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1. Introduction 
 
Traditional small area estimators borrow strength either 
from similar small areas or from the same area across 
time, but not both. In the past ten years, several 
approaches to borrowing strength simultaneously across 
both space and time have been developed. Estimators 
based on the approach developed by Rao and Yu 
(1994), Datta et al. (1999) and You et al. (2000), 
successfully exploit the two dimensions simultaneously 
to produce improved estimates with desirable properties 
for small areas. Datta et al. (1999) applied their model 
to data from the U.S. Current Population Survey, while 
You et al. (2000) applied a similar model to the 
Canadian Labour Force Survey (LFS). Unlike Datta et 
al. (1999), the model proposed by You et al. (2000) 
does not contain seasonal parameters. This reduces 
substantially the number of parameters that need to be 
estimated. Despite this simplification, You et. al. (2000) 
obtained both an adequate model fit and large 
reductions in the coefficients of variation (CVs) of the 
small area estimators of the unemployment rate. 
However, a major limitation of the models proposed by 
Datta et al. (1999) and You et al. (2000) is that the 
linking model for the parameter of interest, the true 
unemployment rate, is a linear model with normal 
random effects. The linear linking model may lead to 
negative estimates for some small areas. To overcome 
this limitation, in this paper we propose a nonlinear 
linking model for the parameters of interest; see Section 
2.  
 
The unemployment rate is generally viewed as a key 
indicator of economic performance. In Canada, 
although provincial and national estimates get the most 
media attention, subprovincial estimates of the 
unemployment rate are also very important. They are 
used by the Employment Insurance (EI) program to 
determine the rules used to administer the program. In 
addition, the unemployment rates for Urban Centers 
(UCs) including Census Metropolitan Areas (CMAs, 
i.e., cities with population more than 100,000) and 
Census Agglomerations (CAs, i.e., other urban centres) 
receive close scrutiny at local levels. However, many 
UCs do not have a large enough sample to produce 
adequate direct estimates. Our objective in this paper is 
to obtain an estimator that is an improvement over the 
direct estimator which is based solely on the sample 

falling in a given UC in a given month. In Canada, 
unemployment rates are produced by the Labour Force 
Survey. The LFS is a monthly survey of 53,000 
households selected using a stratified, multistage 
design. Each month, one-sixth of the sample is 
replaced. Thus five-sixths of the sample is common 
between two consecutive months. This sample overlap 
induces correlations which can be exploited to produce 
better estimates by any method which borrows strength 
across time. For a detailed description of the LFS 
design, see Gambino et al. (1998). 
 
In Section 2, we present a cross-sectional and time 
series model, which borrows strength across small areas 
and time periods to produce unemployment rates for 
UCs. In Section 3, the model is placed in a hierarchical 
Bayes framework, and the use of Gibbs sampling to 
generate samples from the joint posterior distribution is 
described. Specifically, estimates for the UC (small 
area) unemployment rate and its posterior variance are 
obtained. In Sections 4 and 5, we apply our method to 
LFS data and check the adequacy of the model. We 
offer some concluding remarks in Section 6. 
 
2. Cross-sectional and Time Series Models 
 
Let ity  denote the direct LFS estimate of itθ , the true 

unemployment rate of the ith UC at time t, ,,...,1 mi = , 
,,...,1 Tt =  where m is the total number of UCs and T is 

the (current) time of interest.  Following You et al. 
(2000), we assume that   
                ,,...,1,,...,1   , Ttmiey ititit ==+= θ           (1) 

where ite  are sampling errors. Let ),...,( 1 ′= iTii yyy , 

),...,( 1 ′= iTii θθθ , and ),...,( 1 ′= iTii eee . Then ie  is a 
vector of sampling errors for the ith UC. Because of the 
LFS sample rotation pattern, there is substantial sample 
overlap over short time periods. As a result, the 
correlation between ite  and )( steis ≠  has to be taken 

into account.  We assume that ie  follows a multivariate 
normal distribution with mean vector 0 and covariance 
matrix iΣ , i.e., ),0(~ ii Ne Σ . Using (1), we have  

                       .,...,1   ),,(~ miNy iii =Σθ                  (2) 

Thus iy  is design-unbiased for iθ . Specification of the 

covariance matrix iΣ  may not be easy in practice. 

