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Abstract:

Linear models that form the basis for survey regression
estimation and the conditions under which the regression
estimators are design consistent are reviewed. Model jus-
tification for some commonly used regression estimators
is presented. Test for reduced models against design con-
sistent models are discussed.

1. Introduction

The earliest references to the use of regression in sur-
vey sampling include Jessen (1942) and Cochran (1942).
Regression in similar contexts would certainly have been
used earlier and Cochran (1977, page 189) mentions a re-
gression on leaf area by Watson (1937). Cochran (1942)
gave the basic theory for regression in survey sampling
relying on linear model theory. He showed that the lin-
ear model did not need to hold in order for the regression
estimator to perform well. He derived an expression for
the O(n−1) bias and anO(n−2) approximation for the
variance. He also showed that for the model with re-
gression passing through the origin and error variances
proportional tox, the ratio estimator is the generalized
least squares estimator.

Brewer (1963) is an early reference that considers lin-
ear estimation using a superpopulation model to deter-
mine an optimal procedure. He was concerned with find-
ing the optimal design for the ratio estimator and dis-
cussed the possible conflict between an optimal design
under the model and a design that is less model depen-
dent. See also Brewer (1979).

Various estimators have been proposed for estimating
a finite population mean under a regression superpopu-
lation model that postulates a relationship between the
study variable and a set of auxiliary variables. Royall
(1970, 1976) adapted linear prediction theory to the fi-
nite population situation and suggested the best linear
model unbiased predictor (BLUP) for a finite population
total. Cassel, S̈arndal and Wretman (1976) and Särndal
(1980) proposed a generalized regression predictor that
is asymptotically design unbiased and design consistent.
Isaki and Fuller (1982) considered predictors of the re-
gression type that are model unbiased and design consis-
tent.Wright (1983) proposed a class of predictors, called
QR-predictors, that contains most proposed predictors.

Inference based on prediction theory is sensitive to
model misspecification, as illustrated by Hansen, Madow

and Tepping (1983). Many techniques for robust infer-
ence have been suggested. See Royall (1992), Royall
and Cumberland (1981a, 1981b), and Royall and Herson
(1973a, 1973b).

Design consistency has been proposed (Isaki and
Fuller, 1982; Robinson and Särndal, 1983) as a way
of providing protection against model misspecification
in the large sample setting. In this paper, we consider
the problem of constructing estimators with good model
properties, such as model unbiasedness and minimum
model variance, that are also design consistent.

Assume the finite population is a realization from the
superpopulation model

yN = XNβ + eN , (1)

eN ∼ (0 , ΣeeN) ,

where
yN = (y1, · · · , yN)′ ,

eN = (e1, · · · , eN)′ ,

XN = (x′1, · · · ,x′N)′ ,

and
xi = (xi1, · · · , xik) .

We assume the covariance matrixΣeeN is a positive def-
inite matrix. Expressions without the subscriptN are
used to denote the corresponding sample quantities, for
example,y = (y1, · · · , yn)′ is the vector of sample ob-
servations.

To investigate the large sample properties of certain
estimators, we define sequences of populations, sam-
ples and sampling designs. The set of indices for the
N -th finite population isUN = {1, · · · , N}, where
N = 1, 2, · · · . Associated withj-th element of theN -th
finite population is a vector of characteristics, denoted by
yjN . LetFN = {y1N , · · · ,yNN} be the set of vectors for
theN -th finite population. The population mean ofy for
theN -th finite population is̄yN = N−1

∑N
i=1 yiN . Let

AN denote the set of indices appearing in the sample se-
lected from theN -th finite population. The sample size
is denoted bynN . The sample sizenN is strictly less than
N andnN → ∞ asN → ∞. We assume that samples
are selected according to the probability rulePN(·).

Under the specified sequence of populations, samples,
and sampling designs, we define a sequence of estimators
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θ̂N of the population mean̄yN to be design consistent, if
for all ε > 0,

lim
N→∞

P
{
|θ̂N − ȳN | > ε

∣∣ FN

}
= 0 ,

where the notation indicates thatN -th finite population is
held fixed and the probability depends only on the sam-
pling design.

