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1. INTRODUCTION

Statistical disclosure control requires techniques that
balance the requirements of protection of respondents’
privacy and dissemination of information. In mi-
crodata set containing information on individual re-
spondents, we assume that variables can be divided
into two groups: key variables that are assumed to
be known to data intruders from publicly available
sources, and nonkey variables that are not publically
available and include potentially sensitive information
about respondents. Key variables X are treated as
categorical and form a multi-way contingency table
with K cells. A particular set of values of key vari-
ables defines a key cell. Cells containing < s cases,
where s is a pre-specified sensitivity threshold (e.g.
three or five), are considered sensitive cells, Cases be-
longing to sensitive cells are called sensitive cases, and
are considered to have a significant risk of disclosure.

Our focus here is on statistical disclosure control
(SDC) techniques that provide protection to sen-
sitive cases. Existing SDC methodologies include
global recoding, local suppression, data swapping,
micro-aggregation, and post randomization (PRAM).
These techniques are model-free and somewhat ad-
hoc. Model-based SDC techniques replace observed
values of the data by predictions based on a statistical
model. The added statistical uncertainty from these
modifications can be reflected by releasing multiple in-
dependently modified data sets and using multiple im-
putation methods of inference (Rubin, 1987). In par-
ticular, Rubin (1993) proposes to build an imputation
model from the sample data, and predict nonsampled
values of survey variables in the population; this im-
putation is repeated independently D > 1 times, and
a sample from each of the D imputed populations is
released to the public. This methodology has several
strengths , such as valid inferences under well-specified
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imputation models; a convenient measure of informa-
tion loss due to modification of the original data; and a
high protection of protection of respondents. A draw-
back of the method is the need to build a statistical
model for the survey variable for the whole sample —
a formidable task for large survey data sets. Quality
of inferences from the synthetic MI data sets depends
on how well this large model is specified. Since data
intruders use keys to identify their targets, to impede
their identification process and fulfill our purpose of
protection, it may be sufficient to restrict MI to a sub-
set of values of the key variables (Little, 1993). This
simplifies the imputation task, and reduces the sen-
sitivity of inferences to model misspecification. This
article develops this idea through a method we call
Selective Multiple Imputation of Keys (SMIKe). In
SMIKe, only the values of key variables in a subset
of cases — namely, sensitive cases mixed with a subset
of nonsensitive cases — are imputed. Thus, instead of
releasing samples of the imputed population data set,
we release the sample data with values of key variables
for some cases replaced by multiply imputations. The
selective aspect of SMIKe limits information loss and
allows satisfactory inferences without the need for a
large and highly accurate model.

2. AN OVERVIEW OF SMIKe

Suppose in a data set, x is the key with K cate-
gories/cells formed by key variables X, Y is a vector
containing g nonkey variables, s is a chosen sensitiv-
ity threshold and ne,, is the total number of sensitive
cases SMIKe consists of the following steps:

1. Selection of nonsensitive cases. For each sensi-

tive case i = 1,...,Mgen (1 € cell S;), select a mizing
set M, (of pre-specified size n?, ;) of cases from non-

sensitive cell(s) C; that are close to the sensitive case
with respect to y. The mixing sets for sensitive cases
may overlap. The value of n?,,, may vary from case to
case according to case sensitivity, but for simplicity,
we choose the same value n,,;, for all sensitive cases.
Nmiz S€rves as a tuning parameter to balance gains
in protection against information loss. We define the
following pooled sets of cases:

Nsen Nsen

M = U(Miui) and C = U(CiUSi)a

i=1 =1
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where C consists of n cases in K* cells, and M is a
subset of n*(< n) sensitive and mixing cases from C
that are subject to imputation of keys.

