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Van L. Parsons, 6525 Belcrest Road, Hyattsville, MD 20782 (vparsons@cdc.gov)

Key Words: GVF, superpopulation, order-
restricted, monotonic.

1. Introduction

In large-scale government surveys, sample designs
based upon complex probability sampling methods
are typically used. The resulting data are frequently
analyzed using so-called design-based or random-
ization inference and not with strong model-based
assumptions about sampling distributions. Such
design-based techniques are considered an objective
approach to data analysis, and are often used in pol-
icy making. The reader is referred to Särndal et al.
(1992, ch. 1) for basic ideas about design-based and
model-based survey design inference. For design-
based analyses to be performed, design features (e.g,
strata, sampling clusters, selection weights) must be
identified, but because of confidentiality concerns,
design features on public-use micro data are only re-
leased in a coarse or masked form, thus restricting
study to national domains.

The National Health Interview Survey (NHIS), a
complex clustered sample of about 40, 000 house-
holds, follows such a data release strategy. The
50 states and District of Columbia are in fact sam-
pling strata for the NHIS, but state and sub-state
geographical identifiers are not released to the pub-
lic. To partially satisfy external needs for statis-
tics on smaller geographical domains, a sponsoring
agency, like the National Center for Health Statistics
(NCHS), the sponsor of the NHIS, can produce in-
ternally many basic statistics, e.g., estimated means
and proportions, for the geographical domains not
accessible to the public. These statistics can then be
released with a measure of reliability, usually an esti-
mate of standard error or coefficient of variation. In
this paper we focus upon the state level geographical
domains, but the methods discussed can be applied
to other subnational domains.

Given the power of modern computer machinery,
the computation of complex-design means and asso-
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ciated standard errors is relatively inexpensive, and
at least conceptually, state estimates and their stan-
dard errors could be internally computed and re-
leased to the public. A major concern, however,
is that many state domain statistics have unsta-
ble and/or biased design-based variance estimators.
At NCHS the “institutionalized” production method
for producing standard errors for means and pro-
portions is the Taylor-linearization method imple-
mented with commercially available software. Such
a production method works well for national level
domains, but at the state level the sampling units
from which the variance estimator is constructed,
e.g., primary and secondary unit clusters, may be
few in number, thus resulting in an unstable vari-
ance estimator. For example, several states while
having NHIS samples in excess of 200 households,
have relatively few clusters, thus resulting in a vari-
ance estimator with a small associated degrees of
freedom. Furthermore, as Särndal et al. (1992, sec.
5.5) point out, the Taylor linearization method has
a tendency to underestimate variances for “small”
samples. Part of this problem is due to the substi-
tution of estimated expectations for true values in
the linearized forms. Empirical evidence based on
NHIS state tabulations suggests that this is a prob-
lem for about half of the states.

Any agency-produced report on state estimates
would most likely be targeted to an audience focused
on the first-order estimates. In-depth discussion on
topics of variance estimator bias and stability would
most likely not be appropriate to such an audience.
To meet such needs, a reasonable strategy might be
to keep the direct design-based first-order estimates,
but smooth out the design-based variances using a
modeling approach.

2. Models for Smoothing Variances

First, we provide a general mathematical framework
for our problem. Suppose that D is a complex design
and for a characteristic x on subdomain d of state s
let p̂sdx be the usual design-based estimator of pro-
portion for the true population value psdx. The usual
estimator takes the form

∑
wixiIi(sd)/

∑
wiIi(sd)
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where Ii(d) = 1(0) if unit i is in state domain sd,
and wi are the sampling weights with possible ad-
justments.

We assume that p̂sdx is an unbiased estimator,
ED(p̂sdx) = psdx, and the estimator has design vari-
ance VarD(p̂sdx) and variance estimator v̂sdx. As
discussed in the introduction, the variance estimator
for a target state domain may be both unacceptably
unstable and biased when its definition is a function
of relatively few sample clusters. By “smoothing”
a collection of estimated variances subject to some
realistic structural model, we can often reduce the
impact of these deficiencies.