2. Design consistent regression estimators

Under some superpopulation models and designs, the
BLUP constructed under the model is also design consis-
tent. Assume the superpopulation model in which the co-
variance matrix of the errors is a multiple of the identity
matrix and the column of ones is in the column space of
XN . Without loss of generality, assume the first element
of xi is identically equal to one, and letxi = (1,x1,i).
The regression estimator of the population mean ofy is

ȳreg = x̄N β̃

= ȳn + (x̄1,N − x̄1,n) β̃1 ,
(2)

where

(ȳn , x̄1,n) = n−1
∑

i∈A

(yi , xi) ,

β̃ =
(
β̃0 , β̃

′
1

)′
= (X′X)−1 X′y ,

and x̄1,N is the population mean ofx1,i. See Cochran
(1977, p193). The estimator (2) is the BLUP under the
model (1) and is also design consistent if the sample is
selected by simple random sampling.

Many of the samples encountered in practice are more
complicated than simple random nonreplacement sam-
ples. Theorem 1 gives conditions under which the re-
gression estimator is design consistent.

Theorem 1. Let {FN} be a sequence of finite popu-
lations, whereFN is a random sample of sizeN se-
lected from an infinite superpopulation with finite fourth
moments. Letqi = (yi,xi) be a vector with mean
q̄N = (ȳN , x̄N) for theN -th population. Let a sequence
of probability samples be selected from the sequence
{FN}. Define the regression estimator ofȳN by

ȳreg = x̄N β̃ ,

whereβ̃ is a design consistent estimator of a parameter
denoted byβN . Then

p lim
N→∞

{(ȳreg − ȳN) |FN} = 0 ,

if and only if

p lim
N→∞

{ēN |FN} = 0 ,

where
ei = yi − xi βN .

¥
Proof. Omitted.

Consider the construction of an estimator to meet the
requirements of Theorem 1. Let a sample design have
selection probabilitiesπi and define the sample estimator
of the mean by

(ȳπ, x̄π) =

(∑

i∈A

π−1
i

)−1 ∑

i∈A

π−1
i (yi,xi)

=:
∑

i∈A

ai(yi,xi) ,

(3)

where

ai =


∑

j∈A

π−1
j



−1

π−1
i .

Assume the first element ofxi is identically equal to one.
By analogy to (2), consider an estimator of the form

ȳreg = ȳπ + (x̄1,N − x̄1,π)β̂1 . (4)

Assume

(ȳπ, x̄1,π, β̂1)− (ȳN , x̄1,N ,β1,N)|FN = Op(bN) ,

wherebN → 0 asN →∞. Then

ȳreg − ȳN = ȳπ − ȳN + (x̄1,N − x̄1,π)β̂1

= ȳπ − ȳN + (x̄1,N − x̄1,π)β1,N + Op(b2
N)

= ēπ + Op(b2
N) ,

(5)

where

ei = yi − ȳN − (x1,i − x̄1,N)β1,N . (6)

The population mean of theei of (6) is zero for anyβ1,N .
Therefore (4) gives a way to construct a design consistent
estimator.

The estimator (4) is linear iny and can be written
ȳreg =

∑
i∈A wiyi. Regression weights that define a

regression estimator of the form (4) can be constructed
by minimizing the quadratic objective function

(w −α)′Φ(w −α) (7)

subject to
w′X− x̄N = 0 , (8)

whereα is a vector of initial weights andΦ is a positive
definite matrix. One possibleΦ-matrix is a diagonal ma-
trix with the diagonal elements being the initial weights.
Possible initial weights areαi = N−1π−1

i or ai of (3).

Joint Statistical Meetings - Section on Survey Research Methods

1091



We observed that the regression estimator (2) is the
BLUP under the regression model with homogeneous
variances and is also design consistent under simple ran-
dom sampling. But, for some models and designs the
estimator that is conditionally best, givenX, need not
be a design consistent estimator. Assume the superpop-
ulation model (1). Under the model, the unknown finite
population mean is

ȳN = x̄Nβ + ēN . (9)

It follows that, under the model, the best linear condi-
tionally unbiased predictor of̄yN , conditional onX, is

ȳBLUP = N−1

[ ∑

i∈A

yi + (N − n)x̄N−nβ̂ +

J′N−nΣeeĀAΣ−1
ee

(
y −Xβ̂

) ]
,

(10)

where
β̂ =

(
X′Σ−1

ee X
)−1

X′Σ−1
ee y , (11)

x̄N−n = (N − n)−1(N x̄N − nx̄n) ,

ΣeeĀA = E{eĀe′} ,

eĀ = (en+1, · · · , eN)′ ,

JN−n is anN − n dimensional column vector of ones,
andĀ is the set of elements inU that are not inA. See
Royall (1976). The estimator (10) will be design con-
sistent if the design probabilities, the matrixΣeeN and
the matrixXN meet certain conditions. These conditions
have been considered by, among others, Isaki (1970),
Royall (1970, 1976), Scott and Smith (1974), Cas-
sel, S̈arndal and Wretman (1976, 1979, 1983), Zyskind
(1976), Tallis (1978), Isaki and Fuller (1982), Wright
(1983), Pfefferman (1984), Tam (1986), Brewer, Hanif
and Tam (1988), Montanari (1999) and Gerow and Mc-
Culloch (2000). We summarize the results in Theorem
2.

