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1.  Introduction

In most surveys, we encounter missing data of one or
more types.  Some sample units leave some data items
blank--item nonresponse.  The usual approach is to
impute all missing, inconsistent, or otherwise invalid
items.  This paper considers the effect on the estimates of
variance from treating imputed values as if they were
reported, and compares strategies to address it.

Data processing for many of the economic surveys
conducted by the Census Bureau has been moved onto a
generalized system called the Standard Economic
Processing System (StEPS).  Methods for estimating
variances available in many systems, including StEPS,
treat all processed data as if they were reported, ignoring
the fact that the imputed values were not observed.  The
result is that this “naïve” estimator of variance typically
is biased; often it underestimates the true variance.

Under StEPS, a survey is not restricted to one
method of imputation.  Some surveys apply a primary
method, and, if the variable(s) required is not available,
they revert to a second or even a third method.  We call
this multi-phased procedure mixed imputation.  We have
not seen it addressed often in the literature beyond Shao
and Steel (1999) and Full (2000).  

Our goal is to develop the capability in StEPS to
obtain an approximate estimate of variance that takes into
account the component due to the imputation of missing
or invalid values.  However, in producing this variance
estimate, several considerations are to be balanced:  (1)
the accuracy of the resulting variance estimates, (2) the
ability to generalize the procedure to various types of
imputation, (3) the procedure's robustness to the use of
mixed imputation, and (4) the ease of implementing the
procedure within StEPS.

Weighing these constraints, we considered several
procedures discussed in the literature, and concentrate on
two of them.  The first is a simple procedure that inflates

the naïve variance estimate by a factor that depends on
the amount and type of imputation.  Under the second
procedure (Kim 2001), we create “pseudo-data,” a second
set of responses perturbed enough that commonly applied
variance estimation formulae or software will pick up the
variability caused by the imputation.

Section 2 contains a brief review of the literature and
the methods.  Some options for imputation under StEPS
are described in Section 3.  In Sections 4 and 5,
respectively, we explore the inflation-factor approach and
Kim's method.  Finally, in Section 6 we provide results of
a simulation study.

Many derivations, citations, and other details are left
out of this paper, but can be obtained from the author in
a separate technical report.

2.  Brief Review of Relevant Literature

In recent years continual advances have been made
in estimating the variance of an estimator that accounts
for the imputation of missing values.  Rubin (1978)
introduced the method of multiple imputation as a way of
representing the variability created by the imputation.

For the case of hot-deck imputation, Rao and Shao
(1992) presented a method that allows one to apply the
usual jackknife variance procedure to approximate the
result.  Their “adjusted jackknife variance estimator” uses
only one imputation, rather than several; it requires
making a slight adjustment in each of the imputed values
whenever a responding unit is the one that is deleted in
the jackknife computations.

Directly related to the developments in this paper are
Korn and Graubard (1999) and Kim (2001).  In the
former, the authors apply a factor to inflate the estimate
of the variance derived from the reported and imputed
values.  They consider mainly the cases of simple mean
and hot-deck imputation based on one or more imputation
cells.  Kim proposes a procedure whereby missing values
are imputed, then the observed values are perturbed
sufficiently so that the resulting set of processed values
correctly approximates the variability of the underlying
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population.  With these two approaches, the existing
software for variance estimation could be used.  The
inflation factor approach has several issues to resolve.

3.  Imputation Under StEPS

The Census Bureau's Standard Economic Processing
System (StEPS) allows for a variety of imputation
methods to be applied across surveys or even within the
same survey (Luery 2001).  Some of the more important
types are the following.  Each is accompanied here by an
example from an annual survey; the target value, yt,i , is
sales in the year 2000.

1.  Ratio (of identicals):   (3.1)ŷt, i � xi ]

ˆ
resp

yt, j

ˆ
resp

xj

The “identicals” are the units for which information is
available at two times or from two sources, the second
typically being the current survey of interest.  They
provide an estimate of the ratio of change from the first
source to the second.  For example, one might compute
the ratio of change in sales from 1999 to 2000 based on
units that respond to the survey each time.  This ratio is
applied to 1999 sales from the nonresponding unit.

2.  Regression:    ŷt, i � β0 � β1 x1,i � . . . � βm xm,i
(3.2)

Based on respondents to the survey, one or more known
variables, such as the value of inventories in 1999 or
“census equivalent sales” are used to fit a regression
model for sales in 2000.  The known variables can be
from current or past periods.  The unknown y value is
then predicted by the model.

