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Abstract: and Tepping (1983). Many techniques for robust infer-

Linear models that form the basis for survey regressiorENC€ have been suggested. See Royall (1992), Royall
estimation and the conditions under which the regressiogd Cumberland (1981a, 1981b), and Royall and Herson

estimators are design consistent are reviewed. Model jus§-1973&_" 1973b)'_ )
tification for some commonly used regression estimators  D€Sign consistency has been proposed (Isaki and

is presented. Test for reduced models against design cofrller, 1982; Robinson andégndal, 1983) as a way
sistent models are discussed. of providing protection against model misspecification

in the large sample setting. In this paper, we consider
the problem of constructing estimators with good model
properties, such as model unbiasedness and minimum
The earliest references to the use of regression in sufmodel variance, that are also design consistent.

vey sampling include Jessen (1942) and Cochran (1942). Assume the finite population is a realization from the
Regression in similar contexts would certainly have beersuperpopulation model

used earlier and Cochran (1977, page 189) mentions are-

1. Introduction

gression on leaf area by Watson (1937). Cochran (1942) yn =XyB+exn 1)
gave the basic theory for regression in survey sampling
relying on linear model theory. He showed that the lin- ex ~ (0, Zeen)

ear model did not need to hold in order for the regression, hare
estimator to perform well. He derived an expression for

the O(n~1) bias and arO(n~2) approximation for the v = (o)

variance. He also showed that for the model with re- ey = (1, ,ex)
gression passing through the origin and error variances ) L
proportional tox, the ratio estimator is the generalized Xy = (x1,,xy)"

least squares estimator. and

Brewer (1963) is an early reference that considers lin-
ear estimation using a superpopulation model to deter-
mine an optimal procedure. He was concerned with find\We assume the covariance matk. ,, is a positive def-
ing the optimal design for the ratio estimator and dis-inite matrix. Expressions without the subscript are
cussed the possible conflict between an optimal designsed to denote the corresponding sample quantities, for
under the model and a design that is less model deperexampley = (y1,--- ,y.)" is the vector of sample ob-
dent. See also Brewer (1979). servations.

Various estimators have been proposed for estimating To investigate the large sample properties of certain
a finite population mean under a regression superpopuwestimators, we define sequences of populations, sam-
lation model that postulates a relationship between theles and sampling designs. The set of indices for the
study variable and a set of auxiliary variables. Royall N-th finite population isU, = {1,---,N}, where
(1970, 1976) adapted linear prediction theory to the fi-N = 1,2, - - -. Associated withy-th element of theV-th
nite population situation and suggested the best lineafinite population is a vector of characteristics, denoted by
model unbiased predictor (BLUP) for a finite population y ;. LetFy = {y1x, - ,y~~ } be the set of vectors for
total. Cassel, &ndal and Wretman (1976) ané@dal  the N-th finite population. The population meangpfor
(1980) proposed a generalized regression predictor thahe N-th finite population igj, = N~! Zfll Yin. Let
is asymptotically design unbiased and design consistentd , denote the set of indices appearing in the sample se-
Isaki and Fuller (1982) considered predictors of the redected from the/V-th finite population. The sample size
gression type that are model unbiased and design consiis denoted by .. The sample size,, is strictly less than
tent.Wright (1983) proposed a class of predictors, calledV andn, — oo asN — oo. We assume that samples
QR-predictors, that contains most proposed predictors. are selected according to the probability rife(-).

