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Sample survey organizations often characterize the 
precision of point estimators through approximations 
based on, e.g., average design effects, average 
standard errors, generalized variance functions or 
average confidence interval widths.  Practical 
evaluation of the adequacy of these approximations 
will depend on the whether one is interested in: (1) 
summary descriptions of a fixed set of variance 
estimates or confidence interval widths; or (2) formal 
inference (e.g., confidence intervals or test statistics) 
for related functions of finite-population or 
superpopulation parameters (e.g., design effects or 
specific coefficients of GVF models). Following a 
review of issues (1) and (2), this paper uses fixed-
effect analysis of variance methods to develop some 
specific diagnostics for issue (1).  Some of the 
proposed diagnostics are applied to data from the 
U.S. Third National Health and Nutrition 
Examination Survey (NHANES III).   
 
I. Introduction  
 
1.1 Summary descriptions of confidence interval 
widths 
 
Statistical agencies frequently publish analysis results 
for a large number of relatively fine subpopulations 
formed by the intersection of several classification 
factors.  For example, some agencies in the United 
States publish estimates for subpopulations defined 
by Age  Race  Sex classifications.  In developing 
policies on the publication and interpretation of fine-
subpopulation estimates, an important consideration 
is estimation uncertainty, as measured by confidence 
interval width.   

 
At one extreme, one could account for estimation 

uncertainty through a simple rigid numerical rule, 
e.g., “For disease variable X, publish prevalence rates 
only for subpopulations with 95% confidence interval 
ha1f-widths less than 0.04.” This extreme has the 
advantage of ensuring that each published estimate 
achieves a specified level of estimated precision.  
However, the resulting mixture of “published” and 
“unpublished” cells can produce a “swiss cheese” 
pattern of missing data that is likely to confuse or 

frustrate many data users.  Also, to some degree the 
resulting publication pattern will be artefact of the 
sampling variability of the interval half-widths, and 
thus may be unstable across replications of the 
survey.  At the other extreme, one could have a 
publication policy that does not include any explicit 
precision criteria, e.g., “Publish prevalence rates for 
all Age  Race, Age  Sex, and Race  Sex 
classifications, but not for any individual Age  
Race  Sex cells.” The resulting published tables 
will have a relatively simple structure, but may 
include some very imprecise estimates and omit other 
estimates that are more precise.  Between these two 
extremes, one may make publication decisions for 
relatively simple groups of cells, where the decision 
for a given group is informed by summaries of the 
precision of point estimates for the member cells.  
For example, Section 3 will discuss confidence 
interval widths for a health survey; preliminary 
discussion of this survey anticipated that Age  Sex 
subpopulations for Mexican-Americans might have 
substantially wider intervals than Age  Sex 
subpopulations for other rare-ethnic groups.  If this 
conjecture were supported by the data, then one 
might advise against publication of Age  Sex 
estimates for Mexican-Americans, or one might 
publish these estimates with special cautionary notes 
that emphasize limitations on precision.   

 
Within the decision process, it is important to 

use relatively simple summaries of observed patterns 
of confidence interval widths, without missing salient 
features of these patterns.  Consequently, three 
important questions are as follows.   
 

(1) Within a given set of subpopulations, do 
confidence interval widths differ substantially 
(relative to mean width) across the levels of a given 
factor, e.g., race?  

(2) Does the variability observed in (1) account 
for a substantial amount of the overall variability in 
confidence interval widths?  

(3) To what extent are the answers for (1) and 
(2) sensitive to prospective changes in variance 
estimation?  
 
If the answers to both (1) and (2) are “yes” for a 
given factor, then that factor may be useful in 
developing the abovementioned summary 
descriptions.  Conversely, if a given factor does not 
satisfy both criteria (1) or (2), then summary 
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descriptions based on that factor may be relatively 
uninformative, and possibly misleading.  Similarly, 
pronounced sensitivity, as defined by (3), indicates 
that variance estimation issues warrant further 
examination before the agency reaches to final 
decisions on publication of subpopulation estimates.   
 
