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Abstract : 

In two-stage surveys, the sample size of clusters and 
units within clusters can be chosen to minimise the 
variance of an estimator, for fixed cost. This paper 
considers sample designs where the number of units 
to  be selected from each cluster is a function of the 
cluster size. If there are only a small number of 
units in each cluster, as in household surveys, then 
the optimisation should be over integers. An inte- 
ger programming method is developed which gives 
significantly lower variances than traditional meth- 
ods. A non-integer within-cluster sample size can be 
implemented by using a mixture of several integers; 
this can further reduce the variance. 

1. Introduction 
In two-stage surveys, a sample of clusters is selected, 
followed by a sample of units from each selected clus- 
ter. There are several possible reasons for this ap- 
proach. There may be a list of the clusters in the 
population, but not of the units: for example, there 
is rarely a list of the people in the general popula- 
tion but there may be a list of households either for 
the whole population or within particular areas by a 
field listing exercise. Two stage surveys are also use- 
ful so that the sample can be made more geographi- 
cally clustered, which often reduces the enumeration 
cost. 

This article assumes that clusters are selected by 
a simple random sample without replacement (SR- 
SWOR) of size m. Each cluster g contains N, units. 
A SRSWOR of ng units is selected from each selected 
cluster. The population and sample of clusters will 
be denoted U 1  and s1 respectively. The values of ng 
are assumed not to depend on sl. 

The sample design problem is to choose m and 
n,. The allocation of sample to the first and second 
stages is a well-known problem (e.g. Hansen et al., 
1953, ch.6,ch.7). The allocation of cluster and unit 
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sample sizes is a balance between costs and vari- 
ances. Cost typically consists of a per-cluster com- 
ponent (for example travel time if clusters are house- 
holds or geographic areas) and a per-unit component 
(for example interview and processing time). If the 
per-cluster costs are much higher than the per-unit 
costs, then it is appropriate to  select a highly clus- 
tered sample; that is the number of units selected 
in each selected cluster should be high. However, a 
highly clustered sample has higher variance if there 
are positive correlations between the values of units 
in the same cluster. 

For some designs, the optimal sample sizes n, are 
proportional to NgS,  where Si is the adjusted pop- 
ulation variance for cluster g (Hansen et al., 1953, 
ch.6~h.7) .  In practice there is not usually informa- 
tion to estimate Sz for every separate cluster g, and 
the values of Si may not vary much between clus- 
ters. As a result, choosing n, proportional to Ng 
will often give a reasonably efficient design. 

This paper considers sample designs where Ng 
(and hence n,) are small integers, so that the real- 
valued optima derived by Hansen et al. (1953) and 
others may not be the best designs possible. It is 
assumed that ng are a function of N,, say ng = f ia  
for Ng = a. The problem is to  choose m and f i ,  for 
a = 1,. . . , A where A is the largest cluster size. 

A common example of this is household sampling, 
where clusters are households and units are people. 
In practice, either all people or one randomly se- 
lected person are usually surveyed; this article will 
suggest some more efficient alternatives. 

The expected cost of implementing the survey is 
assumed to be 

A 

c = CO + Clm + CZ C na (1) 
a=l 

where: n a  = %mFia is the expected sample size 
of units in clusters of size a; Ma is the number of 
clusters of size a in the population; CO is fixed costs; 
CI is for costs associated with the number of clusters 
in the sample (for example travel costs); and C, is 
for costs associated with the number of units in the 
sample (for example interview time). 

Suppose that the mean, variance and intraclass 
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correlation of the variable of interest do not depend 
on the cluster size. These assumptions are made for 
simplicity; (Clark, 2002) gives more general results. 
The variance of an inverse selection probability esti- 
mator is then proportional to 

where: M is the number of clusters in the popula- 
tion; Na is the number of units in the population 
in clusters of size a; and R is the finite population 
intracluster correlation coefficient. 

