et al. (2001), we
can instead write the likelihood function for all the
observed units. Assuming that there are not dupli-
cations of units in a list, the number n of distinct
units in A and B is such that

n =
∑
ab

cab +
[
nA −

∑
a

ca.

]
+

[
nB −

∑
b

c.b

]
=

= nA + nB −
∑
ab

cab.

given that for each distinct unit there are three pos-
sibilities: the key variable is observed

1. only in A:
∑

b cab = ca. = 0;

2. only in B:
∑

a cab = c.b = 0;

3. both in A and B: cab = 1.

Consequently the likelihood function, induced by the
observations {yab}, is:

L(θ, c) =
∏
ab

[
N2(µ1, σ2 + τ2I)

]cab

×
∏
a

[
N(µ, σ2 + τ2)

]1−ca.

×
∏
b

[
N(µ, σ2 + τ2)

]1−c.b

where θ = (µ, σ2, τ2) and c = {cab}.

4. Bayesian analysis of the new model

4.1 Prior distributions

The likelihood L(θ, c) has been characterized in
terms of two sets of parameters: the parameters of
interest (i.e. the matrix c) and the parameter θ. For
both the parameters, it is possible to have some kind
of information that can be formalized in terms of
suitable prior distributions. Following Fortini et al.
(2001), the prior distribution for the random config-
uration matrix C can be given in two steps:

• the r.v. “number of matches” H follows a bino-
mial distribution with parameters (ξ, nA ∧nB),
ξ ∈ (0, 1);

• conditional on H = h, h = 0, 1, ..., nA ∧ nB ,
the r.v. C|H = h follows a uniform discrete
distribution over the set of configuration matri-
ces with exactly h matches satisfying the con-
straints (4) and (5).
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Table 1: Correct Match Rate (CMR=number of
correctly guessed matches/number of true matches)
and False Match Rate (FMR=number of wrongly
guessed matches/number of true matches) for dif-
ferent values of τ2

Rates τ2

0.01 0.006 0.001
FMR 0.6 0.4 0.2
CMR 0.4 0.6 0.8

(see Fortini et al., 2001, for a justification for such
priors). For the sake of simplicity, standard conju-
gate distributions may be considered for θ: then

µ ∼ N(λ, ω2),

σ2 ∼ IG(ασ, βσ),

τ2 ∼ IG(ατ , βτ ),

where Z ∼ IG(α, β) stands for Inverse Gamma dis-
tribution with density function:

f(z) =
αβ

Γ(β)
eα/z

zβ+1
.

4.2 MCMC implementation

A closed form of the posterior distribution for the
configuration matrix C is not available. For this rea-
son we have adopted a MCMC approach to generate
a sample from the posterior distribution. We use
a standard Metropolis-Hastings algorithm to gen-
erate in turn candidate values of the parameters
(µ, σ2, τ2, c). The choice of the proposal distribu-
tions requires some attention.

The proposal distribution of µ was chosen to be
Gaussian centered at the previous value of the chain
and with the standard deviation tuned so to have a
reasonable acceptance rate.

The same scheme was adopted for the logarithm
of the two variances σ2 and τ2.

The update of the configuration matrix c is obvi-
ously more complicated: being in ct at the t-th step,
the algorithm proposes a new matrix ct+1 by choos-
ing whether i) to add a link ii) to remove a link iii)
to remain with the same number of links by deleting
one link and adding a new one (see Fortini et al.,
2001, for details).

5. Simulation results

An example on fictitious data has been created for a
first rough evaluation of the method. We have gen-
erated 20 units from a Gaussian distribution with

mean µ = 100 and variance σ2 = 9. For each gen-
erated value, a random measurement error is added
according to the rule:

X|µ0 ∼ N(µ0, 0.001),

i.e. τ2 = 0.001. As far as the prior distributions
are concerned, we have considered a high value for
ξ (ξ = 0.98), given that we expect a high number
of matches. For the sake of simplicity, we consider
conjugate distributions for the parameters in θ:

• µ ∼ N(100, 0.01);

• σ2 ∼ IG(0.01, 0.01);

• τ2 ∼ IG(0.01, 0.01);

The two inverse gamma distributions are practically
flat (i.e. non informative) in the log of the argument.
The configuration with the maximum posterior dis-
tribution easily finds the majority of the 20 matched
pairs (problems may occur for those pairs whose true
values are close to each other). The previous case
considers only the situation of a particularly low
measurement error (τ2 ∼ σ2/10000). To test a more
difficult situation, we have considered also the case
of τ2 = 0.006 and τ2 = 0.01. Leaving unchanged
the conjugate distributions, the performance of the
algorithm worsen dramatically, but still a reason-
able number of matches is found (see Table 1 for
details). This situation can be reasonably expected
and it may depend on some lack of discriminating
information, which could be overcome by the intro-
duction of other key variables. However we guess
that room for improvement could be given by a bet-
ter refinement of the MCMC algorithm.