Theorem 2. Let the superpopulation model be given
by (1). Assume a sequence of populations, designs and
estimators such that

[(ȳHT , x̄HT )− (ȳN , x̄N)] | FN

=N−1

{
n∑

i=1

π−1
i (yi,xi)− (Ty,N ,Tx,N)

} ∣∣∣∣ FN

=Op(n−α
N ) ,

(12)

where theπi are the inclusion probabilities,(Ty,N ,Tx,N)
is the total of(y,x) for theN -th population andα > 0.
Let β̂ be defined by (11) and let{βN} be a sequence
such that

(β̂ − βN) | FN = Op(n−α
N ) . (13)

Assume there is a sequence{γN} such that

XγN = ΣeeLπ , (14)

whereLπ = (π−1
1 , · · · , π−1

n )′, for every sample form
UN that is possible under the design. Then

(
x̄N β̂ − ȳN

)
| FN = Op(n−α

N ) . (15)

If, in addition

XηN = ΣeeJn + ΣeeAĀJN−n , (16)

whereJn is an-dimensional column vector of ones, for
a sequence{ηN} and all possible samples, then̄yBLUP

of (10) satisfies

(ȳBLUP − ȳN) | FN = Op(n−α
N ) . (17)

Assume there is a sequence{ζN} such that

XζN = Σee (Lπ − Jn)−ΣeeAĀJN−n , (18)

for every sample fromUN that is possible under the de-
sign. Then̄yBLUP of (10) is expressible as

ȳBLUP = ȳHT + N−1(N − n) (x̄N−n − x̄c) β̂

= ȳHT + (x̄N − x̄HT ) β̂ ,
(19)

and
(ȳBLUP − ȳN)

∣∣FN = Op

(
n−α

N

)
, (20)

where

x̄c = (N − n)−1
∑

i∈A

(
π−1

i − 1
)
xi .

Proof. The sufficient condition for the estimator to be
design consistent given in Theorem 1 is

p lim
N→∞

(ȳN − x̄NβN | FN) = 0 . (21)

By assumption (12) and (13), a sufficient condition for
(21) is

p lim
N→∞

(
ȳHT − x̄HT β̂ | FN

)
= 0 . (22)

A sufficient condition for (22) is

n∑

i=1

(
yi − xiβ̂

)
π−1

i = 0 , (23)

for all A with positive probability. By the properties of
the generalized least square estimator of (11),

(
y −Xβ̂

)′
Σ−1

ee X = 0 ,
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for everyX such thatX′Σ−1
ee X is nonsingular. There-

fore, if there is aγN such that

Σ−1
ee XγN = Lπ ,

condition (23) is satisfied. By assumptions (12), (13) and
(14),

x̄N β̂ − ȳN

= (x̄N − x̄HT ) β̂ + (ȳHT − ȳN)−
(
ȳHT − x̄HT β̂

)

= (x̄N − x̄HT ) βN + (ȳHT − ȳN)

+ (x̄N − x̄HT )
(
β̂ − βN

)

=Op(n−α
N ) .

(24)

If (16) is satisfied,

ȳBLUP =
[
x̄N β̂ + N−1

(
J′nΣee + J′N−nΣeeĀA

)

×Σ−1
ee

(
y −Xβ̂

) ]

=x̄N β̂ .

(25)

Result (17) follows from (24) and (25).
If (18) is satisfied,

0 =N−1
(
y −Xβ̂

)′
Σ−1

ee XζN

=N−1
(
y −Xβ̂

)′ [
(Lπ − J)−Σ−1

ee ΣeeAĀJN−n

]

=N−1(N − n)
(
ȳc − x̄cβ̂

)

−N−1
(
y −Xβ̂

)′
Σ−1

ee ΣeeAĀJN−n .

It follows that ȳBLUP of (10) is

ȳBLUP =N−1

[ ∑

i∈A

yi + (N − n)ȳc

+ (N − n) (x̄N−n − x̄c) β̂

]

=ȳHT + N−1(N − n) (x̄N−n − x̄c) β̂

=ȳHT + (x̄N − x̄HT ) β̂ .