3.  “Within-unit”:   ŷt, i � x �

i , e.g., � yt�h, i ]
xt, i

xt�h, i

(3.3)
Some variable, , known for the nonresponding unit i,x �

i
is substituted for the unknown value yt,i .  For example,

 may be the product of the unit's sales in 1999 and thex �

i
change (ratio) in payroll from 1999 to 2000.  The payroll
information might be available from other sources, such
as administrative (tax) records.  The label “within unit” is
given to indicate that all the information for the
imputation arises from the unit itself; no summary
statistics, such as means or ratios from the responding
units, are used.

StEPS can accommodate other types of imputation:
donor methods, such as hot-deck and cold-deck
imputation, and taking the mean from a cell defined,
perhaps, by strata or other known information.  Surveys
can also specify their own method of imputation.

4.  Applying an Inflation Factor

To estimate the true variance of an estimator when
values are imputed, we try to multiply the usual variance
estimator that ignores imputation by a factor that depends
on the amount and type of imputation.  The amount can
be measured in several ways.  In what follows, we'll use
the unweighted nonresponse rate.  One may wish to
incorporate the sampling weights.  To describe our
strategy, we define two expectations:

V1: The expected value of the “naïve” variance estimator,
that is, the estimator that treats all imputed values as
if they were reported and valid, conditional on the
amount of imputation.

V2: The true variance of the estimator in the presence of
imputation, again, conditional on the amount of
imputation.

When the applied variance estimator is unbiased, it is
often the case that V1 @ V2, with equality only when
there is 100% response.  The plan then is to determine or
approximate the value of the inflation factor V2/V1 for a
specific type of imputation as a function of the amount of
imputation.  This factor is then applied to the naïve
variance estimate, as estimated by a variance formula or
variance estimation software.

Several problems can arise with this approach.  In
practice, there may be many cells or groups for
imputation, making the procedure complex.  As we see
below, the inflation factor may be a function of
population parameters, such as a correlation or
coefficients of variation, that must be estimated. Further,
with a certainty stratum, that is, one whose units are all
selected with probability 1, V1 is equal to 0 if the
variance estimator applied incorporates the finite
population correction (fpc).  Strategies to deal with this
are not covered in this paper.

To apply this approach, we consider a population, U,
of size N.  To estimate the total of some variable Y for
the population, we take a sample, S, of size n.  In this
paper, we assume the sample is a simple random sample
taken without replacement (srswor).  In the sample, for
the item y there are r respondents and n-r nonrespondents.
These sets are represented by R and NR, respectively,
with R � NR = S.

Suppose further that all units in the sample are
equally likely to respond.  Although this response
mechanism is unrealistic, it is assumed in much of the
research on the effects of imputation (Rao and Shao
1992, Korn and Graubard 1999, Kim 2001)--at least
within a specifed stratum or cell--and presents a starting
point for this method.
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4.1  Regression Imputation

Often we have auxiliary information available to use
in the imputation in the form of a vector of variables X
known for all units in the sample, perhaps for all
members in the population.  To demonstrate the inflation
method here, we assume that there is only one X variable;
the method can easily be extended to cover multivariate
X.  We define   = (1/r) ΣR xi , and  = (1/n) ΣS xi , asx̄R x̄S
the means of x from only the respondents and from the
entire sample, respectively; and

b  =     =    , (4.1)
sxy,R

s 2
x,R

ˆR (yi�ȳR ) (xi�x̄R )

ˆR (xi�x̄R )2

the usual sample estimate of the least squares regression
coefficient.  We define the processed values as 

(4.2)y I
i �

yi , if i M R

ŷi � ȳR � b (xi� x̄R ) , if i M NR

The simple weighted estimator in the presence of
regression imputation can be written as

 =  ΣS (N/n)yi
I  = N (  + ) (4.3)ŶREGR ȳR b ( x̄S � x̄R )

To determine V1, we evaluate the variance, sI
2, of the

processed values, yi
I, for all i in the sample.  It can be

shown that, for a fixed set of population X values, and
conditional on the number of nonrespondents, 

E ( (n>1) sI
2 )  =   E ( ΣS (yi

I > ) 2   ȳ I

=   ( ) Sy,U
2 , (4.4)( r�1)(1�ρ2) � (n�1)ρ2

where  is the mean of the yi
I 's, and ρ is the populationȳ I

correlation coefficient between X and Y.  Ignoring fpc, 

V1   K    . (4.5)N 2 { r�1
n�1

(1�ρ2 ) � ρ2 }
S 2

y,U

n
Cochran (1977, p. 340) derives the true variance as

V2   K    . (4.6)N 2 { n
r

(1�ρ2 ) � ρ2 }
S 2

y,U

n
To inflate the naïve variance estimate to better measure
the true variance, we apply the ratio

   . (4.7)V2
V1

K
n(n�1)(1�ρ2 ) � r (n�1)ρ2

r ( r�1)(1�ρ2 ) � r (n�1)ρ2

In practice, ρ must be estimated.  Current or past data are
usually sufficient for this purpose.