The simplest model that is frequently used to
smooth the variances is the design-effects model.
Here, for our purposes, the design-effect, deff, for
a characteristic x on state domain unit sd is defined
as deffsdx = VarD(p̂sdx)·

(
psdx(1−psdx)

nsd

)−1

, where nsd

is the expectation of observed sample size on state
domain sd. This is the ratio of complex variance to
that of a variance from a hypothetical simple ran-
dom sample of size nsd on domain sd.

A more general complex-design variance paramet-
ric model as used in Johnson and King (1987) is

VarD(p̂sdx) = k ·
(

psdx(1 − psdx)
nsd

)β

(1.1)

for characteristic x and domain sd. Note, if β = 1,
then this model is equivalent to the universal de-
sign effect model, and if β > 1 this model implies
that deffsdx is an increasing function of the simple
random sample variance, psdx(1−psdx)

nd
. While a sim-

ple parametric model may perform well for large do-
mains sd, a set of diverse domains may need more
domain-specific parameters, say βsd and ksd to ex-
plain the variances. Wolter (1985, ch. 5) discusses
this topic of generalized variance functions (GVFs)
in great detail.

Instead of using the parametric GVF modeling ap-
proach to smoothing the variances, we will impose
a non-parametric functional form that makes use of
what we feel are some natural monotonic relations
among state effective sample sizes, and the struc-
tural form of the true variances.

To establish the structure, we first note that if
(a, b) and w(a, b) represent a point and an associ-
ated non-negative weight on a rectangular grid, then
a function f(a, b) is said to be monotonic on the
rectangular grid if a1 ≤ a2 and b1 ≤ b2 imply
f(a1, b1) ≤ f(a2, b2) whenever w(a, b) > 0. That
is, for any fixed point (a, b) in the grid with positive
weight, all f points to the upper right are equal or
larger than f(a, b) and f points to the lower left are

equal or smaller than f(a, b) . Other f points have
no relation with (a, b). This model is referred to as
an isotonic regression model on a two dimensional
grid. The parametric function of equation (1.1) sat-
isfies such conditions for a = psdx(1 − psdx) and
b = 1

nsd
. The reader may refer to Robertson, et

al. (1988) for a discussion of such structures.
To define a monotonic grid structure for the prob-

lem at hand, we start with A = {s, d, x} as rep-
resenting a select set of states, s, state domains,
d, and characteristics, x. Corresponding to A are
p̂sdx, psdx, v̂sdx and VarD(p̂sdx) as defined earlier.
To each v̂sdx corresponds a measure of its stability,
e.g., degrees of freedom, which we will express as
a weight wsdx. Any modeling requires some com-
monalities on the distributional properties of the el-
ements of A. As discussed in Wolter (1985, ch. 5.2
and 5.3) there is a lack of rigorous theory for GVF
procedures and considerable care must be taken in
grouping the statistics under consideration. With
these caveats in mind, we express some distribu-
tional assumptions about A:

C.1 General properties of A
i. The estimators can be considered indepen-

dent from state-to-state.

ii. The state domain sample sizes, n̂sd, are
considered as approximately fixed from
sample to sample. Thus,
n̂sd

.= ED(n̂sd) ≡ nsd.

C.2 Within-state properties of A:

i. The design effect is only a function of the
characteristic x, deffsdx = deffsx for state
domain d.

ii. If state domains d1 and d2 satisfy
psd1x(1−psd1x)

nsd1
≤ psd2y(1−psd2y)

nsd2
, then

VarD(p̂sd1x) ≤ VarD(p̂sd2y)

Condition C.2 (i.) requires that if a given
characteristic is considered over several differ-
ent state domains then we expect the sampling
and weighting to have about the same impact
on variances regardless of domain. Condition
C.2 (ii.) requires the order imposed on the vari-
ances by a hypothetical simple random sample
is preserved with the complex design; such a
constraint is also implicit in equation (1.1) for
β ≥ 0

C.3 Between-state properties of A:

First, assuming that conditions C.1 and C.2
hold and letting
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ñs = max{nsd| d a domain in state s} we can
express

VarD(p̂sdx) =
[

ñs

nsd
psdx(1 − psdx)

]

·
[
deffsx

ñs

]