The error in the predictor isOp(n−α
N ) because of as-

sumptions (12) and (13). ¥

Theorem 2 gives the conditions under which the best
linear unbiased predictor is design consistent. Especially,
if (18) is satisfied, the estimator is the regression estima-
tor with the coefficient estimated by the generalized least
squares estimator. Theorem 2 also gives a way of con-
structing the model based design consistent estimator.

Montanari (1987) introduced thegeneral QR-
predictoras an extension of theQR-predictorof Wright
(1983) and gave conditions under which the general QR-
predictor is design consistent. The general QR-predictor
is

ȳQR = x̄N β̂ + N−1
∑

i∈A

ri

(
yi − xiβ̂

)
, (26)

where
β̂ = (X′QX)−1 X′Qy ,

andQ isn×n matrix whose(i, j)-th element denoted by
qij . Conditions under which the estimator (26) is design
consistent are

p lim
N→∞

β̂ = BN (27)

and
c ∈ C(WNXN) , (28)

where

BN = (X′
NWNXN)−1 X′

NWNyN ,

c = (c1, · · · , cN)′ ,

ci = 1− riπi ,

WN is N × N symmetric matrix whose(i, j)-th entry
is qijπij and C(X) denotes the space spanned by the
columns ofX.

A specification ofΣeeN may be particularly appro-
priate for two-stage cluster samples, See Royall (1976)
and Montanari (1987). A reasonable model is that in
which there is common correlation among items in the
same primary sampling units and zero correlation be-
tween units in different primary sampling units. That is,
a potential model for thej-th observation in clusteri is

yij = xijβ + uij , (29)

uij = bi + eij ,

bi ∼ II(0, σ2
b ) ,

eij ∼ II(0, σ2
e) ,

whereeij is independent ofbk for all i, j andk. Under
the model (29), the BLUP defined in (10) is a general
QR-predictor with

r = (r1, · · · , rn) =
(
Jn + Σ−1

ee ΣeeAĀJN−n

)
,

and
Q = Σee ,

whereΣee is a block diagonal matrix in which thei-th
block is ami ×mi matrix

σ2
eImi + σ2

bJmiJ
′
mi

,
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and mi is the number of sampled elements in cluster
i. Let a sample of primary sampling units be selected
by unequal probability sampling design and a simple
random nonreplacement sample of secondary sampling
units be selected within a selected primary sampling unit.
Under the specified model and design, the condition for
the BLUP of the finite population mean to be design con-
sistent given by Montanari (1987) is equivalent to the
condition given in (18). Although the two conditions are
equivalent under the specified set up, the equivalence of
the two conditions does not generally hold. The con-
dition in (18) is easier to check than the condition (28)
because we only need the first order inclusion probabil-
ities, the values of auxiliary variables corresponding to
sampled elements and the covariance matrix ofeN . Note
that condition (28) is a function ofXN , Q, ri and the first
and the second order inclusion probabilities for elements
in population.

3. Mixed model regression estimation

The regression model with random components has been
heavily used for small area estimation. See Rao (2002).
Royall (1976) and Montanari (1987) used the model for
cluster samples. The model has also been used for mean
estimation in the post stratification setting. See Little
(1993) and Lazzeroni and Little (1998).

We consider the mixed model

y = X0β0 + X2β2 + e , (30)

whereβ2 ∼ (0,Ψ), e ∼ (0,Φ), X0 is ann × l matrix,
X2 is ann × (p − l) matrix, the random vectorβ2 is
independent ofe, andβ0 is a fixed vector.

The best linear model unbiased predictor ofx̄Nβ is
w′y, where the vectorw is chosen to minimize

V{w′y− x̄Nβ} = V{w′e + (w′X2 − x̄2,N)β2} (31)

subject to the constraint

w′X0 = x̄0,N (32)

andx̄N = (x̄0,N , x̄2,N) is the population mean ofx. If
α is a vector of preliminary weights and ifΦα is in the
column space ofX0 then the vectorw can be obtained
from the Lagrangean

Q = (w −α)′Φ(w −α) + (w′X2 − x̄2,N)Ψ
× (w′X2 − x̄2,N)′ + 2λ′(w′X0 − x̄0,N)′ ,

(33)

whereλ is a vector of Lagrangian multipliers. The par-
tial derivatives with respect tow andλ are

1
2

∂Q

∂w
= Φw−Φα+X2Ψ(X′

2w−x̄′2,N)+X0λ , (34)

and
1
2

∂Q

∂λ
= X′

0w − x̄′0,N .