Usually a smoothed estimator of iΣ is used in the 

model, and then iΣ is treated as known. More details on 
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constructing a smoothed estimator of iΣ in the context 
of the LFS are given in Section 4. To borrow strength 
across small areas and time periods, You et al. (2000) 
modelled the true unemployment rate itθ  by a linear 
regression model with random effects through auxiliary 
variables itx , that is,  

        ,,...,1,,...,1   , Ttmiuvx itiitit ==++′= βθ         (3) 

where ),...,( 1 ′= itpitit xxx is the vector of area level 

auxiliary data for the ith UC at time t; β is a vector of 

regression parameters of length p; iv  is a random area 

effect with ),0( ~ 2
vi Niidv σ ; itu  is a random time 

component. For a given area i, they assumed that itu  
follows a random walk process over time period 

,,...,1 Tt = , that is,  
             ,,...,2,,...,1   ,1, Ttmiuu ittiit ==+= − ε          (4) 

where ),0( ~ 2
εσε Nit . Then 2),min(),cov( εσstuu isit = . 

Also { iv }, { itε } and { ie } are assumed to be mutually 

independent. The regression parameter β  and the 

variance components 2
vσ  and 2

εσ  are unknown in the 
model. Rao and Yu (1994) used a stationary 
autoregressive model for itu , whereas Datta et al. 
(1999) included month and year effects as seasonal 
effects for itθ  in (3).  
 
However, the linear linking model (3) for the true 
unemployment rate itθ  has some limitations. Since itθ  
is the true unemployment rate, it is a positive number 
between 0 and 1, and it is close to 0. The linear linking 
model with normal random effects may lead to negative 
estimates for itθ . To avoid this problem, we propose 

the following log-linear linking model for itθ , that is,  

     .,...,1,,...,1   ,)log( Ttmiuvx itiitit ==++′= βθ     (5) 
Note that the log-linear linking model (5) is a nonlinear 
model and the sampling model (1) is a linear model. 
The proposed linking model (5) is an extension of the 
unmatched sampling and linking models of You and 
Rao (2002) to cross-sectional and time series data.  
 
We are interested in obtaining a model-based estimator 
of iθ , in particular, for the current time unemployment 

rate iTθ . Due to the complex model, following You et 
al. (2000), we consider a complete HB approach to 
inference using the Gibbs sampling method.  
 
3. Hierarchical Bayes Analysis 
 
In this section, we apply the hierarchical Bayes 
approach to the nonlinear cross-sectional and time 

series models given by  (2), (4) and (5). Estimates of 
the posterior mean and posterior covariance matrix of 
the small area means, iθ , are obtained using the Gibbs 
sampling method.  
 
3.1. The hierarchical Bayes model 
 
We now present the cross-sectional and time series 
model in a hierarchical Bayes framework as follows: 
• Conditional on the parameters ),...,( 1 ′= iTii θθθ , 

),( ~]|[ iiii Nindy Σθθ ; 

• Conditional on the parameters β , itu  and 2
vσ , 

),(~],,|)[log( 22
vititvitit uxind Nu σβσβθ +′ ; 

• Conditional on the parameters 1, −tiu  and 2
εσ , 

),( ~],|[ 2
1,

2
1, εε σσ −− titiit uNinduu ; 

Marginally β , 2
vσ  and 2

εσ  are mutually independent 

with priors given as ,1∝β  ),(~ 11
2 baIGvσ , and 

),(~ 22
2 baIGεσ , where IG denotes an inverse gamma 

distribution and 2211 ,,, baba  are known positive 
constants and usually set to be very small to reflect our 

vague knowledge about 2
vσ  and 2

εσ .  
 
We are interested in estimating iθ , and in particular, 

the current unemployment rate iTθ . In the HB analysis, 

iTθ is estimated by its posterior mean )|( yE iTθ  and 
the uncertainty associated with the estimator is 
measured by the posterior variance )|( yV iTθ . We use 
the Gibbs sampling method (Gelfand and Smith, 1990) 
to obtain the posterior mean and the posterior variance 
of iTθ .  
 
3.2. Gibbs sampling method 
 
The Gibbs sampling method is an iterative Markov 
chain Monte Carlo sampling method to simulate 
samples from a joint distribution of random variables 
by sampling from low dimensional densities and to 
make inferences about the joint and marginal 
distributions (Gelfand and Smith, 1990). The most 
prominent application is for inference within a 
Bayesian framework.  
 
For the hierarchical Bayes model in Section 3.1, to 
implement the Gibbs sampler we need to generate 
samples from the full conditional distributions of the 

parameters β , 2
vσ  and 2

εσ , itu  and iθ .  These full 
conditional distributions are given in the Appendix. The 

distributions of β , 2
vσ  and 2

εσ , itu are standard normal 
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or inverse gamma distributions that can be easily 
sampled. However, the conditional distribution of iθ  
does not have a closed form. We use the Metropolis-
Hastings algorithm within the Gibbs sampler (Chib and 
Greenberg, 1995) to update iθ . From the Appendix, we 
note that  

)()(,,,,| 22
iivi fhuY θθσσβθ ε ∝ , 

where  

)}()(
2

1
exp{)( 1

iiiiii yyh θθθ −Σ′−−= −  

and  

).
1

}())(log(
2

1
exp{)(

T

1t it

T

1t

2
it2 ∏∑ −′−−=

== θ
θ

σ
θ itit

v
i uβxf  

To update iθ , we proceed as follows: 

(1) For Tt ,...,1= , draw  

),(log~ )1(2)1()1()1( ++++ +′ k
v

k
it

k
it

k
it uβxN σθ ,  

then we have ),...,( )1()1(
1

)1( ′= +++ k
im

k
i

k
i θθθ . 