2. Construction of an imputation model for keys.
A necessary condition for valid inferences from the
multiply imputed data sets is that the masking mech-
anism in SMIKe is “masked at random (MAR)” in the
sense defined by Little (1993). Suppose y is a subset
of Y with dimension p < ¢q and % is the predictive
value of z. If the imputation model p(Z|y, M) is built
on M, the requirement of MAR is fulfilled. However,
since M is usually a small set, it is more efficient to
build the imputation model using a larger data set C
(the imputation model could be based on the full data
set, but it seems more direct to restrict the model to
key cells involved in the imputation). By Bayes’ rule,
we have

p(& = ka2ly, M) p(& = ka2, y|M)

« PUIE= ki, M) p(@ = k1l M)

p(y|Z = k2, M) p(Z = k2| M)
F=k1,M) . . . ET=k1|M
where % is the likelihood and %
is the prior odds. If the likelihood is based on
C, that is, 58;};272;% in above equation is re-
placed by %, then efficiency of inferences

from the imputed data is increased without destroy-
ing the MAR mechanism. p(Z|y) can be re-written as
J p(%0,y)p(By)d6. Thus to draw Z from its poste-
rior predictive distribution, we first draw 6 from its
posterior distribution given the data in C or M (com-
ponents of @ appearing in the likelihood part of are
drawn from their posterior distribution given data C,
and that in the prior odds part are drawn from their
posterior distribution given data M). A noninforma-
tive prior distribution for 8 such as the Jeffeys’ prior is
suggested in the absence of strong prior information.
Since x is treated as categorical, a natural imputa-
tion model for p(Z|y) (ignoring refinements to reflect
clustering in the sample design) is the multinomial
logit model. A computationally less onerous alterna-
tive when y is continuous is to fit the general location
(GL) model (Olkin and Tate, 1961), as discussed in
the next section.

3.  Multiple Imputation of Keys. Independently
draw D sets of Z’s for each of the n* cases in M from
the model.

4. Assessment of information loss and protection
and release of MI data. Combine each imputed set of
Z with other nonimputed variables, and assess protec-
tion and information loss in these D SMIKe data sets.
If the requirements of information loss and protection
are satisfied, release these D data sets; Otherwise, go
back to Step 1 with a modified selection plan and an
adjustment of n,,;, if necessary.
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3. SMIKe FOR CONTINUOUS y

We now discuss the steps of SMIKe in more detail. We
focus on the special case where the nonkey variables
y are continuous, while outlining extensions to other
situations.

3.1 Selection of nonsensitive cases

We propose to choose mixing cases for a sensitive case
1 that are as similar as possible to 4 in terms of the
nonkey variables y. Intuitively, imputing keys within
relatively homogeneous sets of cases has the virtue of
tending to distribute the multiply imputed cases over
the set of sensitive and nonsensitive key cells in the
mixing set, thus promoting the mixing of sensitive and
nonsensitive cases, and increasing protection.

If the nonkey variables are continuous and approx-
imately normal, a natural measure of closeness be-
tween cases 7 and j is the Mahalanobis distance (MD)
(yi—y;)TS Y(yi—y;), where S~ is the pooled sam-
ple covariance matrix. There is considerable flexibil-
ity in how mixing sets might be chosen; we consider
two variants of selection based the closeness measure,
global selection (GS) and local selection (LS).

GS places no restriction on the set of nonsensitive
key cells that contribute to the mixing set. It com-
putes the distance between sensitive case i and each
nonsensitive case j and then chooses the n,,;; clos-
est nonsensitive cases in terms of the closeness mea-
sure. LS restricts the set of key cells that contribute
to the mixing set. It first picks Q(> 1) nonsensitive
cell(s) that are closest to a sensitive case i as mea-
sured by the distance between y; and the cell means.
The cells are chosen so that they contain at least 7,4
cases. LS then selects n,,;; closest cases within these
Q cells to be the mixing set for case i. The mixing
sets can be further constrained to avoid information
loss for particular analyses, for example, by preserving
the margins of tables formed by a subset of key vari-
ables. LS may involve less computation than GS and
also involves less information loss for some analyses
by restricting the mixing set to a smaller set of cells.
On the other hand, GS may provide better protection,
since sensitive cases are mixed with cases from a wider
range of key cells.

3.2 Construction of an imputation model for
keys

With continuous y, the GL model is defined in terms
of the marginal distribution of x and conditional dis-
tribution of y given z:

p(wi =kIM) =m, where k=1,..., K",y m =1
k

ind )
p(yilzs,C) "< Np(pp,,,2) fori=1,...,n.