≡ [bsdx] · [a′
sdx] (1.2)

We see that from a purely theoretical view that
the function VarD is monotonic on the grid sub-
set {(a′

sdx, bsdx)} . Obviously, the value of a′

directly depends upon the value of VarD which
is the target of estimation. This form of a′ sug-
gests, however, a method for establishing an or-
dering useful in practice. Using sampling design
information and prior knowledge of the vari-
ables of interest, we will attempt to capture
the orderings of the deffsx

ñs
for A in a somewhat

coarser form than that defined by a′. We focus
on forming classes of states ordered by a mea-
sure of effective sample sizes.

i. The elements of A are such that
there exist classes of distinct states,
S1 � S2 . . . � SK , defined such that if
s1 ∈ S1 and s2 ∈ S2 then it is conjectured

that deffs1x

ñs1
≤ deffs2y

ñs2
holds whenever

bs1d1x ≤ bs2d2y.
For such an ordering we would define
a1 ≤ a2 ≤ . . . ≤ aK to correspond to one
dimension of the grid.

ii. Within a class Si if s1 �= s2 then it is

conjectured that deffs1x

ñs1
≤ deffs2y

ñs2
holds

whenever bs1d1x ≤ bs2d2y subject to the
class Si−1 and Si+1 constraints.

Combining conditions C.2 and C.3 we have the
monotonicity of the variance on the grid. Establish-
ing such a set of a’s is part of the modeling process,
and the degree of success strongly depends upon
how well the characteristics and domains have been
grouped in forming the set A. We discuss a modeling
technique to define the a’s in the next section.

Now, while the b’s are based upon unknown pa-
rameters, we would estimate those quantities with
the sample proportions p̂sdx. This is the same type
of strategy that one uses with a parametric model
of equation(1.1). In practice, once we model the
a’s we will have the grid points {(a, b̂sdx)} along
with the estimated design-based variances v̂sdx and
weight function wsdx > 0 for observed points.

With this information we determine the closest
monotonic function, vab, to the estimated variances

by minimizing
∑

a,b(v̂sdx − vab)2wsdx subject
to monotonicity on the grid points (a, b). This
order-restricted least squares problem is discussed
in Robertson et al. (1988), and algorithms and
programs for this specific least squares problem can
be found in Bril et al. (1984) and Qian and Eddy
(1996).

3. Application to NHIS State esti-
mates of Variance

Now, the NHIS design, documented in Botman et
al. (2000), can be thought of as a multistage cluster
sampling design. While state weights are currently
not produced for the NHIS, a state-level weight
would typically have three components: inverses
of probabilities selection, non-response adjustment,
and a poststratification adjustment to Census con-
trol totals specific to each state. We now outline the
methods used for NHIS modeling.

3.1 Simplified NHIS design

Available to us were the universe of PSUs along with
all first-stage strata and Census projected tabula-
tions by race-ethnic distribution within each uni-
verse PSU. All first-stage probabilities of selection,
marginal and joint, for PSUs were available, but
while the second-stage substrata and sampling rates
were well-defined, only limited second stage cluster-
ing information was available within the universe
PSUs. Similarly, higher level universe information
was not available. Given this information we concep-
tualized the NHIS as a two-stage design, having all
the original first-stage information, but we treated
the within-PSU sampling as reasonably modeled by
a simple random sample from three person-level sub-
strata: Hispanics, Non-Hispanic blacks and all oth-
ers. Three differential sampling rates, somewhat
consistent with observed NHIS sampling rates for
these three groups, were used. Furthermore, three
within-substrata design effects were used to help ac-
count for the higher levels of sampling for which in-
formation was not available.
Next, considering a finite population unit j speci-
fied by igj within substratum g of PSU i, we assume
this unit has overall sampling weight wg if selected.
These sampling weights satisfy the structural rela-
tion
wg = Mig

πimig
, g = 1, 2, 3, where πi is the first-stage

selection probability, and Mig, mig are the number
of universe and sample units respectively.

Now, for a domain d we will treat units in sub-
stratum ig belonging to d as a sampling substratum,
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ig ∩ d, instead of treating d as a random character-
istic. We will assume that the number of universe
units, Mig∩d, is known. Under this assumption, we
may absorb the index d into the index g, say g ≡ g∩d
to simplify notation of expressions.