(2) Compute the rejection probability  

}1,
)(

)(
min{),(

)(

)1(
)1()(

k
i

k
ik

i
k

i
h

h

θ
θθθα

+
+ = . 

(3) Generate )1,0(~ Uniformλ , if ),( )1()( +< k
i

k
i θθαλ , 

then accept )1( +k
iθ ; otherwise reject )1( +k

iθ  and set 
)()1( k

i
k

i θθ =+ .  
 
To implement Gibbs sampling, we follow the 
recommendation of Gelman and Rubin (1992) and 
independently run L (L>2) parallel chains, each of 
length 2d. The first d iterations of each chain are 
deleted. The convergence monitoring is discussed in 
Section 4. Estimates of the posterior mean )|( yE iTθ  

and the posterior variance )|( yV iTθ  are obtained 
based on the samples generated from the Gibbs 
sampler.  
 
4. Application to the LFS 
 
We used the 1999 LFS unemployment estimates, ity , 
in our HB analysis. There are 64 UCs across Canada in 
the LFS. Employment Insurance (EI) beneficiary rates 
are used as auxiliary data, itx , in the model. Since the 
EI beneficiary data are available for only 62 UCs, we 
included only those m=62 UCs in the model. Within 
each UC, we considered six consecutive monthly 
estimates ity from January 1999 to June 1999, so that 

T=6. The parameter of interest iTθ  is the true 
unemployment rate for area i in June 1999. The reason 
that we only used six months of data is that the LFS 
sample rotation is based on a six-month cycle. Each 
month, one sixth of the LFS sample is replaced. Thus 

after six months, the correlation between estimates is 
very weak.  
To obtain a smoothed estimate of the sampling 
covariance matrix iΣ used in the model, we first 
computed the average coefficient of variation (CV) for 
each UC over time and the average lag correlation 
coefficients over time and all UCs. By using these 
smoothed CVs and lag correlation coefficients, we 
obtained a smoothed estimate of iΣ . You et al. (2000) 

found that using the smoothed estimate of iΣ  in the 
model can significantly improve CV reduction and 
model fit in terms of posterior predictive p-values.  
 
To implement the Gibbs sampling, we considered L=10 
parallel chains, each of length 2d=3000. For each chain, 
the first d=1500 “burn-in” iterations were deleted. To 
reduce the auto-correlation in the chain, we took every 
5th iteration of the remaining iterations, leading to 300 
iterations for each chain. To monitor the convergence 
of the Gibbs sampler, for the parameters of interest 

),...,1( miiT =θ , we followed the method of Gelman 
and Rubin (1992) involving the following steps: For 

each iTθ , let )(lk
iTθ denote the k-th simulated value in 

the l-th chain, k=1,…, K (K=300), l=1,…, L. In the first 

step, the overall mean ∑ ∑= = =
L
l

K
k

lk
iTiT LK1 1

)( )/(θθ  and 

the within sequence mean ∑= =
K
k

lk
iT

l
iT K1

)()( /θθ for 

l=1,…, L are computed. Then compute KBiT / , the 
variance between the L sequence means as 

∑ −−= =
L
l

l
iTiTiT LKB 1

2)( )1/()(/ θθ . In the second step, 

calculate iTW , the average of the L within sequence 

variances, 2
iTls , each based on K-1 degrees of freedom; 

that is, LsW L
l iTliT /1

2
∑= = . In the third step, calculate  

KBKWKs iTiTiT //)1(2 +−=  
and  

)/(2 LKBsV iTiTiT += . 
In the last step, find the potential scale reduction factors 

),..,1( /ˆ miWVR iTiTiT == . If these potential scale 
reduction factors are near 1 for all of the scalar 
estimands iTθ of interest, then this suggests that the 
desired convergence is achieved by the Gibbs sampler. 
In our study, the Gibbs sampler converged very well in 

terms of the values of iTR̂ . 
 
Figure 1 displays the LFS direct estimates and the HB 
estimates of the June 1999 unemployment rates for the 
62 UCs across Canada. The 62 UCs appear in the order 
of population size with the smallest UC (Dawson 
Creek, BC) on the left and the largest UC (Toronto, 
Ontario) on the right. The HB approach leads to 
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moderate smoothing of the direct LFS estimates. For 
the UCs with large population sizes and therefore large 
sample sizes, the direct estimates and the model-based 
estimates are very close to each other as expected; for 
smaller UCs, the direct and HB estimates differ 
substantially for some regions and the model-based 
estimates tend to shrink to the mean value.   
 