In Section 2 ,  the optimal values of m and f i a ,  

which minimize the variance for fixed cost, are dis- 
cussed. The standard optimal allocation, which ig- 
nores the fact the m and f i ,  are integers, is stated. 
An algorithm which finds the best integer values of 
f ia is derived. In Section 3, clusters of size a are 
randomly assigned integer sample sizes, so that the 
expected sample size within clusters of size a can be 
a non-integer. Section 4 is a numerical evaluation of 
several sample designs using both fixed and random 
729. 

2. 
The cost and variance models, (1) and (2), are al- 
gebraically of the same form as the cost and vari- 
ance assumed in standard optimal allocation theory. 
Therefore, the values of m and na which minimise 
V for fixed C = C f  are 

Optimal Designs with Integer f i ,  

(Cochran, 1977, pp.96-99). The within-cluster sam- 
ple sizes are therefore 

If the intraclass correlations are low or the travel 
costs (C1) are high, then the optimal f i ,  is high, 
so the sample is highly clustered. The number of 
clusters in sample depends on the cost constraint, 
C f :  if there are more funds available then a larger 
sample will be used. However, the within-cluster 
sample sizes, f i a ,  do not depend on Cf , so this aspect 
of the sample design can be chosen without knowing 
the total budget available for the survey. 

In practice, sample sizes must be whole numbers, 
but allocation (3) will generally give non-integer val- 
ues of m, na and f ia.  The number of clusters, m, is 

usually large, so rounding m to the nearest whole 
number should work well. However, A, is a differ- 
ent story, as it is a small integer, between 1 and 
a. Rounding of f ia may have a large effect. One 
impact of rounding is that the cost of the rounded 
design may be significantly different from the cost 
constraint Cf. Even if m is adjusted so that the 
cost constraint is met exactly, the resulting design 
is still not the best possible integer design. For ex- 
ample, suppose that all of the A, in (4) are equal 
to  an integer plus 0.4. Then all of the A, would 
be rounded down, resulting in a much lower average 
sample size per cluster. It is possible that rounding 
some of the j ia  up, and some down, will give a better 
solution. 

To find the best integer-valued A,, notice that, 
for a given set of f ia,  m is determined by the cost 
constraint: 

Substituting into equation (2) gives 
A 

a=l 

A 

= Rm-'+ (1 - R)C 
a=l 

A 

a=l 

/ A \ 

[ R + (1 - R) c MM;lfi;l) (7) 
\ a=l 1 

The integer optimal can be calculated by minimis- 
ing (7) with respect to  integer-valued f ia. For each 
a, there are a possible values for A,. So there are 
A! possible combinations of values of Aa where A is 
the maximum household size. In many cases, A! is 
sufficiently small that (7) can be evaluated for every 
possible combination. For example, in the numeri- 
cal study in Section 4, A! = 6! = 720. Notice that 
(7) does not depend on the cost constraint, so that 
the optimal integer sample size is independent of Cf, 
just like the optimal non-integer sample size. 

3. Designs with Non-Integer a, 
It is obviously not possible to select a non-integer 
sample size from a particular cluster. It is possi- 
ble to allocate a range of integer sample sizes, ng, 
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to  clusters g of the same size. Then A, = n,/m, 
would be the average of these n9, so that R, can be 
a non-integer. It is proposed that n9 be randomly 
generated from an integer-valued distribution with 
E [ n g ]  = 6,. 

A design of this type may give lower variances 
than the integer optimal design discussed in Section 
2, because Ria can be set to  be equal to, or closer 
to; the non-integer optimal values (4). However, the 
extra variation in n9 may result in greater variation 
in the estimation weights, which may increase the 
variance relative to the integer optimal design. It is 
unclear what the net result of these two factors will 
be: the numerical study in Section 4 compares the 
two approaches. 

If ng are random variables, there are at least two 
design unbiased methods of weighting the sample: 

0 The usual two-stage estimation weights for a 

6.0 - 

5.5 - 

5.0 - 

4.5 - 

4.0 - 

M a  
m n9 

cluster g of size a are - -. 