Inference based on prediction theory is sensitive to Under the specified sequence of populations, samples,
model misspecification, as illustrated by Hansen, Madowand sampling designs, we define a sequence of estimators

X; = (Iila"' 793ik) .
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6, of the population meag, to be design consistent, if where

forall e > 0, ei =Y —X; By -

lim P{|éN—gN|>e\fN}=o, . "

N—oo Proof. Omitted.

where the notation indicates thltth finite populationis - consider the construction of an estimator to meet the
held fixed and the probability depends only on the samyeqyirements of Theorem 1. Let a sample design have
pling design. selection probabilities; and define the sample estimator

. . . . of the mean by
2. Design consistent regression estimators

—1

Under some superpopulation models and designs, the (Grs %) = Zﬂfl Z’/r_l(y- x;)
BLUP constructed under the model is also design consis- oo ca ! ca v ®)

tent. Assume the superpopulation model in which the co-

variance matrix of the errors is a multiple of the identity = Z ai(yi, xi)
matrix and the column of ones is in the column space of e
X v. Without loss of generality, assume the first elemeniyhere
of x; is identically equal to one, and I&t = (1,x1 ;). -1
The regression estimator of the population meag isf a; = Z 77;1 ﬁ;1 i
_ _ = jeA
Yreg = XN/6 . .. .
s _ - (2)  Assume the first element af is identically equal to one.
= Yo+ (Xiy = X1a) By By analogy to (2), consider an estimator of the form
where _ _ _ _ P
Yreg = Y= + (XLN - Xl,ﬂ')ﬁl . (4)

L T R
(yn ) Xl,n) =n ;4 (yl ) XZ) ) Assume
i

(gﬂ'vil,ﬂa/él) - (ngxl,NwBl,N)ptN = OP(bN) ’

~ ~ ~ !/

B=(%.8) =xx) "Xy,

andx; y is the population mean of; ;. See Cochran whereby — 0 asN — oo. Then

(1977, p193). The estimator (2) is the BLUP under the Ureg — Un = U — Un + (Xin — Xl,ﬂ),él

model (1) and is also design consistent if the sample is G+ (Riw — K10)By x + Oy (B2)

selected by simple random sampling. ™~ YUy Ly = ALm)PLn T PN
Many of the samples encountered in practice are more =+ Op(bi) )

complicated than simple random nonreplacement sam- (5)

ples. Theorem 1 gives conditions under which the reynere

gression estimator is design consistent.

I
QD

€ =Y —Unv — (X1, —X1.n N - 6
Theorem 1. Let {F,} be a sequence of finite popu- yi— v — (%, L.x)B, 6

lations, whereFy is a random sample of siz& se-  The population mean of thg of (6) is zero for any3, .
lected from an infinite superpopulation with finite fourth Therefore (4) gives a way to construct a design consistent
moments. Lety; = (y;,x;) be a vector with mean estimator.

g~ = (Un,Xy) for the N-th population. Let a sequence  The estimator (4) is linear iy and can be written

of probability samples be selected from the sequenceg,., = > cawiyi- Regression weights that define a
{Fx~}. Define the regression estimatoraf by regression estimator of the form (4) can be constructed
by minimizing the quadratic objective function

greg = )_(N ﬂ 5
> . , , (w—a)®(w-—a) (7)
whereg is a design consistent estimator of a parameter
denoted by3,,. Then subject to
, _
p lim {(greg_gN) |-7:N}:0 ) . WX ..XN .O 7 . (8)
N—oo wherea is a vector of initial weights an is a positive
if and only if definite matrix. One possibi®e-matrix is a diagonal ma-
trix with the diagonal elements being the initial weights.
p lim {ex|Fy} =0, Possible initial weights are; = N~z * or a; of (3).
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We observed that the regression estimator (2) is théssume there is a sequenge, } such that
BLUP under the regression model with homogeneous

variances and is also design consistent under simple ran-
dom sampling. But, for some models and designs the

estimator that is conditionally best, givéX, need not

X N :EeeL‘n' y

e

(14)

1

whereL, = (ny ",---,m, for every sample form

be a design consistent estimator. Assume the superpop that is possible under the design. Then

ulation model (1). Under the model, the unknown finite
population mean is

(9)

It follows that, under the model, the best linear condi-
tionally unbiased predictor afy, conditional onX, is

yN:iNﬁ+éN .

gBLUP:N |:Z Yi + _an m@ +
€A (10)
JévfnzeeEAEe_el (y - XB) :| )
where . .
B=X=X) Xy, (11)

