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Abstract

This paper deals with the properties of
several nonparametric estimators in the con-
text of seasonal adjustment. The smoothers
discussed are Loess, the Cubic smoothing
spline and the Gaussian kernel, all constrained
to a Þx span of 13 terms for comparison with
the Henderson Þlter widely applied in time
series decomposition. Because of this con-
straint, the smoothers statistical properties are
affected, and no longer optimal as when their
respective smoothing parameters are optimally
estimated according to data-driven automated
selection methods.

We perform the comparison by means of
spectral techniques, deriving the symmetric
and asymmetric weights of each smoother and
calculating the corresponding gains and phase
shift functions. These latter provide informa-
tion on the type of �signal� passed and �noise�
suppressed by each smoother.

1. Introduction

The presence of high levels of variabil-
ity in seasonally adjusted data, often encoun-
tered in recent years, poses the serious problem
of properly identifying the underlying short-
term trend. One solution has been the cal-
culation of variances of seasonally adjusted se-
ries (see, e.g. Wolter and Monsour, 1981; Bur-
ridge and Wallis, 1985; Hillmer, 1985; Pfeffer-
mann, 1994). Since the dominant seasonal ad-
justment method adopted by statistical agen-
cies is not model based, the variance calcula-
tion has proven to be a great challenge; still
not fully solved. Similarly, for model based
seasonal adjustment procedures, the fact that
models and/or parameter values change with
new observations, limits the validity of the re-
sults for most recent observations which are the
most important.

Another alternative to the identiÞcation
of the underlying short-term trend is that of
smoothing the seasonally adjusted data as sug-

gested by Dagum (1987). Traditionally, the
most often applied trend-cycle predictor for
monthly data is the 13-term Henderson Þlter
(H13). This Þlter, however, has the two major
limitations of producing: (1) a large number of
9-10 month cycles (unwanted ripples) leading
to false turning points, and (2) large revisions
when new observations are added to the series.

In this paper, we investigate if other non-
parametric smoothers, subject to length re-
striction, can improve on H13 and, thus, offer
an alternative to the nonparametric nonlinear
method developed by Dagum (1996) that cor-
rects for the two H13 shortcomings.

The smoothers considered are based on
two classes of weight generating functions, lo-
cal polynomials and probability distributions.
We consider, within the Þrst class, the locally
weighted regression smoother (loess) of degree
2 (L2) and the cubic smoothing spline (CSS);
and in the second class, the Gaussian kernel
(GK). These estimators depend on a smooth-
ing parameter that determines the degree of
smoothness of the output. Traditionally, the
smoothing parameter is estimated on the ba-
sis of procedures that minimize a loss func-
tion, e.g. the mean square error or prediction
risk. Frequently, when the smoothing parame-
ter is optimally estimated as a function of the
characteristics of the input data, the span of
the Þlter is rather large (see, e.g., Dagum and
Capitanio, 1998, and Dagum and Luati, 2000).
Therefore, a large number of end points can be
estimated only with asymmetric weights; a seri-
ous limitation for seasonal adjustment. Asym-
metric weights introduce revisions in the more
recently estimated values as new observations
are added and phaseshifts at cyclical turning
points. To reduce the undesirable effects of a
large number of asymmetric weights, we impose
to each smoother the constraint of a Þxed 13-
term length in agreement with the H13 Þlter
that will be used as a our �benchmark�. With
this a priori constraint, all the smoothers be-
come linear, and consequently, no longer data
dependent.

Section 2 introduces the deÞnition and
a brief description of each nonparametric
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smoother. Section 3 gives the symmetric and
asymmetric (last data point) weights derived
for each constrained smoother. Section 4 cal-
culates their frequency response functions for
symmetric and asymmetric weights and dis-
cusses their smoothing properties. Finally, sec-
tion 5 gives the conclusions.

2. Nonparametric Estimators

The nonparametric estimators discussed
are based on different assumptions of smoother
building. The locally weighted regression
smoother known as loess, Þts local polynomi-
als of a degree d where the parameters are es-
timated by ordinary or weighted least squares.
Hence, it satisÞes the property of best Þt to the
data. The cubic smoothing spline searches for
an optimal solution between both Þtting and
smoothing of the data under the assumption
that the signal locally follows a second degree
polynomial. The Gaussian kernel is a locally
weighted average where the weighting function
follows the Gaussian standard probability dis-
tribution. Finally, the Henderson smoothing
Þlter , derived from the graduation theory, min-
imizes smoothing with respect to a third degree
polynomial within the span of the Þlter.

Next, we give a brief description of each
nonparametric smoother and refer the reader
to Dagum and Luati (2000) for more details.