The inverse of the probability of selection for a 
unit i in cluster g of size a is 

7r:l = P[i E s] 

= {P [g E s l ]  P [i E slg E sl]}-l 

The first weight uses the actual sample sizes, n9, 
and the second weight uses the expected sample sizes 
8,. The first set of weights gives conditionally de- 
sign unbiased estimators, the second set of weights 
gives a conditional bias, conditional on n9. Both 
weights give design unbiased estimators, uncondi- 
tionally over ng. Clark (2002) derives weights which 
minimise the unconditional design variance; these 
turn out to be an interpolation between the two 
weights given above. It may seem more reasonable to 
use the first set of weights as they are conditionally 
unbiased, however this results in greater variation 
amongst the weights, which inflates the variance of 
estimators. As a result, the second set of weights 
often perform better. 

The design variance for sample designs with ran- 
dom n9 will be denoted by V*. The form of V* is 
complicated and depends on whether inverse proba- 

bility weights, weighting by --, or an interpola- 

tion, is used. Clark (2002, ch.6) derives V* and the 
optimal design-based weighting scheme. It is also 
shown that it is optimal to  generate n9 as either a 

M a  
m n9 

fixed integer 8, with probability 1, or as a mixture 
of two neighboring integers. To illustrate, V*, sup- 
pose that all clusters are of the same size, a, and 
that inverse probability weighting is used. Then 

M2 

m V* = V+q%2-a2R 

where the relative variance of ng is $2, for each g. 
See the Appendix for proof. 

4. Numerical Study 
A simpler way of calculating 6 ,  would be to approx- 
imate V* by substituting 8, for A, in expression 7 
for V: 

/ A \ 

a=l 

Plot 1 illustrates the behaviour of V* compared to v. The plot is based on a population consisting of 
an equal number of clusters of size 1 and size 2. One 
unit is selected from each selected cluster of size 2. 
The plot shows the behaviour of v and V* as the 
expected sample size from clusters of size 1, 81, is 
varied. 

Plot 1 : Variance for Fixed Cost with HHs of Size 1 and 2 

3.5 

0.0 0.5 1 .o 1.5 2.0 
nbarl 

The plot was calculated assuming: the opti- 
mal weighting method is used (as derived in Clark 
(2002)); C1/C2 = 0.2; R = 0.4; and the popula- 
tion variance for units in size 1 clusters is 0.25 times 
the population variance for units in size 2 clusters. 
The last assumption is not realistic and was made 
to  exaggerate the difference between and V " ,  for 
presentation. The optimal choice for fil is about 0.3; 
if the approximation was used, fil would be set 
a t  about 0.2. Notice that a value of 8, less than 1 
means that clusters of size a are subsampled. 
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Table 1 shows the variance of several alternative 
designs, for regression estimation of employment, 
with auxiliary variables agegroup by sex. Clusters 
are households and units are people. This table was 
calculated using data from the 1991 Australian Cen- 
sus of Population and Housing. Households con- 
tained between 1 and 6 adults. It is assumed that 
Cl/C2 is about 0.25; this is probably somewhat 
lower than the ratio for face to face interviewing but 
may be appropriate for telephone interviewing. The 
intra-class correlation of employment, adjusted for 
age and sex, is about 0.2. All/household sampling is 
usually used in practice for labour force data. If the 
real-valued optimal O a ,  given by (4) in Section 2, are 
rounded to  the nearest integer, the resulting variance 
is 0.96 (all variances are relative to  the all/household 
design). The best integer optimal design, calculated 
using the method in Section 2, turned out to be half 
of the people in each household, rounding down; this 
gave a variance of 0.90. The best design allowing 
random ng was found by numerically minimising V* 
with respect to (0, : a = 1,. . . , A )  in Splus, using the 
NLMIKB procedure (e.g. Venables & Ripley, 1994). 
This design took approximately half of the people in 
the household in expectation. Its variance was 0.87. 