4.2  Ratio Imputation

Let w be the ratio of the sample totals or means of Y
and X from the respondents, w =  /  , and let W beȳR x̄R
the population ratio.  (W and w are used in place of R and
r to avoid confusion with the set of respondents and its
size.)  The processed variable is now 

(4.8)y I
i �

yi , if i M R

ŷi � w xi �
ȳR

x̄R

xi , if i M NR

With ratio imputation, the simple weighted estimator,
, is  N w   =  N .  For a fixed set ofŶRATIO x̄S ( ȳR / x̄R) x̄S

population X values, conditional on the number of
nonrespondents, assuming r is large enough and that w2

and s x,R
2 are approximately independent, and ignoring the

fpc and terms that are of order 1/r times those that remain,
we can show that 

V1   K   N2  {  S y,U
2  +   W2 S x,U

2 }1
n

r�1
n�1

n�r
n�1 (4.9)

Again, the true variance is found in Cochran (1977, p.
344):

V2  K  { Sy,U
2  +  [W2Sx,U

2  > 2WSxy,U ]} N 2

n
n
r

n�r
r (4.10)

where S xy,U is the population covariance term between y
and x.  Writing W as / , and expressing theȲU X̄U
coefficient of variation of the variable x, S x,U/ , as λX̄
times that of y, the inflation ratio becomes

 .V2
V1

K
n(n�1) � (n�1)(n�r) (λ2

�2ρλ )
r ( r�1) � r (n� r )λ2

(4.11)
As before, ρ and λ must be estimated from the data.

4.3  Within-Unit Imputation

When applying within-unit imputation, a missing yi
value is merely replaced in the estimator by some variable

 obtained only from unit i.  If the expected value of thex �

i
imputed 's is different from that of the missing yi's, thex �

i
estimator for Y, , is typically biased.  But, more toŶWIU
our interest in this paper, in that case the naïve variance
estimator may overestimate the variance.  This can occur
because the imputation does not use summary statistics
from the responding units, statistics that tend to draw the
imputed values toward the center of the observed y values
or toward some regression line or curve.

For simplicity of notation, we will drop the prime on
the  values.  The processed values under within-unitx �

i
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imputation are yi
I  =  yi , if i M R, or xi , if i M NR.

Then   =   ΣS (N/n) yi
I   =  (N/n) {dR yi +  dNR xi}  ŶWIU

=  (N/n) { } (4.12)r ȳR � (n � r ) x̄NR

Similar to the prior development, it can be shown that

E ( sI
2 )   =      ( r

n
) ( 1 �

n� r
(n�1) N

) S 2
y,U

+   ( n� r
n

) ( 1 �
r

(n�1) N
) S 2

x,U

+      +   2
(n�1) N

Sxy,U
r (n � r )
n (n � 1)

( Ȳ � X̄ )2

(4.13)

If  and  are not about the same, the final term hereȲ X̄
could be nontrivial.  In that case, one may want to
reconsider the use of X as an imputation variable for Y.
But if  K  and we can ignore terms of the same orderȲ X̄
as the sampling fraction, we can write V1 as 

V1   K   (4.14)N 2

n 2
[ r S 2

y,U � (n� r ) S 2
x,U ]

The true variance of  does not depend on theŶWIU
difference between the population means,  and :Ȳ X̄

V2  =    {   N 2

n 2
r (1 �

r
N

) S 2
y,U

+    >  }(n� r ) (1 �
n� r
N

) S 2
x,U 2 r(n� r )

N
Sxy,U

(4.15)
If we drop terms of the same order as the sampling
fraction, it is easy to see that V1 and V2 are about the
same. In this situation, the naïve variance estimate is
approximately unbiasd; there is no need to inflate it.

5.  Applying Kim's Method

The approach taken by Kim (2001) is to create a
second set of data that reflects the added variability due
to the use of imputation.  The advantage over other
procedures mentioned in Section 2 is that this set of
“pseudo-data” can then be put through the existing
variance estimation software to produce a valid estimate
of the variance; no extra steps are required within the
variance estimation.  It should be mentioned that Shao
and Steel (1999) also proposed such a procedure in the
case of ratio estimation.