(I) The locally weighted regression
smoother that we use in this study, known
in the current literature as loess, is the one
developed by Cleveland (1979) originally
called lowess, (LOcally WEighted Scatterplot
Smoother). Loess is based on nearest neigh-
bors weights and applied iteratively, which
makes it a robust procedure. Given a series of
equally spaced observations and corresponding
target points

{(yj , tj) , j = 1, . . . , N} , t1 ≤ . . . ≤ tN
where tj is the time the observation yj is taken,
loess produces a smoothed estimate byj , as fol-
lows, byj = tTj

bβj
where tj is the (d+ 1)-dimensional vector of
generic component tpj , p = 0, . . . , d; d =
0, 1, 2, . . . denotes the degree of the Þtting poly-
nomial, and bβj is the (d+ 1)-dimensional least
squares estimate of a weighted regression com-
puted over a neighborhood of tj constituting a
subset of the full span of the series.

The weights depend on the distance be-
tween the target point t∗j and any other point
belonging to its neighborhood. Each neighbor-
hood is made of the same number of points cho-
sen to be nearest to t∗j , and the ratio between
the amplitude of the neighborhood, n, and the
full span of the series, N , deÞnes the smooth-
ing parameter. It is sensible to choose an odd
value for n in order to allow symmetric neigh-
borhoods, at least for central observations.

Concerning the degree of the Þtting poly-
nomial, d = 1 or d = 2 are usually appropriate
choices. The highest degree is more appropri-
ate when the plot of the observations against
the target points presents many maxima and
minima, since the ßexibility of a quadratic
curve best Þts highly noisy time series, there-
fore, in this study we use loess with d = 2. As
far as it concerns the weighting function, we
use the one based on the tricube function

W (x) =
³
1− |x|3

´3

I{[0,1[} (x)

whose quasi-semicircular shape allows about
45% of the points belonging to any symmet-
ric neighborhood to have considerable weight
(greater than 0.8), the remaining 55% having
weights decreasing to zero quite slowly.

(II) Kernel type smoothers are locally
weighted averages. A kernel smoothing gives,
at time t∗h, 1 ≤ h ≤ N, the smoothed estimate

byh = NX
j=1

whjyj

where

whj =
Kb

³
t∗h−tj
b

´
NP
i=1
Kb

³
t∗h−ti
b

´
are the weights from a parametric kernel (a
nonnegative function that integrated over its
domain gives unity), b > 0 denotes the smooth-
ing parameter, and Kb (x) = Kb (−x).

In this study, we consider the standard
Gaussian kernel function given by

Kb

µ
t∗h − tj
b

¶
=

1√
2π
exp

(
−1
2

µ
t∗h − tj
b

¶2
)
.

(III) A spline function is the unique solution of
the following optimization problem (Whittaker
and Robinson, 1924; Schoenberg, 1964)
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fλ = min
fλ∈Cs

1

N

NX
t=1

[yj − f (tj)]2+λ
Z b

a

h
f

(s)

(u)
i2

du

(2.1)
where Cs is the class of functions with s con-
tinuous derivatives and λ > 0. The solution of
(2.1) is a univariate piecewise polynomial of de-
gree 2s−1 with the pieces joined at the �knots�
t1, · · · , tN . For s = 2 we have the cubic smooth-
ing spline, that is

min
fλ∈C2

1

N

NX
t=1

[yj − f (tj)]2 + λ
Z b

a

h
f
00
(u)

i2

du

(2.2)
where the smoothing parameter λ balances the
trade off between the Þt to the data and the
smoothness of the estimates. The Þtting is
guaranteed by the least squares condition on
the left hand of the (2.2), whereas the smooth-
ing condition is imposed by balancing the cur-
vature of the function on the deÞnition domain
with the smoothing parameter λ.

It follows from (2.2) that if λ → 0, then
the solution f tends to the univariate natural
polynomial spline which interpolates the data,
while if λ → ∞, the solution tends to the sec-
ond degree polynomial best Þtting the data in
the least squares sense.

The cubic smoothing spline estimates are
given by byj = f (tj)
with f (tj) being a smooth function on the in-
terval [a, b] , a ≤ t1 ≤ . . . ≤ tN ≤ b.

(IV) The Henderson smoothing Þlters of-
ten applied for trend estimation in time series
decomposition are based on summation formu-
lae mainly used by actuaries. The basic princi-
ple for a summation formula is the combination
of operations of differencing and summation in
such a manner that, when differencing above
a certain order is ignored, they will reproduce
the functions operated on.

If the length of the Þlter is 2k − 3,
Henderson (1916) showed that the gen-
eral expression for the j -th term of the
Þlter that minimizes

P
j

¡
∆3wj

¢2
is wj =

315[(k−1)2−j2](k2−j2)[(k+1)2−j2](3k2−16−11j2)
8k(k2−1)(4k2−1)(4k2−9)(4k2−25) .

Making k = 8 and j from -6 to 6 we obtain a
symmetric set of 13 weights.