If we multiply (34) byX′
2Φ

−1, multiply (34) byX′
0Φ

−1

and set the results equal to zero, we obtain the linear
equation

[
X′

0Φ
−1X0 , X′

0Φ
−1X2Ψ

X′
2Φ

−1X0 , I + X′
2Φ

−1X2Ψ

] [
λ

X′
2w − µ′x2

]

=
[
x̄′0,π − x̄′0,N

x̄′2,π − x̄′2,N

]
,

(35)

where(x̄0,π, x̄2,π) = α′(X0,X2). Thus, the vector of
weights that minimizes the objective functionQ is

w =α−Φ−1X2Ψ(X′
2w − x̄′2,N)−Φ−1X0λ

=α− [
Φ−1X0 , Φ−1X2Ψ

] [
λ

X′
2w − x̄′2,N

]

=α + Φ−1X
[

X′
0Φ

−1X0X′
0Φ

−1X2

X′
2Φ

−1X0Ψ−1 + X′
2Φ

−1X2

]−1

×
[
x̄′2,N − x̄′0,π

x̄′2,N − x̄′2,π

]
,

(36)

where

λ = Q−1

{ (
x̄′0,π − x̄2,N

)−X′
0Φ

−1X2

× (
Ψ−1 + X′

2Φ
−1X2

)−1 (
x̄′2,π − x̄2,N

)}
,

and

Q =X′
0Φ

−1X0

−X′
0Φ

−1X2

(
Ψ−1 + X′

2Φ
−1X2

)−1
X′

2Φ
−1X0 .

The estimator defined with the vector of weights (36) is

ȳrreg = ȳπ + (x̄N − x̄π)θ̂ , (37)

where
θ̂ = H−1

ΨxxX
′Φ−1y ,

and

HΨxx =
[
X′

0Φ
−1X0 , X′

0Φ
−1X2

X′
2Φ

−1X0 , Ψ−1 + X′
2Φ

−1X2

]
.

The estimator defined in (37) is a design consistent esti-
mator and is the best predictor under the mixed model.

Estimation for the population mean in the present con-
text differs from the situation under the model (29) in that
the population mean ofX2 is assumed to be known in
estimation under model (30). Thus, in the estimation un-
der model (30) we are estimating a linear combination of
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fixed and random effects, while the regression estimator
under model (29) is an estimator of fixed effects.

To derive the large sample properties of the estimator,
consider a sequence ofΨN . If Ψ−1

N is increasing at the
same rate as the sample sizen, the estimator (37) is a
design consistent estimator of the population mean ofy.

Theorem 3. Let {FN , AN ,ΦN ,ΨN} be a sequence of
populations, samples, and positive definite matrices such
that

[(ȳπ , x̄π)− (ȳN , x̄N)] |FN = Op

(
n
− 1

2
N

)
. (38)

wherenN is the sample size for theN -th sample and
(ȳN , x̄N) is the population mean of(y,x). Assume there
exists a sequenceQzφz,N such that

[
n−1

N Z′Φ−1
N Z−Qzφz,N

] ∣∣FN = Op

(
n
− 1

2
N

)
(39)

and
lim

N→∞
N−1Qzφz,N = Qzφz , (40)

whereZ = (z′1, · · · z′n)′, zi = (yi,xi) andQzφz is a
positive definite matrix. Assume

lim
N→∞

n−1
N

[
Ψ−1

N

]
= Ψ−1 , (41)

whereΨ is a positive definite matrix. Then, estimator
(37) satisfies

ȳrreg − ȳN = ȳπ − ȳN + (x̄N − x̄π)θN + Op

(
n−1

N

)

= Op

(
n
− 1

2
N

)
,

(42)

where

θN = [Qxφx,N + Λφ,N ]−1 Qxφy,N

= H−1
xψx,NQxφy,N ,

Hxψx,N = Qxφx,N + Λφ,N ,

and

Λφ,N =
1

nN

[
0 , 0
0 , Ψ−1

N

]
.

Proof. The estimator (37) is

ȳrreg = ȳπ + (x̄N − x̄π)θN + (x̄N − x̄π)
(
θ̂ − θN

)
.