1.2 Outline of proposed exploratory methods and 
results  
 
This paper shows that coefficient estimates and 
diagnostics from a fixed-main-effects analysis of 
variance (ANOVA) model can provide useful tools to 
address questions (1) and (2).  This in turn allows one 
to identify specific variables and subpopulation 
factors for which it is useful to draw distinctions 
regarding confidence interval widths.  Throughout 
this work, the models in question are used in an 
exploratory and descriptive manner, and not for 
purposes of formal inference.   

 
Section 2 presents the main ideas used in this 

paper.  Subsection 2.1 motivates our emphasis on 
confidence interval widths, rather than on the more 
commonly examined variance estimates.  Subsection 
2.2 presents the principal notation, models and 
methods used here.  Subsection 2.3 discusses some 
diagnostics based on main-effect treatment mean 
squares and on  statistics.  Section 3 applies the 
proposed methods to Age  Race  Sex 
subpopulation confidence intervals computed with 
data from Phase I of the U.S.  Third National Health 
and Nutrition Examination Survey (NHANES III).  
Subsection 3.1 describes the salient aspects of the 
NHANES III design and variables of interest.  
Subsection 3.2 uses the fixed-main-effect coefficient 
estimates, and related diagnostics, to describe 
variability of interval widths across groups of 
subpopulations.  Subsection 3.3 examines some 
related two-factor interactions.  Section 4 reviews the 
main ideas presented here.   

2R

 
2.  Confidence Interval Widths and Related Fixed-
Main-Effects Models 
 
2.1 Motivation for modeling of confidence interval 
widths for θ   ˆ
 
To begin the discussion, consider a subpopulation 
parameter 2, an associated point estimator θ , and a 
variance estimator 

ˆ
ˆ ˆ( )V θ .  We will examine 

estimation uncertainty through the widths of the 
nominal (  confidence intervals  1 )100%α−

α
θ θ± 1 / 2

ˆ, / 2
ˆˆ { ( )}dt V ˆ  (2.1) 

where  is a “degrees of freedom” measure 
computed from the available data, and  is the 

associated upper α  quantile of a t distribution on 
 degrees of freedom.   

d̂
ˆ, / 2dt α

/ 2
d̂

 
In previous work with descriptions of, or models 

for, uncertainty, the sample survey literature has 
tended to emphasize variance estimators ˆ ˆ( )V θ , 
rather than confidence interval widths as such.  See, 
for example, the discussion of generalized variance 
functions in Wolter (1985, Chapter 5), Valliant 
(1987) and references cited therein.  Consequently, it 
is important to motivate clearly our present emphasis 
on confidence interval widths.  For estimation at a 
full-population level, the effective degrees of 
freedom term  tends to be relatively large.  Thus, at 
this level, the  multipliers tend to display 

relatively little variability, and modeling of 
confidence interval widths is roughly equivalent to 
modeling of the standard errors { ( .  Also, if 
one intends to use modeling results to produce 
improved measures of uncertainty, then one generally 
prefers to focus on modeling of the 

d̂
ˆ, / 2dt α

1 / 2ˆ ˆ)}V θ

ˆ ˆ( )V θ , and to 
consider confidence interval construction only after 
one produces an improved variance estimator and an 
associated new “degrees of freedom” measure.   

 
By contrast, in the present work we focus on 

subpopulation estimates, and we intend strictly to 
provide summary descriptions of estimation 
uncertainty.  Since confidence intervals (or 
equivalent hypothesis tests) are the predominant 
method for reflecting uncertainty in formal statistical 
inference work with survey data, we prefer to focus 
our descriptive methods on confidence interval 
widths, rather than on the variance estimates ˆ ˆ( )V θ  
by themselves.  Moreover, for some variables studied 
in Section 3, the multipliers  varied 

substantially across subpopulations.  Consequently, at 
the fine-subpopulation level, descriptive results for 
confidence interval widths are not necessarily 
equivalent to results for the standard errors 

.   