Joint Statistical Meetings - Section on Survey Resear ch M ethods

A transformation of y might improve the fit of the model,
which assumes y is normal with a constant within-cell
covariance matrix. Another possible model is the ex-
tended general location (EGL) model (Liu and Rubin,
1998), where covariance matrix does not have to be con-
stant and normal distribution may be replaced by other
distributions. If the cases ¢ = 1,...,n are not in-
dependent, as in multistage samples, we may need to
modify the GL model to incorporate correlation among
cases. Denote the parameters in the model by @ =
{71, -, TK*—1,1,---, g+, 2}. The log-likelihood for
the GL model is L(0) =

K* K* nyg
1an ¥ 1 _
—5I= +anlog(ﬂk)—§ZZ(Yi—Nk)TE Hyi— ),
k=1 k=1 i=1
where nj is the number of observations in cell £ and

ny, is the number of selected observations in cell k. If

* 1
Jeffreys’ prior is used, p(6) o [[re, 7y =5

then the posterior distribution of @ is

[w|Data] ~ Dirichlet(n] + %, ce M + %)
[E|m, Data] ~ Inv—Wishart(S,n—K") (1)

[pi|m™, 2, Data] ~ Np(¥k,%/nk) fork=1,...,K",
where 7 = (71, ..., 7x=)T, g = (Wags-- > tpr) T, S is
the pooled sample covariance matrix of n cases, and
¥r is the sample mean of y in cell k. The full condi-
tional posterior predictive distribution of Z; for case

i=1,...,n" is given by

mrexp(Wik)

o - fork=1,...,K",
Doy Trrexp(wly,)

(2)

p(Z; = k|0, Data) =

where
- 1 —
wik =y Sy — 5;1,52 'p, (similarly for w,). (3)

3.3 Multiple imputation of keys

Given y and drawn parameters 8, we can calculate
wir by Eqn. [3] and independently draw D > 1 time
of #; from the set (1,...,K*) with the probabili-
ties given in Eqn. [2] for ¢ = 1,...,n*. Inferences,
procedures for hypothesis testing and other problems
from SMIKe data are based on standard MI meth-
ods, as discussed in Rubin (1987), Little and Rubin
(2002) or Schafer (1997). In particular, suppose 6
is a scalar parameter of interest. In each data set
d (d = 1,...,D), we can calculate the estimate 64
of @ and the estimated variance Vy of ;. Based on
these quantities, W = Ele Va/D (within variance),
B =YY" (82—6)2/(D —1) (between variance) and
T = W +(1+4)B (total variance) can can calculated,
where § = EdD:1 64 and (1+ %) is a correction factor
for small D.

Strictly speaking, standard MI theory does not ap-
ply to these inferences, since the parameters are drawn
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from the complete data prior to masking, rather than
the incomplete data with values of x masked. Since
the posterior distribution of the parameters is based
on more information than in standard missing-data
application of MI, and the amount of imputation is
modest, we expect the MI inferences to be slightly
conservative. This conjecture is consistent with re-
sults from simulation studies, to be reported elsewhere
in the interests of space.

3.4 Assessment of information loss and pro-
tection

In order to assess the performance of SMIKe, we need
measures of information loss and of reduction of dis-
closure risk from the masking procedure. Information
loss varies for different analyses, and hence might be
computed for a range of analyses of interest. Our mea-
sure of information loss for inference about a particu-
lar parameter 6 is the fraction of missing information
from MI theory (Rubin 1987), which is given by the
expression

1=+ 5)2, (re0,1) @

Measurement, of disclosure risk is difficult, since it
requires conjectures about the behavior of the in-
truder. In SMIKe the difficulties are compounded
by the release of MI data sets. We first discuss the
measure of disclosure risk in the original data set
(R(orig)), then present two empirical approaches to
measure disclosure risk in SMIKe data (R(smike)).
In the original data, disclosure risk associated with
a case i in a cell k, Ry;, is defined as

(i

where ny, is the cell size of k. Ry; can be interpreted
as the probability of case i being correctly identified.
Disclosure risk of cell & is defined as

if ng < s
if ng > s,

()

23
Ry =) Ry, (6)
i=1

the sum of the disclosure risk of cases in that cell. (An-
other possibility is Ry = 1/n; and Ry; = 1/n}, which
assigns more risk to unique cases, but has a less direct
interpretation). If C1,Cs,...,Cy are respectively the

numbers of unique, 2-case, ..., s-case cells, then
K* ng K*
Rsg) = Y3 Ru=) A
k=1 i=1 k=1
= Ci1+Co+...+Cs, (7)

which is the number of sensitive cells.