(43)
The population characteristicθN is

θN =H−1
xψx,NQxφy,N

=H−1
xψx,N [Qxφx,NθN + Qxφa,N + ΛNθN −ΛNθN ]

=θN + H−1
xψx,N [Qxφa,N −ΛNθN ] ,

(44)

where ai = yi − xθN and Qxφa,N = Qxφy,N −
Qxφx,NθN . By (44),

Qxφa,N −ΛNθN = 0 .

The error ofθ̂ in estimatingθN is

θ̂ − θN =
(

1
nN

Hxψx

)−1 1
nN

Qxφy − θN

=
(

1
nN

Hxψx

)−1 {
1

nN

QxφxθN +
1

nN

Qxφa

− 1
nN

QxφxθN −ΛNθN

}

=
(

1
nN

Hxψx

)−1 (
1

nN

Qxφa −ΛNθN

)

=
(

1
nN

Hxψx

)−1 (
1

nN

Qxφa −Qxφa,N

)
,

(45)

where Qxφx = X′Φ−1X, Qxφy = X′Φ−1y and
Qxφa = Qxφy −QxφxθN . By the assumption (39),

(
1

nN

Qxφa −Qxφa,N

)
= Op

(
n
− 1

2
N

)
,

and θ̂ − θN = Op

(
n
− 1

2
N

)
because

(
nN

−1Hxψx

)
is

bounded. The result follows from (39) and (43). ¥
If ΨN is fixed orΨN → ∞ asn → ∞, then the esti-

matorθ̂ approaches the weighted least squares estimator
and we obtain design consistency forȳrreg becausêθ
converges to the population analog of the weighted least
square estimator.

The proof of Theorem 4 is a proof of the assertion that
the estimator̄yrreg defined in (37) is the best linear con-
ditionally unbiased predictor for the population mean of
y under the mixed model.

Theorem 4. Consider the mixed model (30). Assume
that there exists column vectorc1 such that

Φα = X0c1 .

Let ȳrreg = w′y, wherew is the vector of weights that
minimizes

(w−α)′Φ(w−α)+(w′X2−x̄2,N)Ψ(w′X2−x̄2,N)′ ,
(46)

subject to
w′X0 − x̄0,N = 0 , (47)

wherex̄N = (x̄0,N , x̄2,N) is the population mean of
x. Then ȳrreg is the best linear conditionally unbiased
predictor ofx̄0,Nβ0 + x̄2,Nβ2.
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Proof. Under the restriction (47), the objective function
(46) is

w′Φw − 2w′Φα + α′Φα

+ (w′X2 − x̄2,N)Ψ(w′X2 − x̄2,N)′

=w′Φw − 2w′X0c1 + α′Φα

+ (w′X2 − x̄2,N)Ψ(w′X2 − x̄2,N)′

=w′Φw − 2µx0
c1 + α′Φα

+ (w′X2 − x̄2,N)Ψ(w′X2 − x̄2,N)′

=w′Φw + (w′X2 − x̄2,N)Ψ(w′X2 − x̄2,N)′ + C1 ,
(48)

where ,C1 = α′Φα − 2x̄0,Nc1, is a constant that is
independent ofw. The conditional expectation of the
error of a linear predictorw′y under the model is

E{(w′y−x̄0,Nβ0−x̄2,Nβ2)|X} = w′X0β0−x̄0,Nβ0 .

Thus, the sufficient and necessary condition forw′y to
be unbiased for the population mean ofy is

w′X0 − x̄0,N = 0 ,

which is equivalent to (47). Under the constraint (47),
the conditional variance of a linear estimator is

V{(w′y − x̄0,Nβ0 − x̄2,Nβ2)|X}
= w′Φw + (w′X2 − x̄2,N)Ψ(w′X2 − x̄2,N)′ .

Thus, minimizing the objective function (46) subject to
(47) is equivalent to minimizing the conditional variance
of a linear predictor under the restriction for a linear es-
timator to be conditionally unbiased. ¥

4. Construction of a model based design
consistent regression estimator

In the previous section, we obtained the condition for the
BLUP to be design consistent. In this section, we con-
sider the problem of constructing a model based design
consistent regression estimator when condition (14) or
(18) is not satisfied. We call a regression model for which
(14) holds afull model. If (14) does not hold, we call the
model areduced model.

We can not expect condition (14) for a full model to
hold for everyy in a general purpose survey because
Σee will be different for differenty’s. Therefore, given
a reduced model, we search for a good model estimator
under the model (1) in the class of design consistent esti-
mators of the form (4). As we have seen in the previous
section, the estimator of the form (4) is design consistent
if the estimator of the regression coefficient is a design
consistent estimator of a constant.