Figure 1. Comparison of Estimates 

 
 
Figure 2 displays the coefficients of variation (CV) of 
the estimates. The CV of the model-based estimate is 
taken as the ratio of the square root of the posterior 
variance and the posterior mean. It is clear from Figure 
2 that the model-based approach leads to substantial CV 
reduction over the direct estimates. The efficiency gain 
of the model-based estimates is obvious, particularly for 
the UCs with smaller population sizes.  
 

Figure 2. Comparison of CVs 

 

 
5. Model Checking 
 
To check the overall fit of the proposed model, we used 
the method of posterior predictive p values (Meng, 

1994; Gelman et al., 1995). In this approach, simulated 
values of a suitable discrepancy measure are generated 
from the posterior predictive distribution and then 
compared to the corresponding measure for the 
observed data. More precisely, let ),( θyT  be a 
discrepancy measure depending on the data y and the 

parameterθ . Let *θ represent a draw from the posterior 

distribution of θ given y, and let *y represent a draw 

from )|( *θyf . Then marginally *y is a sample from 

the posterior predictive distribution )|( obsyyf , where 

obsy  represents the observed data. The posterior 
predictive p value is defined as  

)|),(),(( *
obsobs yyTyTprobp θθ >= . 

Note that the probability is with respect to the posterior 
distribution  of  θ given  the  observed data. This  is  a 
natural extension of the usual p value in a Bayesian 
context. If a model fits the observed data, then the two 
values of the discrepancy measure are similar. In other 
words, if the given model adequately fits the observed 
data, then ),( θobsyT should be near the central part of 

the histogram of the ),( * θyT values if *y is generated 
repeatedly from the posterior predictive distribution. 
Consequently, the posterior predictive p value is 
expected to be near 0.5 if the model adequately fits the 
data. Extreme p values (near 0 or 1) suggest poor fit.  
 
Computing the p value is relatively easy using the 

simulated values of *θ from the Gibbs sampler. For 

each simulated value *θ , we can simulate *y from the 

model and compute ),( ** θyT and ),( *θobsyT . Then 
the p value is estimated by the proportion of times 

),( ** θyT exceeds ),( *θobsyT .  
 
In the present context, the discrepancy measure used for 
overall fit is given by  

∑ −Σ′−= =
−m

i iiiii yyyT 1
1 )()(),( θθθ . 

Datta et al. (1999) used the same discrepancy measure. 
We computed the p value by combining the simulated 

*θ and *y from all 10 parallel chains. We obtained an 
estimated p value equal to 0.553. Thus we have no 
indication of lack of overall model fit.  
 
Datta et al. (1999) used a model similar to ours to 
obtain HB estimates of unemployment rates for the 
states of the U.S. They included month and year effects 
in the time component of the model since they 
considered a long time series (48 months). They stated 
that if the month and year effects were deleted, the 
corresponding p value in their application is equal to 
0.758, compared to the p value of 0.614 for their 

Estimates June 1999 
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proposed model with month and year effects. Our study 
has shown that when data for a short time period (12 
months or less) are used, the simpler model without 
seasonal effects can provide adequate overall fit. The 
CVs obtained from the simpler model are likely to be 
comparable to those obtained from a more complex 
model involving seasonal effects and long time series 
data. Also, the determination of iΣ becomes more 
difficult as the number of time periods, T, included in 
the model increases.  
 
6. Concluding Remarks 
 
In this paper we have presented a hierarchical Bayes 
nonlinear mixed effects cross-sectional and time series 
model to obtain efficient model-based estimates of 
unemployment rates for UCs across Canada using LFS 
data. The model borrows strength across areas and over 
time periods simultaneously. Our analysis has shown 
that the proposed model fits the data quite well and the 
hierarchical Bayes model-based estimates improve the 
direct survey estimates significantly in terms of CV 
reduction, especially for UCs with small population. 
The proposed log-linear linking model overcomes the 
limitations of Datta et al. (1999) and You et al. (2000).  
 
In our approach, we have treated the variance-
covariance matrices iΣ  as known even though they are 
estimated. We plan to study the sensitivity of the 
estimates and their CVs to this assumption by trying 
different methods for smoothing variances and 
covariances and, possibly, by putting a prior 
distribution on the variance-covariance matrix. Finally, 
we plan to produce estimates for additional months to 
study the behaviour of the time series produced by our 
approach. 
 
 
Appendix 
 
We list the full conditional distributions for the Gibbs 
sampler in Section 3 as follows: 
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