We consider two measures of R(smike). For both
measures, we assume that (a) the data intruder’s tar-
get is in the released data set; (b) the data intruder
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holds the correct key for his target; and (c) the data
intruder identifies his target by matching the target’s
key with those of the cases in the data set. Our
simpler approach is to first calculate disclosure risk
R{(d = 1,...,D) in each of the D data sets, then
average R{ over the data sets. That is,

ZRd/D (8)

R (smike) =

To obtain a measure of R, suppose the intruder
knows the value k of the key for a particular target
case ¢. In imputed data set d, case ¢ gets imputed
into cell k& with myj, cases, that is, z; = k. Thus the
disclosure risk on case ¢ in 1mputed data set d is

0 if k # k;
0 iflj::kandm;;>s.
mL if k =k and my <s;

k

4 _
R =

That is, there is assumed to be no disclosure risk if
case i is imputed out of its original cell k; if it remains
in its original cell, then the disclosure risk is computed
in the same way as for the original data set, based on
the number of cases in cell k in the imputed data set.
The resulting measures of risk for cell k is

4 0
Rkl = { Mnat,k
mp

where Mmpqt,; is the number of cases in cell £ whose
original keys are k. Thus, mj — Mnpqe r represents the
inflow to cell k from other cells in the d** imputed data
sets. The summation of disclosure risk over all the key
cells gives the measure RY. Averaging over data sets
as in Eqn. [8] gives the final measure R;(smike).

The measure R;(smike) is easily understood and
calculated, but averaging the risk over the multiply-
imputed data sets may not reflect how a sophisti-
cated data intruder picks a case as the target from
the D data sets, taken in aggregate. Our second
measure of disclosure risk Ra(smike) is intended to
model the selection of the possible target by an in-
truder with more sophisticated statistical understand-
ing or tools. To define Ra(smike), consider the two-
way cross-tabulation of the keys and cases in Table 1,
where e;; (i = 1,...,n*, k=1,..., K*) is the number
of MI data sets (< D) with z; = k. Thus, for each
sensitive case, the collection of D MI data sets yields a
sample from an independent multinomial distribution
with row margins fixed at D. Hence p;r = eix/ey
estimates the conditional probability that case i is a
unique sensitive case in target cell k, given that there
is a single sensitive case in that cell. We assume that
the data intruder picks as the target the case with the
maximum p;, among all cases. If there are uy cases
sharing the maximum, he randomly picks one from
them with the probability 1/uy. This rule is optimal
in that it minimizes the expected loss with the binary
loss function (loss=0 if the decision is right, loss=1 if
it is wrong). Based on this selection rule, we measure

if mp =0 or mg > s; 9)
if 0 <m <s,
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Table 1: Cross-tabulation of Keys and Cases in SMIKe data

key 1 2 ... k ... K* Rowtotal
case
1 €11 €12 ... €1k ... €e1K= [ =D
2 e €22 ... € ... eyg* exy =D
g €1 €32 ... € ... €K+ eipr=D
n* €n*1 Ep*2 ... Epxk .. EprKx Epxy =D

column total e11 e42 ... ey ... €pk* D - n*

the disclosure risk associated with sensitive case ¢ with
true key k as follows:

0
Ripo=4¢ 0

1

Up

This leads to the following measure of risk for sensitive
cell k:

if p;r # max;{p;r} or ux = 0;
if p;jx = max;{p;r} and ux >s; (10)
if p;jx = mazx;{p;r} and uy < s.

0 if ug > s or ux = 0;
Rk2_{ ""%’“ if 0 < ug <s, (11)
where as above, U, is the number of cases among
uy, whose original keys are k. Summation of Ry over
all the sensitive cells gives our second measure of dis-
closure risk, Ra(smike).
For either measure of disclosure risk, R (smike) or

R»(smike), we measure the protection from SMIKe by
the reduction of disclosure risk

P - R(orig) — R¢(smike)
T R(orig)
R¢(smike)
= 1-—=222 (peo,1]) fort=1,2, (12
s, (P € [0,1) for (12)

with the interpretation that disclosure risk is reduced
by (100 - P,)% by SMIKe. The absolute disclosure
risk is also of interest in applications, but the relative
reduction is more useful for measuring the trade-off
between information loss and protection.