With these basic structures a D-design unbiased
estimator for arbitrary characteristic z on a domain
d for a given PSU i is of the form

Ẑdi =
∑3

g=1
Mig

mig

∑mig

j=1 zigj

and the form of a generic stratum estimator is

Ẑd =
∑

i δi
Ẑdi

πi
where δi is the inclusion variable

for PSU i.

We see that Ẑd is just a 2-stage Horvitz-Thompson
estimator, which has mean
ED(Ẑd) =

∑
i

∑3
g=1

∑Mig

j=1 zigj

and has approximate variance (assuming negligible
2nd-stage sampling fractions)

VarD(Ẑd)
.=

∑

i>k

(πiπk − πik)
(

Zdi

πi
− Zdk

πk

)2

+
N∑

i=1

1
πi

3∑

g=1

M2
ig

mgi
S2(zig) · γg (1.3)

where S2 is the population variance at level ig, and
γg is a modeled within-PSU sampling design effect.

For the super population process, ξ, we assume
all design information including domains of inter-
est is fixed on each universe unit igj, but that ξ
generates a variable zigj to each unit. The total-
ity of points provides a finite population universe.
Thus the form of equation (1.3) remains the same
for all z realizations. Our target statistics are pro-
portions, so we attempt to define ξ as emulating the
unit components of a linearized proportion. For our
purposes we assumed a simple random effects model,
zigj = αi + eigj where the variables are independent
with zero means and respective variances σ2

α and σ2
e .

Taking expectations with respect to the ξ variable
greatly simplifies the usual finite population form of
variance expressed in equation (1.3) . Using first and
second moments we can express:

Eξ(VD(Ẑd))
.=

∑
i

(
σ2

α(
∑

g Mig)2 + σ2
e(

∑
g Mig)

)
(1−πi

πi
)

+ σ2
e

∑
i

∑
g Migwgγg

where the first and second terms are the ξ-
expectations of the between-variance and within-
variance terms, respectively.

Calculations done in the same spirit show that if
m̂d is the sample size on domain d then

EξED(m̂d) = ED(m̂d) =
∑3

g=1
Mgd

wg
, where Mgd is

the universe total of g ∩ d values, and for a simple
random sample of size ED(m̂d):

EξVarsrs(Ẑsrs,d)
.= Md/ED(m̂d)

× (
σ2

α(Md − (
∑

i Mid)2/Md) + σ2
e(Md)

)
(1.4),

where Md is the universe of d values and Mid is
the universe of d values on PSU i.

The ratio of equations (1.3) and (1.4) can be
used to define a superpopulation mean design effect,
deffξsd, when applied at the state level s. Of the
parameters in the definition of deffξsd only the γg’s

and the ratio σ2
e

σ2
α

are flexible for defining the magni-
tude. Our approach was to define these 4 parameters
based upon our understanding of the national NHIS
and then apply these values to the states. For ex-
ample, the γg’s could be defined as 1.10, 1.10, 1.05
as within-PSU design effects for the three classes of
substrata: Hispanic, black and other, to reflect the
greater variability observed in the NHIS of minor-
ity sample weights compared to non-minority sam-
ple weights. The ratio σ2

e

σ2
α

can be defined to give an
expected 5% between-component of variance at the
national level. Examples are discussed in the next
section. Also, if the domains d in A are selectively
chosen so that Mid

Mid′
.= k(d, d′), a constant depending

only on d and d′, then deffξsd
.= deffξsd′ thus making

condition C.2 (i.) reasonable.
As a final ξ-application, we assess the weight

associated with each v̂sdx as a Satterwaith-type
degrees of freedom, computed by the ratio

dfξsd = 2(EξED(v̂sdz))2

EξVarD(v̂sdz)
where here, we treated the

variance estimator as a two-stage Yates-Grundy-Sen
form using totals from the first-stage PSU sampling
and second-stage sampling units. This form is con-
sistent with the form used by the production soft-
ware. For our simplified structures, the second-stage
sampling units were treated as clusters of second-
stage units discussed when presenting the first-order
approximations. Furthermore, we assumed normal
distributions of the ξ to facilitate computations of
the second moments, and d chosen so that dfξsd was
a function of the state and not of the domain d.