ˆ, / 2dt α

1 / 2ˆ ˆ{ ( )}V θ
 
2.2 Estimation and interpretation of fixed-main-
effects models  
 
Now consider a set of subpopulations defined by 
several classifications.  To keep notation relatively 
simple, we will restrict attention to three 
classification factors: F1, with levels ; 1,2,...,i I=
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F2, with levels ; and F1,2,...,j =
K

ijkθ

θ 1 / 2ˆ( )}ijkV

µ α β= + + +i j

τ and k

α β= =∑ ∑1 1
I J
i i j

J

=

3, with levels 
; extension to more factors is 

straightforward.  For a given sub population defined 
by the triple (i,j,k), let  be the subpopulation 
parameter of interest and let 

 be the width of the 

customary confidence interval defined by (2.1).  A 
fixed-main-effects model for w  is  

1,2,...,k =

α
= ˆ , / 22 {ijk dw t

ijkw
µ α β, ,i j

ˆ

ijk

τk

= =j

µ = =ˆ ... (w I −
= =∑ ∑1
1 1) i jJK ∑I J K

α = −ˆ .. ...i iw w β =ˆ
. .j jw

τ = −..ˆ ...k kw w =..

ˆˆ ,   ai j

,...,

ˆk

K

nd

  (2.2)  + error
where  are fixed coefficients, and 
the estimability of these coefficients is ensured by the 
constraints .  Due 
to balance across the three factors, standard least 
squares methods (e.g., Draper and Smith, 1981, 
Chapter 9) lead to estimates 

τ=∑ 1 0K
k k

=1k ijkw , 

, − ...w  and 

, where −1( )i jK = =∑ ∑1 1
J K ww J , 

and . .jw  and ..kw  are defined similarly.  Slightly 
more complex least-squares computations are used 
for unbalanced cases that exclude one or more (i,j,k) 
cells. 

k ijk

 
We emphasize that the motivating expression 

(2.2) and the resulting estimates are used here strictly 
to provide a descriptive summary of patterns of 
variability in subpopulation confidence interval 
widths, and not to draw formal statistical inferences 
regarding the conceptual parameters , , , or 

.  To some degree, a similar interpretation arises in 
the generalized-variance-function literature, where 
one generally does not carry out formal inference for 
variance-model coefficients.   

µ αi β j
τk

 
The estimates α β  give a simple 

indication of whether the interval widths differ 
substantially across groups defined by a given 
classification factor i, j or k.  For example, suppose 
that for a given , the estimate α  is 
substantially larger than zero.  This occurs if and only 
if the reported interval widths for subpopulations 
(i,j,k), averaged across the levels  and 

, are substantially larger than the 
corresponding average reported interval widths for 
subpopulations with classification factor F

τ 

=1,2i I ˆi

= 1,2,...,j J
= 1,2,...,k

1 not equal 
to i.   
 

2.3 Two related sets of diagnostics  
 
Two other ANOVA quantities are useful in 
describing the variability of confidence interval 
widths.  First, consider the mean square  
associated with the factor F

1( )MS F
1, define the ratio 

δ −= 1
...1

ˆ { ( )}F w MS F 1/ 2
1 , and define δ  and  

similarly.  Within the context of question (1) from 
Section 1, a large value of δ  (greater than one, say) 
indicates that the variability of the means 

2
ˆ
F δ 3

ˆ
F

1
ˆ
F

..iw  across 
 is substantial, relative to the overall 

mean 
=1,2,...,i I

...

=1,2,...,i I

w .  This suggests that in reporting confidence 
intervals for (i,j,k)-level subpopulations, the 
statistical agency may need to consider separate 
publication and interpretation guidelines for different 
subpopulation groups formed according to 

. 
 