The above measures of disclosure risk would not be
applicable to a data intruder interested in aggregate
information, such as the mean of an outcome in a cell.
Other measures of disclosure risk might also be devel-
oped based on alternative assumptions about intruder
behavior.

4. A SMALL APPLICATION

Simulation studies of the proposed method will be re-
ported elsewhere, in the interests of space. We illus-
trate the method on a subset of data from the 1995
panel of the Alameda County Health and Ways of Liv-
ing Survey (AC-hawls) (ref). We select a subset of
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n = 1349 cases with positive responses to two vari-
ables, “volunteer?” and “currently employed at paid
job?’, We divide the cases in into 3 groups — group 1
with data on “volhrs” only (n; = 361), group 2 data
on both ‘volhrs” and “emphrs” (ny = 828), and group
three with data on “emphrs” only (ng = 160). Key
cells and imputation models are constructed within
each group. We designate five variables as keys: “age”
(recoded into 6 categories), “sex”(2), “race”(9), “re-
tired?”(2) and “student?”(2); and choose two contin-
uous nonkey variables — y; =“hours working as vol-
unteer per week (volhrs)” and y,="‘“hours working as
employee per week (emphrs)”. The sensitivity thresh-
old s is set at three and LS is used as the selection
plan with n,,;, = 5 for all sensitive cases. The num-
ber of sensitive cells and their mixing cases and cells
are given in Table 2. Note that even when the number

Table 2: Counts of Sensitive and Mizing Cases and Cells
in Three Groups

group sensitive cell mixing # of cells # of cases
unique 2-case 3-case cell in M in M
1 16 10 1 6 33 75
2 15 4 2 5 26 59
3 32 20 3 11 66 131

of sensitive cases is large, the number of mixing cells
in C can be small due overlap in the mixing sets of
sensitive cases. Before constructing the GL models,
a logarithm transformation is applied to y; to correct
for right skewness. For simplicity, we assume indepen-
dence of the respondents though they are stratified
into three cities). Therefore, in group 1, y = log(y1),

= (log(y1),y2)T in group 2 and y = yo in group
3. Thus, three GL models are fitted to cases in C re-
spectively in three groups and keys of cases in M are
imputed independently for D = 10 times.

The parameters we choose for assessing informa-
tion loss are from three sources: means of y in mixing
cells (separately in each group) used in SMIKe, coef-
ficients from a logistic regression (on data set D) of
Z; =“health in general” on 24 independent variables
(19 variables selected by back-elimination procedure
plus five key variables), and coefficients from a logis-
tic regression of Zy =“mental health” on 21 variables
(16 variables selected by backward elimination proce-
dure plus five key variables). Z; and Z, are two health
indexes of broad interest to analysts of AC-hawls data
which are not used in the imputation model. Both Z;
and Z» have 4 categories in the order of “l1=excellent,
2=good, 3=fair, 4=poor”, and proportional odds logit
model is fitted to each of them. There are 57 param-
eters in the regression of Z;, and 46 in the regression
of Z> (we recoded “race” to five categories and “age”
to 4 categories to solve the multicollinearity problem
among some of independent variables). When mea-

2137

suring protection, D is treated as an entity and the
overall protection given by SMIKe is assessed by both
P, and P,. The results are presented in Table 3 and
Figure 1, where Table 3 shows the effects of SMIKe
on D in terms of both information loss of the means
of the mixed cells and protection and Figure 1 shows
the information loss of the parameters from the two
logistic regressions (all the measures are Monte-Carlo
estimates based on 500 repetitions).