Kenny and Durbin (1982) and Gray and
Thomson (1996) proved that the symmetric

weights wj of the Henderson smoothing Þlters
can also be obtained as the solution of a poly-
nomial in j of degree 8 for the 13-term Þlter,
subject to the unbiasedness conditions,

mX
j=−m

wj = 1,
mX

j=−m
jwj = 0

and
mP

j=−m
j2wj = 0 and to the smoothness

restriction S given by,

S = σ2
u

m+3X
j=−m

¡
∆3wj

¢2

where the wjs satisfy the boundary condition of
wj = 0 for j = ±(m+1),±(m+2),±(m+3).

On the contrary, the weights of the asym-
metric Henderson Þlters available in software
such as CENSUSX11, X11ARIMA, and
X12ARIMA, were developed by Musgrave
(1964) on the basis of the minimization of the
mean squared revision between the Þnal es-
timates (obtained by the application of the
symmetric Þlter) and the preliminary estimates
(obtained by the application of an asymmetric
Þlter) subject to the constraint that the sum
of the weights is equal to one. The assump-
tion made is that the most recent values of the
series (where seasonality has been removed, if
present in the original observations) follow a
linear trend plus an erratic component εt such
that εt ∼ N

¡
0,σ2

ε

¢
(see Laniel, 1985, and Do-

herty, 1992).

3. Symmetric and Asymmetric
Weights of Fixed 13-term Length
Smoothers

Setting the length of the smoothers equal
to 13, we derive the following symmetric and
asymmetric Þlters to be applied to central and
last available observations, respectively.

L 2 -0 .0 1 5 - 0 .0 3 6 - 0 .0 0 4 0 .0 7 4 0 .1 5 7 0 .2 1 0 0 .2 2 7 *

C S S 0 .0 0 1 - 0 .0 0 1 - 0 .0 1 0 -0 .0 2 3 0 .0 2 2 0 .2 5 0 0 .5 2 2 *

G K 0 .0 0 1 0 .0 0 7 0 .0 2 3 0 .0 6 0 0 .1 2 1 0 .1 8 3 0 .2 1 0 *

H 1 3 -0 .0 1 9 - 0 .0 2 8 0 .0 0 0 0 .0 6 6 0 .1 4 7 0 .2 1 4 0 .2 4 0 *

Table 1. Symmetric weights of Þxed 13-term
smoothers (*central weight).

L 2 -0 .0 9 9 - 0 .0 8 5 - 0 .0 2 9 0 .0 6 7 0 .2 0 1 0 .3 7 1 0 .5 7 4 *

C S S 0 .0 0 2 0 .0 0 2 - 0 .0 0 8 -0 .0 3 7 - 0 .0 3 8 0 .2 0 1 0 .8 7 9 *

G K 0 .0 0 2 0 .0 1 1 0 .0 3 8 0 .1 0 0 0 .1 9 9 0 .3 0 2 0 .3 4 7 *

H 1 3 -0 .0 9 2 - 0 .0 5 8 0 .0 1 2 0 .1 2 0 0 .2 4 4 0 .3 5 3 0 .4 2 1 *
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Table 2. Asymmetric weights of Þxed 13-term
smoothers (*end point weight).

It should be noted that the CSS weights
reported here are different from those given in
Dagum and Capitanio (1999) where the value
of λ = 1.0 was selected to approximate the H13
and led originally to a number of weights equal
to 31 which were truncated to 13. We ob-
tained the value of λ = 0.2 as the one that
corresponds to a span of 13 weights.

Figures 1 and 2 show the symmetric and
asymmetric weights, respectively, for the vari-
ous smoothers. It is apparent that the symmet-
ric weights of CSS have the smallest dispersion
around the central value and that those of L2
and H13 are very similar one another. On the
other hand, the asymmetric last-point weights
are quite different for all the Þlters.

4. Gains and Phaseshifts of the Sym-
metric and Asymmetric Smoothers
Filters

We study the smoothing properties of
the Þxed 13-term nonparametric estimators
by means of the traditional spectral analy-
sis approach, and, thus, calculate their fre-
quency response functions H (ω) . The latter
is decomposed into gain and phaseshift de-
Þned by H (ω) = G (ω) e−iφ(ω) where G(ω)
is the gain function of the Þlter and φ (ω)
is the phaseshift. The phaseshift is given
in months by φ∗ (ω) = φ(ω)

2πω . The formula
G (ω) =

p
A2 (ω) +B2 (ω), where A (ω) =P

j
wj cos (ωj) and B (ω) =

P
j
wj sin (ωj), has

been used to compute and plot the gain func-
tions of the symmetric and asymmetric Þlters
and φ∗ (ω) = 1

2πω arctan
n
B(ω)
A(ω)

o
has been used

for the phaseshifts of the last point asymmetric
Þlters.