By (4), the requirement of design consistency is essen-
tially a requirement that the estimated regression func-
tion pass through the design consistent estimator of the

population mean vector. To force the regression through
(x̄1,π , ȳπ), we compute the regression ofy − ȳπ on
x1 − x̄1,π. The transformed regression model for the
sample can be written

(I− Ja′)y = (I− Ja′)X1β1 + (I− Ja′)e , (49)

where X1 = (x′1,1, · · · ,x′1,n)′, (ȳπ , x̄1,π) =
a′(y , X1), a = (a1, · · · , an)′ andai were defined in
(3). The regression estimator of the mean is expressed as

ȳreg =
∑

i∈A

wi yi =:
∑

i∈A

(ai + bi) yi , (50)

wherebi is to be determined. If the estimator is to be
location invariant we require

∑
i∈A wi = 1 or equiva-

lently, ∑

i∈A

bi = 0 . (51)

The restriction that
∑

i∈A wix1,i = x̄1,N becomes

∑

i∈A

bi(x1,i − x̄1,π) = x̄1,N − x̄1,π . (52)

To simplify the expressions, let

b = (b1, · · · , bn)′ , zi = (1,x1,i − x̄1,π) ,

z̄c = (0, x̄1,N − x̄1,π) ,

andZ = (z′1 · · · , z′n)′. Then thebi that give the mini-
mum variance of̂β1 are obtained by minimizing the La-
grangian

b′Σeeb +
p∑

j=1

λj

(
n∑

i=1

bizji − z̄cj

)
(53)

with respect tob. The solution vector is

b′ = z̄c

(
Z′Σ−1

ee Z
)−1

Z′Σ−1
ee . (54)

Thus, the regression estimator (50) withb of (54) is

ȳreg,1 = (a + b)′y = ȳπ + (x̄1,N − x̄1,π)β̂1 , (55)

whereβ̂1 is the second component of

(
β̂0, β̂

′
1

)′
=

(
Z′Σ−1

ee Z
)−1

Z′Σ−1
ee y . (56)

In constructing the regression estimator (50), we ob-
tained design consistency by forcing the regression line
through the design consistent estimator of the population
mean. We can also construct a design consistent estima-
tor by adding a vector satisfying (14) to theX matrix if
the original matrixX does not satisfy (14). This creates
a full model from the original reduced model.
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To describe this approach letz denote the added vari-
able, wherez′ = (z1, · · · , zn)′ satisfies

z = ΣeeLπ . (57)

whereLπ is defined in (14). We will find it convenient
to work with the vector of deviations

zd = z−X(X′Σ−1
ee X)−1X′Σ−1

ee z , (58)

whereX is the original matrix of auxiliary variables with
known population mean vector,̄xN . The vectorzd is
orthogonal in the metricΣee to X. Under this approach
our full model for the sample is

y =Z1βy,Z1
+ e ,

e ∼ (0,Σee) ,
(59)

where
Z1 = (zd , X) .

There are two possible situations associated with this
approach. In the first, the population mean of the added
variable,z̄d,N , is known. In this case, the resulting esti-
mator

ȳreg = z̄1,N β̂y,Z1
, (60)

where
z̄1,N = (z̄d,N , x̄N) ,

and
β̂y,Z1

= (Z′1Σ
−1
ee Z1)−1Z′1Σ

−1
ee y ,

is the best linear, conditionally unbiased predictor under
the full model (59). IfΣee is known and if an equal prob-
ability sample is selected, then the regression estimator
(60) is calculable.

If the population mean of the added variable is not
known, the mean of the added variablezd can be esti-
mated with a design consistent estimator. A design con-
sistent estimator of̄zd,N is

z̄d,π =

(∑

i∈A

π−1
i

)−1 ∑

i∈A

π−1
i zd,i . (61)

Then a regression estimator of the population mean ofy
can be constructed by replacing the unknown mean ofzd

with the estimated mean to obtain

ȳreg,2 = (z̄d,π, x̄N)β̂y,Z1
, (62)

whereβ̂y,Z1
is of (60). The regression estimator (62)

has the form of (55). For the estimator to be location
invariant, we assume the first element ofxi is identically
equal to one and let the matrixX = (Jn,X1).