As an example, let us return to regression imputation
with a set of auxiliary variables, X.  The regression model
for yi is .  The estimator for Y wasŷi � ȳR � b (xi� x̄R )
given in equation (4.3), and its variance in (4.6).  An
estimator for this variance based on regression theory can
be given as

  =   ΣS ( > ) 2  V̂REGR
1

n (n�1)
ŷi ȳ I

+    ΣR (yi > ) 2 (5.1)1
r (r�2)

ŷi

The first sum represents the variability among the
modeled y's, , while the second sum measures the errorŷi
in the regression model.  Kim shows that this variance
can be rewritten simply as

s2*   =    ΣS (yi* > ) 2 , (5.2)1
n

1
n (n�1)

ȳ I

where the yi*'s are the “pseudo-data” defined as

 ,yi� �

cREGR yi � (1�cREGR) ŷi , if i M R

ŷi , if i M NR
(5.3)

with cREGR = (n(n-1)/(r(r-2))1/2.

Kim shows that this value of cREGR is the appropriate
factor to introduce the proper amount of perturbation of
the reported values under regression imputation.  In his
paper, he considers other situations and sampling
schemes, and derives other perturbation factors, c.  It is
not clear that this strategy produces such a close
approximation to the true variance under all types of
imputation.  However, among other results, he considers
complex sampling designs, and shows that the standard
jackknife variance estimator applied to the pseudo-data is
approximately unbiased for the variance.

6.  A Simulation Study

We conducted a simulation study to measure the
performance of several variance estimators under three
types of imputation and mixtures of the three.  The goal
was to estimate the total retail sales in the year 2000 from
new auto dealers from a frame of units constructed as
follows.

The Frame and Sample.  We obtained a subset of the
file of sample units from the 2000 Annual Retail Trade
Survey, conducted by the Bureau of the Census, in the
North American Industry Classification System (NAICS)
code 441110, new auto dealers.  From this file, we
extracted all units with a sampling weight greater than 10,
that is, the smaller firms, as determined by their measure
of size in the 1997 Census of Retail Trade.  After deleting
units with specific fields missing, there were N = 779
dealers, which were treated as the frame.  From this
frame, we drew simple random samples of size n = 40
without replacement (srswor).  The target variable, Y, is
sales in 2000.
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The Imputation Procedures.  Each unit selected into
the sample was given a 70% chance of responding,
independently from unit to unit.  If the unit was a
nonrespondent, we applied one of three imputation
procedures, as listed in Table 1.  The three procedures are
the same as those described in Section 3, using the same
variables.  To apply the inflation methods more
realistically, when computing the parameters ρ and λ, we
used data from the prior (available) period.  For example,
for the ratio of identicals, ρ, the correlation between sales
in 2000 and sales in 1999, was estimated using data from
1999 and 1998 (where ρ = .88).

Table 1.  Imputation Variables and Parameters Used
in the Simulation

Type of
Imputation

Imputation
Variable

True
Correl.
with Y

Used for
Inflation
Method

1. Ratio of
    identicals Sales in 1999 ρ = .89

λ = 1.08
ρ = .88
λ = 1.02

2. Regression Inventories in
1999 ρ = .78 ρ = .77

3. Within-
    Unit

Sales in 1999 
×  Payroll in
2000/1999

ρ = .95 ---

The Mix of Imputation.  To evaluate the procedures
under mixed imputation, a nonrespondent's imputed value
was determined randomly, according to one of the three
imputation procedures.  For each simulation (row) in
Tables 2 and 3, the imputation mix is denoted by (a, b, c),
where a, b, and c represent the probabilities of using
procedures 1, 2, and 3 (as denoted in Table 1),
respectively.  In the first three simulations (rows of the
tables), all the imputation was completed using a single
method.  For surveys using mixed imputation, a realistic
mix might be something like (.75, .20, .05), where the
variable required for the primary imputation methods is
missing 25% of the time, forcing one to use a second or
third procedure.  To help show what can happen under
mixed imputation, we looked at more extreme mixtures,
such as (.50, .25, .25).

The Variance Estimation Procedures.  Several
methods are compared: the naïve variance estimator;
Kim's estimator that perturbs the data for ratio (Kim 1) or
regression (Kim 2) imputation; and the inflation estimator
developed for ratio (Inflation 1) or regression (Inflation
2) imputation.

Results of the Simulation.  Results are provided in
Tables 2 and 3.  In the tables, each row represents 10,000
simulations of srswor of size n = 40 from a frame of size

N = 779.  The bias of the variance estimation methods is
addressed in Table 2.  Each entry in the table is the ratio
of the expected value of the variance estimator divided by
the “true” variance under the imputation procedure.
Here, the expectation is approximated by taking the
average of the variance estimate over the simulations,
while the “true” variance is approximated by taking the
sample variance of the 10,000 estimates of .  A ratioŶ
closer to 1 implies a smaller bias.