Xn-pn=(N-n)""!
EeeZXA = E{e;;e'} )
eA:(en+1a"'7€N)/ )

Jy_n is an N — n dimensional column vector of ones,
and A is the set of elements ifi that are not ind. See
Royall (1976). The estimator (10) will be design con-
sistent if the design probabilities, the matii.., and
the matrixX , meet certain conditions. These conditions

(NXy —nXp) ,

<>_<N,é - QN) | Fn = Op<n;a> . (15)

If, in addition
N — EeeJn + EeeAZxJan ’ (16)

wherelJ,, is an-dimensional column vector of ones, for
a sequencégn, } and all possible samples, thgp, . »
of (10) satisfies

(gBLUP - gN) | Frn = Op(n;a) . (17)
Assume there is a sequengg, } such that
XCN = Eee (LTF - Jn) - 2eeAZtJN—n, ) (18)

for every sample front/,; that is possible under the de-
sign. Theny,, » of (10) is expressible as

have been considered by, among others, Isaki (1970)vhere

Royall (1970, 1976), Scott and Smith (1974), Cas-
sel, Sarndal and Wretman (1976, 1979, 1983), Zyskind
(1976), Tallis (1978), Isaki and Fuller (1982), Wright
(1983), Pfefferman (1984), Tam (1986), Brewer, Hanif
and Tam (1988), Montanari (1999) and Gerow and Mc
Culloch (2000). We summarize the results in Theorem
2.

Theorem 2.  Let the superpopulation model be given

by (1). Assume a sequence of populations, designs an

estimators such that

[(gHTvaT) - (gN7XN)} ‘ ‘7:

{Zﬂ— (yirxi) TyN7TxN } ‘fN (12)
=0,(ny%) ,

where ther; are the inclusion probabilitie§T, v, Ty v)

is the total of(y, x) for the N-th population andv > 0.
Let 3 be defined by (11) and Igt3,} be a sequence
such that

—x
N

(B—By) | Fy = 0p(ny®) . (13)

Ysrup = Yur + N_l(N n) (Xan - ic) B8 (19)
= Yur + (XN XHT)
and
(gBLUP yN ‘fw = O ( _&) ) (20)
X, = (N—n)_IZ(wfl -1)x;

i€A

Proof. The sufficient condition for the estimator to be
“design consistent given in Theorem 1 is
leEnoo @N —XnBy ‘ -7'—N) =0 (21)
By assumption (12) and (13), a sufficient condition for
1)is

p&m.@w—imﬂ|E0=O 22)
A sufficient condition for (22) is
Z(yi—xiﬁ) =0, (23)

i=1

for all A with positive probability. By the properties of
the generalized least square estimator of (11),
)X =

(y—Xﬁy 0,
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for every X such thatX'S; ' X is nonsingular. There-

fore, if there is ay,, such that

Z:e_el)('yzv =L, ,

Montanari (1987) introduced thegeneral QR-
predictoras an extension of th@R-predictorof Wright
(1983) and gave conditions under which the general QR-
predictor is design consistent. The general QR-predictor

is
condition (23) is satisfied. By assumptions (12), (13) and

(14),
Xl — Un
= (XN - XHT)B + (gHT - ?jN) - (yHT - XHTB)
=Xy = Xur) By + Uz — Un)
+ (X — Xur) (B - ﬁN)

=0p(ny) -
(24)
If (16) is satisfied,
:UBLUP = |:)_(NB + N_l (J;Eee + ngfnzeeim)
(25)

x5! (v - XB) ]
=% .

Result (17) follows from (24) and (25).
If (18) is satisfied,

0=N"'(y- XB)I X
=N (y = XB) [(Lr —3) ~ S Seeand o]
=N N = n) (3. - %.B)
N (y - XB) B Seeand

It follows thaty ., » Of (10) is

Ysrup :N_l [Zyz + (N - n)gc
P€EA
N ) (R %) )
=Yur + N_l(N - n) (}_(an - }_(c) B
=Yur + (iN - XHT) B .