Second, note that for the confidence-interval-

width analysis, the customary ratio  represents the 
proportion of observed variability in the widths w

2R

 R
T

ijk 
that is attributable to the main effects α ,  and 

in expression (2.2).  Similar comments apply to 
the related ratios , where, e.g., 

,  is the usual 
"corrected total sum of squares" and  is the 
sum of squares associated with main effect F

i

3

(SS F

jβ

)

kτ

F

2 2 2
1 2,  ,  andF F FR R

1( )SS F SSC−=2 1
1 ( )R SSCT

1

l. 
 
Within the context of question (2) from Section 

1, a large value of  (greater than 0.5, say) 
indicates that much of the variability of the w

2
1FR

R

ijk arises 
from differences across the main-effect groups 
defined by the factor F1.  In such cases, the analysis 
results from (2.2) may be useful in developing 
guidelines for publication of estimates.  Conversely, 
relatively small values of  (less than 0.2 or 0.3, 
say) indicate that summary descriptions of interval 
widths based on (2.2) may be relatively 
uninformative.  Finally, if addition of some two-
factor interactions to the main-effects expression 
(2.2) leads to a large absolute increase in R

2
1F

2, then one 
may prefer to include these interactions in (2.2) when 
attempting to address questions (1) and (2).  Inclusion 
of such interaction terms may be numerically 
important in some cases, but necessarily leads to 
greater complexity in the summary description of the 
observed patterns of confidence interval widths.   
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2.4 Two alternatives based on relative widths  
 
For the application discussed in Section 3, the 
confidence interval widths wijk were of principal 
interest, so we have focused our analyses on these 
widths.  However, in other applications there also 
may be interest in analyses for two related quantities.  
The general exploratory methods presented in this 
paper carry over to these two quantities.   

 
First, analysis of the rescaled widths θ  

would describe the variability of the interval widths 
w

1
îjk ijkw−

îjkjjk, relative to the associated point estimates θ .  
These rescaled widths are confidence interval 
analogues of the coefficient of variation, and would 
be important to a survey organization that emphasizes 
relative precision in the development of publication 
guidelines.   

 
Second, one could apply the proposed methods 

to the ratios , where t  is 
the customary upper α  quantile of a t distribution 
on  degrees of freedom, m is the number of 
sampled elements, and V  is an estimator of 

the design variance of θ  derived under the 
(incorrect) assumption that our survey data were 
collected through of simple random sampling of 
elements.  In this second case, the ratios of interest 
involve a form of “misspecification effect” for 
confidence interval construction.  Application of 
expression (2.2) to this second set of ratios leads to 
an exploratory analysis of “confidence interval 
misspecification effects,” e.g., identification of main-
effect factors for which these misspecification effects 
are especially severe.  For a general discussion of 
design effects and misspecification effects associated 
with variance estimation and related confidence 
interval issues, see, e.g., Skinner et al.  (1989, Section 
2.2).   

1 1/ 2
1, / 2

ˆ ˆ( )m SRS ijkt V wα θ− −
−

/ 2

ˆ ˆ(SRS ijkθ

îjk

ijk

)

1, / 2m α−

−1m

 
3.  Application to the U.S.  Third National Health 
and Nutrition Examination Survey 
 
3.1 NHANES III sample design, stratum collapse, 
estimation methods and survey items  
 
The methods outlined in Section 2 were used to 
analyze the widths of confidence intervals for Age x 
Race x Sex subpopulations computed with data from 
Phase I of the U.S.  Third National Health and 
Nutrition Examination Survey (NHANES III).  
National Center for Health Statistics (1996) provides 
a detailed description of NHANES III; for the present 

discussion, the following three points are especially 
important.  First, the survey was based on a stratified 
multistage design, where the survey elements were 
individuals in the U S.  civilian noninstitutionalized 
population.   