Design 

Table 1: Various Sample Designs, Regression Esti- 
mation of Employment 

Var . 9a 
a = l  2 Y 4 5 6 

All HH 
OnLlHH 

1.00 1 2 3 4 5 6  
1.015 1 1 1 1 1 1  

Rnded Real 
Best Integer 
Random ng 

Similar tables were calculated for different vari- 
ables and different cost ratios. The best gains from 
the new methods are when Cl/C2 is small, or when 
R is small. 

0.955 1 1 1 1 2 2  
0.896 1 1 2 2 3 3  
0.867 0.5 1 1.5 1.9 2.1 2.7 

5 .  Conclusions and Further Work 
It is possible to make useful reductions in the vari- 
ance in household surveys, by explicitly allowing for 
integer sample sizes. For the employment variable 
and a particular cost model, the variance was re- 
duced by about 10% by using the best integer de- 
sign rather than the usual all/household design. A 
further reduction of about 3% was made by allowing 
the expected within household sample sizes, O a ,  to 
be non-integers. In general, the new designs work 
best if the variable of interest is not highly corre- 
lated within households, and the costs associated 

with households are small compared to  interview 
costs. 

The new sample designs require interviewers to  
decide on the within-household sample size after 
identifying the size of the household. A randomly 
generated sample size may be required for some 
households. This complicates the interviewer's task 
but is probably feasible if computer assisted per- 
sonal interviewing or telephone interviewing is used. 
Whether the gains justify the extra complication re- 
quires further study. 

The main benefit of randomizing ng seems to be 
to allow some subsampling of small households. It 
is counter-intuitive that an interviewer should knock 
on the door, find out the household contains only one 
or two people, and then terminate the interview with 
some probability. However, if the cost of this initial 
contact is small, it is sensible to devote resources to 
interviewing people from larger households, rather 
than have an excessive number of sole person house- 
holds in sample. 

This research could be extended to more sophis- 
ticated methods of sampling within households, for 
example stratification. Stratification within house- 
holds has not been much used in practice, possibly 
because many strata would contain 0 or 1 units. 
The methods described in this paper could be used 
to  design an effective within-household stratification 
scheme by allocating non-integer expected within- 
household sample sizes. 

Appendix: Derivation of V* for a Sim- 
ple Case 
The estimator is 

M a  
m e  

T=--CCy" 
g E s l  iES, 

where: y" is the variable for interest for unit i; s1 
is the sample of clusters g; and sg is the sample of 
units i in cluster g. Let n be the vector containing 
all ng for g E sl. Let Si and pg be the variance 
and mean, respectively, of yi over units i in cluster 
g. The design variance of T is 

r -3 
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+-aS2(I M 2  + (a - 1 ) R )  
= Ep [. [$$ ( n g  - 2) $IS1]] 

m M 2  u2 
m m e  

g E s l  - -aS2R+ M2 --S2(1 - R) - 

M 2  
m 

+ c $ ~ - u ~ u S ~ R  

r r  1 1  

r 1 

\ 1 gEs’ 

(6) 

where 5’; is the population variance of Yg over all 
clusters g. It is assumed that the mean of Y over all 
units, 7, is zero, and that all clusters are of size a. 
In this case, the following identities hold: 

c sg” M M S 2 ( 1 - R )  
g e l  

c Y; = 
g e l  g € s l  

c (Fg - F)2 x Ma-lS2(1 + (U  - 1 ) R )  

s; = a-lS2(1+ (u - 1)R) 

where S2 is the overall population variance of J$ and 
R is the population intraclass correlation of Y .  The 
approximations are of order 1 / M .  See for example 
Hansen et al. (1953). Substituting into (6) gives 

M u2 
m 82 

+--8242Ma-1S2(1 + ( a  - 1 ) R )  

M2 
m 

+-aS2(1 + (u  - 1)R) 

M 2  s 2 ( 1  - R) - -aS2(1 - R) M2 u2 
m e  m 
-- - - 

M2 

m 
= V + q52 - u ~ u S ~ R .  
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