In Table 3, each entry is the ratio of the root mean
squared error (RMSE) of the given method divided by
that of the naïve variance estimator.  Thus, better
performance is indicated by a smaller entry.

Table 2.  The Bias of the Variance  Procedures

Table entry   =   E (variance estimator)
"true" variance

Actual
Imputation

naïve
var.

estm.

Kim method Inflation
method

1 2 1 2

(1, 0, 0) 0.86 1.00 1.08 0.94 1.17

(0, 1, 0) 0.81 0.93 1.00 0.88 1.09

(0, 0, 1) 0.99 1.13 1.22 1.08 1.34

Mixed:

(.50, .25, .25) 0.89 1.03 1.11 0.98 1.21

(.25, .50, .25) 0.87 1.00 1.08 0.96 1.18

(.25, .25, .50) 0.92 1.06 1.14 1.01 1.25

(1/3, 1/3, 1/3) 0.90 1.03 1.11 0.98 1.22

Observations.  From Table 2, it is clear that, under
the circumstances of the simulation, the naïve variance
estimator has a downward bias under imputation when
using only a ratio of identicals (13.7%) or only regression
imputation (19.2%).  Kim's procedures for ratio (Kim 1)
and regression imputation (Kim 2) eliminate the bias
effectively.  The inflation procedures are less successful.
With ratio imputation, Inflation 1 doesn't go far enough,
leaving a downward bias of 5.5%; with regression
imputation, Inflation 2 goes too far, producing an upward
bias of 9.3%.

When within-unit imputation is used exclusively, the
naïve variance estimator is essentially unbiased.  This is
not surprising, as no summary statistics from the sample
respondents are used to drive the imputed values to some
central point or line; only information from the

Joint Statistical Meetings - Section on Survey Research Methods

383



nonresponding unit is used.  As expected, Kim's
procedures and the inflation method do not work well
here, leaving a large upward bias.  They were developed
for different types of imputation.

Table 3.  The Root Mean Squared Error

Table entry   =   MSE of variance estimator
MSE of naïve variance

Actual
Imputation

naïve
var.

estm.

Kim method Inflation
method

1 2 1 2

(1, 0, 0) 1 0.99 1.10 0.91 1.37

(0, 1, 0) 1 0.90 0.90 0.92 1.12

(0, 0, 1) 1 1.37 1.65 1.19 2.20

Mixed:

(.50, .25, .25) 1 1.08 1.22 0.98 1.59

(.25, .50, .25) 1 1.01 1.11 0.96 1.45

(.25, .25, .50) 1 1.16 1.35 1.05 1.78

(1/3, 1/3, 1/3) 1 1.09 1.23 1.00 1.61

When variance is added to the evaluation, the RMSE
(Table 3) provides a somewhat different picture.  The
naïve estimator, although biased downwards under ratio
and regression imputation, still has the smallest variance.
This is to be expected; the other procedures eliminate the
bias by perturbing the data or by multiplying by a factor
greater than 1.  Combining bias and variance, the RMSE
under ratio imputation is about the same for the naïve
estimator and the Kim 1 (ratio) method.  Inflation 1,
however, has the smallest RMSE with ratio imputation,
about a 9% improvement over the others.  With
regression imputation, Kim 1 and 2, and Inflation 1 have
a RMSE about 8% to 10% below that of the naïve
estimator.  Inflation 2, between overcompensating for the
bias and having a larger variance, performs poorly.

Under mixed imputation, when the frequency of the
second (or third) imputation procedure is no longer
negligible, one hopes that the variance estimator works
well with each type of imputation.  Among the methods
studied under the circumstances here, the Kim 1
procedure appears most robust for eliminating the bias,
while Inflation 1 delivers the smallest RMSE provided
the proportion of within-unit imputation is small.  If the
latter is large, the naïve estimator may have the smallest
RMSE.

Drawbacks of the Study.  It is appropriate to mention
some drawbacks of this simulation study.  (i) The sample
design is srswor.  Results under stratified or probability
proportional to estimated size sampling may be different.
(ii) The response mechanism is over-simplified and
somewhat unrealistic.  (iii) The sampling fraction used
here is very small.  Although that is common, it doesn't
permit an evaluation of the methods with smaller strata
and larger sampling fractions.

Current and Future Work.  We are preparing
simulations under more complex sample designs, under
more complex types of response mechanisms, and using
strata of different sizes and sampling fractions (including
certainty sampling).  We have also extended the inflation
procedure to accommodate within-unit imputation, and to
produce more robust factors under mixtures.
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