Theorem 5. The regression estimator of (62) can be
written as

ȳreg,2 = ȳπ + (x̄N − x̄π)β̂y,X , (63)

where

(ȳπ, x̄π) =

(∑

i∈A

π−1
i

)−1 ∑

i∈A

π−1
i (yi,xi) =:

∑

i∈A

ai(yi,xi) ,

ai =


∑

j∈A

π−1
j



−1

π−1
i ,

and

β̂y,X =
(
X′Σ−1

ee X
)−1

X′Σ−1
ee y .

Also, the vector of weights used to define the regression
estimator (63) is

w = a′ + (x̄N − x̄π)
(
X′Σ−1

ee X
)−1

X′Σ−1
ee , (64)

wherea = (a1, · · · , an)′, is identically equal to the vec-
tor of weights defined in (55).

Proof. By constructionZ′1Σ
−1
ee Z1 is block diagonal

with z′dΣ
−1
ee zd as one block andX′Σ−1

ee X as the other
block. Thusβ̂y,X1

is expressed as

β̂y,Z1
=

[
β̂y,zd

β̂y,X

]

=

[(
z′dΣ

−1
ee zd

)−1
z′dΣ

−1
ee y(

X′Σ−1
ee X

)−1
X′Σ−1

ee y

]

=

[
{L′πzd}−1{L′πy − L′πX

(
X′Σ−1

ee X
)−1

X′Σ−1
ee y}(

X′Σ−1
ee X

)−1
X′Σ−1

ee y

]
,

because

z′dΣ
−1
ee zd = L′πΣeeLπ − L′πX

(
X′Σ−1

ee X
)−1

X′Lπ

= L′π
{
ΣeeLπ −X

(
X′Σ−1

ee X
)−1

X′Lπ

}

= L′π
{
z−X

(
X′Σ−1

ee X
)−1

X′Σ−1
ee z

}

= L′πzd .

The regression estimator (62) is

ȳreg = (z̄d,π, x̄N)β̂y,Z1

= z̄d,πβ̂y,zd
+ x̄N β̂y,X

=

(∑

i∈A

π−1
i

)−1

(L′πzd)(L′πzd)−1

×
(∑

i∈A

π−1
i

){
ȳπ − x̄πβ̂y,X

}
+ x̄N β̂y,X

= ȳπ + (x̄N − x̄π)β̂y,X .
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The matrixZ that was used to define the vectorb on (55)
is expressed

Z =
(
Jn X1 − Jnx̄1,π

)

=
(
Jn X1

) (
1 −x̄1,π

0 I

)

=:
(
Jn X1

)
T ,

where

T =
(

1 −x̄1,π

0 I

)
.

By using the inverse of partitioned matrix, the vectorb
in (55) is

b =
(
0 x̄1,N − x̄1,π

)

×
[
T′

(
J′n
X′

1

)
Σ−1

ee

(
Jn X1

)
T

]−1

T′
(

J′n
X′

1

)
Σ−1

ee

=
(
0 x̄1,N − x̄1,π

)
T−1

(
X′Σ−1

ee X
)−1

X′Σ−1
ee

=
(
0 x̄1,N − x̄1,π

) (
1 x̄1,π

0 I

)

× (
X′Σ−1

ee X
)−1

X′Σ−1
ee

=(x̄N − x̄π)
(
X′Σ−1

ee X
)−1

X′Σ−1
ee .

The result follows from (55) and (64). ¥

Thus the regression estimator of the finite population
mean based on the full model, but with the mean ofz
unknown and estimated, is the regression estimator with
βy,x estimated by the generalized least squares regres-
sion of y on x using the covariance matrixΣee. The
estimator is conditionally model unbiased under the re-
duced model containing onlyx if the reduced model is
true. If the coefficient forzd is not zero, the reduced
model is not true. Then the estimator is conditionally
model biased, but the estimator is unconditionally unbi-
ased for the finite population mean because

E
{

E
[
ȳπ + (x̄N − x̄π)β̂y,X

]}

=E
{
x̄πβy,X + z̄d,πβy,zd

+ (x̄N − x̄π)βy,X | F}
.=z̄d,Nβy,zd

+ x̄Nβy,X

(65)

where the approximation is due to the use of the ratio
estimator̄zd,π defined on (61).

Because the variablez is the variable whose omission
from the full model can produce a bias, it seems prudent
to test the coefficient ofz before using the reduced model
to construct an estimator for the population mean ofy.
This can be done using a model estimator of the variance,

V̂
{

β̂y,Z1

∣∣Z1

}
=

(
Z′1Σ̂

−1

ee Z1

)−1

or using the design estimator of variance. See Du
Mouchel and Duncan (1983) and Fuller (1984).
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