3.2 Numerical results

As mentioned earlier, no “official” state statistics
have yet been produced from the NHIS for public
dissemination. For this paper we used a 1997 NHIS
adult sample database of 10 health variables and
several state domains for which some experimen-
tal poststratified state-level proportions and corre-
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sponding standard errors, produced using the SU-
DAAN software, were available.

Since the adult sample selects just one adult per
family, we hypothesized that the effects of weighting
and clustering should be similar for male, female and
both combined. Also the relation of the last section:
Mid

Mid′
.= k(d, d′), a constant, seems somewhat reason-

able for these domains, so these three domains were
considered for smoothing.

First, we determined values for deffξs that pro-
vided effective sample sizes that were somewhat con-
sistent with the observed data. Past experience and
knowledge of the design structures suggested that
most NHIS sampling variation would result from the
within-PSU sampling. We chose the parameters γg’s
and σ2

e

σ2
α

as given in section 4.1. These 4 parameters
applied to formulas in section 4.1 resulted in a na-
tional deffξ = 1.19, and the states’ ξ-design effects
fluctuated about this value. The deffsξ and result-
ing state effective sample sizes are given in Table 1.
Note, that the ordering induced by ξ-smoothing has
an impact only if the nominal sample sizes tend to
be close in magnitude. Of the 10 states with the
largest nominal sample sizes, only Pennsylvania and
Illinois were reversed in order. In general, increasing
a state’s race/ethnic populations increases the vari-
ation in sampling weights thus increasing the de-
sign effect. Furthermore, states with a large non-
selfrepresenting component will tend to have larger
clustering effects thus increasing the design effect.
These two factors result in the state fluctuations
about the national 1.19 figure. If the effective sam-
ple sizes were close, then the states were combined
to the same Si class. This combining operation was
somewhat subjective, and reduces the impact of the
overall ordering constraints.

The ξ-stability measure of the variance estimator,
the degrees of freedom, dfξs, is highly dependent
upon the non-selfrepresenting allocation of sample
within the state. The degrees of freedom parameter
provided in Table 1. should only be considered as a
relative weight for the least squares fitting.

We used the general principles of variable selec-
tion for A as discussed by Wolter (1985 ch. 5) to
identify good candidate health variables for smooth-
ing. Based upon empirically observed commonal-
ities required by conditions C.2 and C.1., our fi-
nal set A consisted of 5 prevalence variables: for-
mer smoker, reported hearing loss, reported asthma,
reported overweight, and reported obesity. As dis-
cussed in the introduction, many small states have
negatively biased estimates of standard error. Be-
cause of the extreme nature of this bias, we modi-

fied the directly computed variances to a reasonable
adjustment: max { psdx(1−psdx)

nsd
, v̂sdx}. For compari-

son purposes we also fit the log version of the two
parameter model of equation (1.1) using ordinary
least squares as suggested by Johnson and Kingman
(1987). The fit of the isotonic model was assessed
in part by considering standardized residuals. In
Table 2. some selected results for three different
sizes of states are provided. For large sample states
the direct estimates of variance usually are mono-
tonic on the grid points, so little smoothing is nec-
essary. This was the case for the state of Texas.
For medium sample size states like Virginia or small
sample size states like Mississippi, many violations
of the grid order were observed, so more smoothing
is required. The comparison parametric fitting re-
sulted in a β = 0.982 and r2 = .92, which resulted
in a design effect that tended to decrease as the state
sample size decreased. Such a relation would be dif-
ficult to justify by an analysis of the state design
structures. All the states exhibited a very high de-
gree of smoothing with this parametric model. Con-
trasting these two approaches one can see that the
isotonic regression smoothing is more data-driven
than model-driven. We feel that the main advantage
of the nonparametric isotonic regression approach
to smoothing is that the directly computed design-
based variance estimates are only modestly changed
for the larger states while the smaller states have
estimated variances forced to have magnitudes con-
sistent with design structures. This approach is less
extreme than the parametric GVF modeling.
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Table 1: NHIS State-Level ξ -based parameters