Second, Phase I of the survey was carried out 
over a three-year period (1988-1991); the design can 
be viewed as involving a total 44 strata (large groups 
of counties), with one primary sample unit (generally 
an individual county) selected per stratum.  
Consequently, some stratum collapse was required to 
carry out customary design-based variance estimation 
and confidence interval construction.  The primary 
collapse method considered here led to a total of 22 
collapsed strata, with two selected primary units per 
stratum. 

 
Third, standard design-based methods were used 

to compute point estimates and variance estimates for 
thirty-six subpopulations defined by the intersection 
of six age groups (20-29, 30-39, 40-49, 50-59, 60-69 
and 70+), three race-ethnic groups (1: Mexican-
American; 2: Black non-Hispanic; and 3: 
White/Other) and two sex groups (1: Male; and 2: 
Female).  For each of the 12 interview and 
examination variables listed in Table 3.1, nominal 
95% confidence intervals for the subpopulation 
means were constructed by expression (2.1).  In this 
work, the degrees-of-freedom estimates  were 
computed through a modification of the Satterthwajte 
(1946) method discussed in Jang and Eltinge (1995).  
The standard "degrees of freedom" calculation (e.g., 
Frankel, 1971, p.  89; Skinner et al., 1989, p.  57; or 
Korn and Graubard, 1995, p.  278), equal to (number 
of PSUs) – (number of strata), was considered too 
optimistic to use in this application, due to marked 
heterogeneity of variances across strata.   

d̂

 
Table 3.1:  Twelve NHANES III Variables 

 
Var. 
# 

Variable 
Name 

Description 

1 HDRESULT HDL cholesterol 
2 TCRESULT Serum total cholesterol 
3 LEAD Blood lead 
4 log(LEAD) Natural log of blood lead 
5 HAE2 Diagnosed hypertension  
6 HAE7 Diagnosed high cholesterol  
7 HAD1 Diagnosed diabetes 
8 HAR3 Smoking now? 
9 BMPHT Height 
10 BMPWT Weight 
11 BP1K1 Systolic blood pressure 
12 BP1K5 Diastolic blood pressure 
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3.2 Comparison of estimated main effects 
 
3.2.1 Age effects  
 
As a preliminary screening device, Figure 3.1 
presents a plot of δ  against  for the twelve 
NHANES variables.  The plotting symbol is the 
variable number, as listed in Table 3.1.  At one 
extreme are variables 4 (log(lead)), 6 (diagnosed high 
cholesterol) and 10 (weight), located in the lower 
left-hand corner of the plot.  The low values of δ  

and  indicate that mean observed confidence 
interval widths do not vary in a pronounced manner 
across age groups.  Thus, administrative distinctions 
among age groups are relatively uninformative for 
these three variables. 

ˆ
Age

2
AgeR

ˆ
Age

2
AgeR

 
At the other extreme is variable 7 (diagnosed 

diabetes), which has  and .  
This variable has observed confidence interval widths 
that show a substantial amount of variability across 
age groups, relative to the mean width ; and the 
age main effect accounts for almost one- half of the 
overall variability of the observed widths.  Thus, for 
variable 7, the age main effect is fairly “interesting” 
in the sense defined by both questions (1) and (2) in 
Section 1. 

ˆ 1.2Ageδ = 2 0.47AgeR =

µ̂

 
Variables 11 (systolic blood pressure) and 12 

(diastolic blood pressure) also have δ .  

However, their R  values are relatively small (0.28 
and 0.17, respectively).  Thus, the age main effects 
are fairly large relative to , but do not account for 
the bulk of the variability in widths for these two 
variables.  This illustrates an important distinction 
between the dimensions of variability reflected by the 
diagnostics δ  and R  respectively. 

ˆ 1Age >
2
Age

e

µ̂

ˆ
Ag

2
Age

 

Figure 3.1: Plot of Relative Contribution of Age 
vs. R-Square (Age) 
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3.2.2 Race effects 
 
Figure 3.2 presents a plot of δ  against .  
Variables 2 (total cholesterol), 3 (lead), 4, 7 and 11 
have , and variable 6 (diagnosed high 

cholesterol), has δ = .  In addition, variables 
4 and 6 have  and 0.53, respectively, 
while all other variables have .  Thus, for 
variables 4 and 6, there is some justification for 
drawing distinctions among race groups in summary 
description and interpretation of confidence interval 
widths.   