Table 3: Information Loss vs. Protection in SMIKe-

treated D
group InfoLoss Cell in C
112 n(use)” original size
0. 203(0 085) - 6 6
0.084(0.033) - 5 13
1 0.044(0.022) - 5 18
0.048(0.021) - 5 19
0.010(0.005) - 5 57
0.066(0.028) - 10 17
0.160(0.068) 0.162(0.062) 5 5
0.183(0.090) 0.242(0.121) 5 6
2 0.042(0.020) 0.037(0.016) 5 23
0.030(0.015) 0.033(0.016) 7 50
0.071(0.033) 0.085(0.030) 8 16
- 0.118(0.042) 5 6
- 0.066(0.029) 5 8
- 0.076(0.034) 5 8
- 0.059(0.025) 5 9
- 0.039(0.017) 5 10
3 - 0.017(0.008) 5 33
- 0.010(0.005) 5 42
- 0.001(0.001) 5 228
- 0.066(0.040) 7 8
- 0.084(0.032) 8 11
- 0.004(0.002) 15 211

“Number of mixing cases in C. Some sensitive cases select the
same mixing cell, but choose mixing cases from the cell with or
without overlap. This is why n(use) in some cells are greater than
the pre-specified “n,,;, = 5” after the combination step.

The protection provided by SMIKe is 0.987(0.004)
and 0.978(0.016) respectively in P; and P»; that is
disclosure risk is reduced by ~ 98%. There are at
least two reasons for this favorable results. One is the
large number of categories in the keys, which results
in dispersal of the sensitive cases over a large set of
cells of z; The second reason lies in matching of each
sensitive case to cases in its mixing set, which pro-
motes mixing. Given the large reduction in disclosure
risk, the performance of SMIKe in terms of informa-
tion loss is impressive. In Table 3, when the selected
nonsensitive cell is large in size, information loss of
the cell mean is modest (< 9%). In both proportional
odds logistic regressions, there are three parameters
(1 ~ 3) for intercepts, 10 parameter (4 ~ 13) associ-
ated with key variables; the others are coefficients for
other variables. The figures shows that information
loss for the parameters associated with key variables
are high (~ 20% to ~ 40%) and that for the intercepts
and coefficients of the nonkey variables is negligible.
One explanation of this is that 4 out of 5 key variables
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Information loss of 57 parameters from the logistic regression of Z1=health

0.4

0.3

parameter 1~3: intercepts .
p 4~13: coefficients associated with key variables
parameter 14~57: coefficients associated with other variables
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Information loss of 46 parameters from the logistic regression of Z2=mhith
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0.3

parameter 1~3: intercepts ) )
parameter 4~13: coefficients associated with key variables
parameter 14~46: coefficients associated with other variables

Information Loss
0.2

0.1

0.0

46 parameter

Figure 1: Information Loss of the parameters from the
logistic regression of Z1 and Zs in SMIKe

do not show statistically significant relationships with
either Z; or Z» in the regressions, so adjustment for
the keys does not have much impact on inferences for
the regression coeflicients of the nonkey variables.

This example, though illustrative, suggests that
SMIKe can achieve major gains in disclosure protec-
tion and still preserve a large amount of information
for statistical analysis.

5. DISCUSSION

SMIKe has the following attractive features: 1. Prac-
tical feasibility. Software for MI is becoming increas-
ingly available, and SMIKe limits the degree of im-
putation to a subset of variables (the keys) and cases
(the sensitive cases and their mixing sets). 2. Ex-
isting MI procedures for statistical analysis measure
and propagate the loss of information from SDC using
SMIKe. The user is provided with a set of imputed
rectangular data sets that can be analyzed using stan-
dard statistical software, and inference combined us-
ing the comparatively simple MI methods of analysis.
SMIKe is particular attractive if data collectors mul-
tiply impute missing values in the data set, since MI
can be then applied simultaneously to deal with miss-
ing data and provide increased disclosure protection.
3. SMIKe The size of mixing sets can be chosen to
balance the gain in disclosure protection against the
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information loss.

SMIKe is still at an early stage of development,
and more work is needed to implement the method
in large-scale survey settings, to develop models that
accommodate mixed variable types and clustering in
the sample design, and to develop more refined mea-
sures of disclosure risk. For the latter, we considered
the decision-theoretical approach suggested by Dun-
can and Lambert (1986), which is based on specifica-
tion of some loss function and its expectation over
a probability distribution of possible target values.
However, as the number of sensitive cases increases
this approach becomes complicated quickly, and it is
unclear whether it is a good model in practice for in-
truder behavior. Our initial simulation studies of the
method are promising, but theoretical and empirical
studies of the statistical properties of the method are
needed and are currently in progress.
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