State order observed design effective degrees State order observed design effective degrees
sample effect sample of sample effect sample of

size size freedom size size freedom

US 0 36115 1.19 30340 995 US 0 36115 1.19 30340 995

CA 1 4305 1.21 3545 324 OK 25 455 1.16 390 12
TX 2 3030 1.27 2395 66 KY 25 445 1.16 385 11
NY 3 2560 1.17 2200 150 SC 26 410 1.18 350 20
FL 4 2120 1.20 1770 72 OR 26 410 1.19 345 9
PA 5 1555 1.12 1390 64 IA 27 380 1.22 310 5
IL 6 1580 1.18 1340 51 KS 27 360 1.17 310 9
OH 7 1350 1.13 1200 40 MS 28 375 1.29 290 4
MI 8 1260 1.14 1105 37 AR 29 330 1.22 270 6
NJ 9 1105 1.14 975 186 NM 30 350 1.40 250 3
GA 10 950 1.21 785 22 NE 31 250 1.20 205 4
MA 11 855 1.10 775 72 UT 32 215 1.14 190 15
NC 12 915 1.20 765 22 WV 32 225 1.17 190 4
VA 13 875 1.16 750 25 HI 33 165 1.13 145 1
MO 14 785 1.17 670 12 ME 34 160 1.15 140 4
IN 15 770 1.17 655 18 NH 34 150 1.09 135 10
MN 16 705 1.14 620 17 NV 35 155 1.19 130 7
WI 17 715 1.18 605 12 ID 35 170 1.28 130 2
WA 18 680 1.17 580 20 RI 35 145 1.11 130 20
TN 19 670 1.18 570 14 DC 36 125 1.13 110 16
AL 20 645 1.19 545 12 MT 37 110 1.20 95 2
MD 20 605 1.12 540 51 DE 38 90 1.10 85 14
AZ 21 630 1.22 520 30 SD 39 90 1.16 75 2
LA 22 585 1.17 500 15 ND 39 85 1.15 75 2
CT 23 520 1.12 460 22 WY 40 65 1.23 55 1
CO 24 530 1.22 435 14 VT 41 55 1.12 50 3

AK 42 45 1.19 35 1

Table 2: State estimated standard errors and design effects: direct, isotonic, and parametric model

State variable observed p̂ direct isotonic parametric direct isotonic parametric
domain sample stderr stderr stderr deff deff deff

Texas
adult asthma 3050 7.4 0.57 0.57 0.57 1.45 1.45 1.41
female asthma 1750 7.3 0.69 0.69 0.74 1.22 1.22 1.40
male asthma 1300 7.6 0.91 0.91 0.87 1.53 1.53 1.39

adult obese 2950 21.4 0.91 0.91 0.89 1.44 1.44 1.39
female obese 1650 20.1 1.09 1.09 1.15 1.24 1.24 1.37
male obese 1250 22.9 1.35 1.35 1.38 1.32 1.32 1.37

Virginia
adult asthma 850 10.2 1.13 1.19 1.20 1.22 1.34 1.37
female asthma 500 11.5 1.59 1.63 1.67 1.24 1.30 1.36
male asthma 400 8.8 1.96 1.82 1.70 1.80 1.56 1.36

adult obese 850 17.4 1.19 1.63 1.52 0.83 1.57 1.36
female obese 500 19.5 1.78 2.11 2.10 0.96 1.35 1.34
male obese 350 15.0 1.78 2.11 2.14 0.93 1.30 1.34

Mississippi
adult asthma 400 7.7 1.41 1.41 1.61 1.05 1.05 1.36
female asthma 200 6.3 1.32 2.11 1.91 0.64 1.65 1.35
male asthma 150 9.5 2.26 3.18 2.71 0.93 1.84 1.33

adult obese 350 23.2 2.34 2.55 2.57 1.11 1.32 1.34
female obese 200 26.6 1.92 3.31 3.53 0.39 1.17 1.32
male obese 150 19.4 4.91 4.35 3.65 2.38 1.86 1.32
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