Figure 3 shows the gains of the symmetric
Þlters for central observations. In the context
of smoothing seasonally adjusted data it is use-
ful to divide the total range of ω ∈ [0, 0.50] in
two major intervals: (1) 0 ≤ ω ≤ 0.06, as-
sociated with cycles of 16 months or longer at-
tributed to the �signal� (trend-cycle) of the sea-
sonally adjusted series, and (2) the frequency
band 0.10 ≤ ω ≤ 0.50 corresponding to short
cyclical ßuctuations attributed to the �noise�.
In this latter interval, it is of great interest to
see how much of the power is not suppressed
at ω = 0.10, corresponding to 10-month cy-

cles, known as �unwanted ripples�, which can
be wrongly interpreted as true turning points.
An optimal smoothing Þlter should have a gain
as close as possible to one for 0 ≤ ω ≤ 0.06
and near to zero for 0.10 ≤ ω ≤ 0.50. It should
be noted that most seasonal adjustment meth-
ods will suppress almost all the power already
present in the frequency band around the fun-
damental seasonal frequency, i.e. 0.6 < ω <
0.10.

For the symmetric Þlters, the largest re-
duction of noise is produced by GK which
possesses the good property of suppressing a
large amount of power at ω = 0.10 but has the
disadvantage of also suppressing power associ-
ated to the trend-cycle. On the contrary, CSS
leaves untouched the signal but passes a lot of
noise. In fact, restricting CSS to be of a rather
short length has destroyed its optimal smooth-
ing property. Another important observation is
that the restricted loess of degree 2 gives almost
identical results to those of the classical H13.
Both Þlters have the good properties of pass-
ing almost all the signal without modiÞcation,
and suppressing a large amount of noise. But
both also have the disadvantage of leaving too
much power at ω = 0.10 and, therefore, will
produce a large number of unwanted ripples in
the output.

Figure 4 exhibits the gains of the asym-
metric Þlters for the last observation. It is ap-
parent that all the asymmetric Þlters pass a
much larger amount of noise than the symmet-
ric ones.

The L2 gain is now shifted up by almost a
constant amount with respect to H13, simulta-
neously introducing a large ampliÞcation of the
power attributed to the trend and suppressing
less noise. CSS shows a good performance for
the signal frequency band but at the expense
of a very small noise reduction. The GK gain
is close to that of H13 in the noise frequency
band, but very different in the signal part where
GK is shown to suppress too much power.

Figure 5 shows the various phaseshifts in-
troduced by the asymmetric Þlters. Only CSS
has practically no phaseshift all along the fre-
quency range. It can also be seen that L2 pro-
duces almost half the phaseshift introduced by
H13 at the signal frequency band, which is the
most critical given the large amount of power
passed by both Þlters.
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5. Conclusions

We analyzed the properties of several non-
parametric smoothers, restricted to Þxed 13-
term length, for the smoothing of seasonally
adjusted series. Our benchmark was the tra-
ditional 13-term Henderson Þlter. We con-
sider the locally weighted regression smoother
(loess) of degree 2 (L2), the cubic smoothing
spline (CSS) and the Gaussian kernel (GK).
We derived their symmetric and asymmetric
(end point) sets of weights Þlters and studied
their properties by means of their correspond-
ing gains and phaseshift functions.

The constraint of a 13-term span destroyed
the optimal smoothing properties of the CSS
that passed the largest amount of noise for both
symmetric and asymmetric Þlters.

The L2 gain closely approximated that of
H13 and, thus, it shared the disadvantage of
passing a large amount of power at ω = 0.10
implying a large number of unwanted ripples
(short cycles of 10-month periodicity). Finally,
the results from the restricted GK indicated an
oversmoothing for it suppressed not only most
of the noise power but also that of the signal.

Concerning the Þxed-length asymmetric
Þlters for the last point, they all passed much
more noise than the symmetric ones. The
asymmetric CSS Þlter was the only one not
introducing phaseshift (a measure of bias for
points of maxima and minima) all along the
frequency range but it had the serious limita-
tion, shared by its symmetric counterpart, of
leaving all the noise almost unchanged.

The constrained asymmetric L2 no longer
approximated closely the H13 Þlter, showing
both power ampliÞcation of the signal and less
phaseshift. Finally, the GK last point asym-
metric Þlter introduced the largest amount of
phaseshift.

In summary, none of the 13-term linearized
smoothers improve on the limitations of H13.

In view of these results, we intend to lin-
earize the Dagum Þlter (1996) and study its
spectral properties.
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Figure 3: Gain functions of the symmetric Þl-
ters for central observations.
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Figure 4: Gain functions of the asymmetric
Þlters for the last data point.
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Figure 5: Phaseshifts of the asymmetric Þl-
ters for the last data point.
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