6. The discrete case

The previous sections were devoted to the case of
one continuous Gaussian key variable. Generally
speaking, key variables are discrete (unless suitable
transformations are adopted, as in Belin and Rubin,
1995). Let us consider the discrete r.v. α assuming
the values k = 1, ...,K with probabilities

P (α = k) = pα
k , k = 1, ...,K.

Assuming the existence of a measurement error on
the observations of α in the two occasions, XA and
XB , let us define the following distributions (we use
the notation adopted for latent class analysis, i.e.
pAB indicates the distribution of A conditional to
B; see Goodman, 1974, for further details):

P (XA = i,XB = j) = pAB
ij =

Joint Statistical Meetings - Section on Survey Research Methods

1011



=
∑

k

pABα
ijk =

=
∑

k

pAα
ik pBα

jk pα
k ,

for i = 1, ...,K, j = 1, ...,K (note that, as in the
continuous case, we assume that the random mea-
surement errors are independent, conditional on the
true value);

P (XA = i) = pA
i =

∑
k

pAα
ik pα

k i = 1, ...,K;

P (XB = j) = pB
j =

∑
k

pBα
jk pα

k j = 1, ...,K.

In this setting, the likelihood can be written as the
following:

L(θ, c) =
∏
ab

[ ∑
k

pAα
ik pBα

jk pα
k

]cab

×
∏
a

[ ∑
k

pAα
ik pα

k

]1−ca.

×
∏
b

[ ∑
k

pBα
jk pα

k

]1−c.b

Differently than in the Gaussian case, this likelihood
contains an unidentifiable set of parameters. How-
ever, extensions of this model to more key values
admit identifiable set of parameters via the use of
loglinear models for latent variables by introducing
appropriate constraints (Haagenaars, 1993). A sec-
ond solution could be given by the use of the simpli-
fying models adopted by Copas and Hilton (1990);
this aspect should be studied in more detail.

7. Conclusions

In this work we deal with the problem of the misspec-
ification of the statistical model for record linkage.
Instead of a model based on the comparison between
all the pairs of units, we consider a model based on
each single distinct unit which can be observed twice
when one unit is enlisted in both the data sets and
only once otherwise. This approach refers explicitly
to measurement error theory. We give a solution in
the case of a single continuous key variable follow-
ing a Gaussian distribution, affected by a Gaussian
measurement error (which is assumed independent
of each other in the two occurrences). Such solution
is based on a Bayesian procedure where the poste-
rior distribution is explored by means of a MCMC
algorithm. An example on simulated data is given,
reproducing situations for increasing values of mea-
surement errors. This example shows the soundness

of our method although its performance deteriorates
when measurement errors become important. In this
situation it is crucial to increase the number of key
variables, as it usually happens in practice. Finally
we sketch some possible developments to include the
case of discrete key variables (which is more common
in practice).

In this paper we have argued that the most pop-
ular statistical models for RL analysis fail to rec-
ognize the interdependency among record compar-
isons. Consequently, we have proposed an alterna-
tive approach which avoids the problem by building
the model directly upon the observable key variables.
At least in the simple setting considered in the pa-
per, the new model can be implemented without any
additional complexity in the MCMC algorithm.

However, in more general situations, the problem
of the computational complexity is certainly to be-
come crucial and some compromise between com-
putational feasibility and theoretical adherence to
the underlying mechanism should be made. In this
direction a promising approach has been developed
in de Freitas et al. (1999) and Blei et al. (2003)
where “complicated” statistical models, which could
produce slowly convergent MCMC algorithms, are
approximated by simpler ones, with faster MCMC
counterparts: the approximations are established us-
ing variational arguments. The importance of these
new ideas in RL is twofold:

• it is possible to use this idea to quantify the
loss of precision inherent in the use of the usual
models in RL by considering them as approxi-
mations to the more realistic one, based on the
observable key variables, as developed in this
paper;

• starting from our model, new directions in the
“simplification” strategy can be explored, and
their practical impact on inference can be eval-
uated.
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