ˆ
Race

2
Race <

2
RaceR

ˆ 1Raceδ >
ˆ 0.97Race

2 0.57RaceR =

0.4R

 
Figure 3.2: Plot of Relative Contribution of Race 

vs. R-Square (Race) 
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3.2.3 Sex effects 
 
Work that will not be detailed here indicated that, in 
the sense defined by questions (1) and (2), the sex 
main effects were somewhat less "interesting" than 
the age and race effects.  For example, all twelve 
variables had . 2 0.2SexR <
 
3.3 Two-factor interactions 
 
Figures 3.1 and 3.2 identified several combinations of 
variables and main effects F that had relatively large 
values of δ , but relatively small values of .  
Some examples include variables 11 and 12 for both 
Age and Race main effects.  For such cases, it is 
useful to study whether two-factor interactions 
account for a substantial amount of the remaining 
“unexplained” variability.  Thus, we fit an expanded 
form of model (2.2) that included all main effects, 
and two-factor interactions associated with a given 
pairing of the age, race and sex factors.  The resulting 
diagnostics  and  were computed for each 
variable and each set of two-factor interactions.   

ˆ
F

δ

2
FR

2R

 
For the Age  Race interaction, variables 11 and 

12 had δ  equal to 1.05 and 1.72, respectively, 

with associated  equal to 0.39 and 0.54.  
Thus, for these two variables, it is not advisable to 
use a pure main-effects model in attempting to 
address questions (1) and (2).  By contrast, no other 
variables had either δ  or . 

ˆ
Age Race×

2
Age RaceR ×

ˆ
Age Ra× 1ce >

2 0.3Age RaceR × >
 
The estimated Age  Sex and Race  Sex 

interactions identified relatively few patterns of 
interest.  For example, variables 11 and 12 had 

 equal to 0.57 and 1.22, respectively, but had 

fairly weak R  values, equal to 0.06 and 0.14.  

No other variable had either δ  or 

.  Also, no variable had either 

 or .   

ˆ
Age Sexδ ×

2
Age SexR ×

ˆ
Race Sexδ ×

2
Age Sex×

0.2
0.5 2

RaR

ˆ 0.5Age Sex× >

>

> 0.1ce Sex× >
 
4.  Discussion  
 
When a statistical agency works with a large number 
of subpopulations, there is a strong incentive to 
summarize confidence-interval-width patterns 
through simple descriptive statistics.  This paper has 
shown that a fixed-main-effects analysis of variance 
(ANOVA) provides a simple framework for this 
summary description.  Equally important, related 

diagnostics such as δ , , and two-factor-
interaction estimates, provide useful indications of 
the extent to which a given summary description is 
potentially informative, or potentially misleading.   

ˆ
F

2
FR

 
We illustrated both ideas with an application of 

the proposed methods to data from Phase I of 
NHANES III.  For example, the race main effects for 
variables 4 (log(blood lead)) and 6 (diagnosed high 
cholesterol) were strong enough that one might 
reasonably consider separate guidelines for 
interpretation of confidence interval widths for Age 

 Sex subpopulations in the three race groups.  On 
the other hand, variables 9 (height) and 10 (weight) 
displayed relatively weak main effects.  Thus, in a 
discussion of Age  Race  Sex sub population 
confidence interval widths, distinctions among 
simple age, race or sex groups would be relatively 
uninformative for variables 9 and 10.  Finally, a 
balanced examination of δ , , and two-factor 
interactions indicated a considerably more complex 
pattern of widths for the variables 11 (systolic blood 
pressure) and 12 (diastolic blood pressure); for these 
variables, direct interpretation of simple group mean 
widths could be misleading.   

ˆ
F

2
FR
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