The error in the predictor i®©),(n,*) because of as-

sumptions (12) and (13). |

Jor = XxB+ N7 Z T (yz - XiB) ; (26)

i€A
where R

B=(X'QX)"'X'Qy ,
andQ isn x n matrix whos€, j)-th element denoted by

gi;- Conditions under which the estimator (26) is design
consistent are

pjim B =By @7
and
(¢ 6 C(WNXN) Y (28)

where

B, = (X, W,X,) ' X, W,yy, ,

C:(Cla"' 7CN)I )

G =1-rm

W, is N x N symmetric matrix whosgi, j)-th entry
is ¢;;m; and C(X) denotes the space spanned by the
columns ofX.

A specification ofX.., may be particularly appro-
priate for two-stage cluster samples, See Royall (1976)
and Montanari (1987). A reasonable model is that in
which there is common correlation among items in the
same primary sampling units and zero correlation be-
tween units in different primary sampling units. That is,
a potential model for theg-th observation in clusteris

Yij = X8 + uij (29)
uij =b; +ei5 ,

b ~ I11(0,07) ,

eij ~ 11(0,02) ,

wheree;; is independent ob;, for all i, j andk. Under
the model (29), the BLUP defined in (10) is a general
QR-predictor with

r= (7’1,"' 77077,) = (Jn + Ee_elzeeAZxJan) P

Theorem 2 gives the conditions under which the bes@nd
linear unbiased predictor is design consistent. Especially, Q=X ,
if (18) is satisfied, the estimator is the regression estimawhere... is a block diagonal matrix in which theth
tor with the coefficient estimated by the generalized leasplock is am; x m; matrix
squares estimator. Theorem 2 also gives a way of con-
structing the model based design consistent estimator. oL, + 0233,
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and m; is the number of sampled elements in clusterand

i. Let a sample of primary sampling units be selected 10Q =X'w-—%" .

by unequal probability sampling design and a simple 20X 0 o

random nonreplacement sample of secondary sampling we multiply (34) byX,®*, multiply (34) by X} & !
units be selected within a selected primary sampling unitand set the results equal to zero, we obtain the linear
Under the specified model and design, the condition forequation

the BLUP of the finite population mean to be design con-

sistent given by Montanari (1987) is equivalent to the {Xéfl’_lxo , X[ X0 } { A }
condition given in (18). Although the two conditions are | X5® 'X, , I+ X,® 'X,¥| | Xow —
equivalent under the specified set up, the equivalence of < %!

.. Xo,r Xo,n
the two conditions does not generally hold. The con- = {/2’ _ 5{/2’ } 5
dition in (18) is easier to check than the condition (28) i w (35)

because we only need the first order inclusion probabil-
ities, the values of auxiliary variables corresponding towhere(Xo -, %2 ) = a'(Xo, X2). Thus, the vector of
sampled elements and the covariance matrix,0fNote ~ weights that minimizes the objective functighis

that condition (28) is a function & ., Q, r; and the first
and the second order inclusion probabilities for elements
in population.

w=a—-® "X, ¥(Xiw — %) ) — &' XA
by
. -1 -1
=a-[®7'X, , & 'X,¥] {X,zw " X,QVJ

3. Mixed model regression estimation X8~ XX 31X ]—1

The regression model with random components has been X5® ' XoW ! + X5® X
heavily used for small area estimation. See Rao (2002). xh o — X}

Royall (1976) and Montanari (1987) used the model for X [ ’ } ’

cluster samples. The model has also been used for mean (36)
estimation in the post stratification setting. See Little

(1993) and Lazzeroni and Little (1998). where

We consider the mixed model
A= Ql{ (Xpr — Xon) — X8 X,

=a + <I>1X[

y =XoB8 + X208, + e, (30) .
_ . x (TP +X,e71X,) (X, —x }
where3, ~ (0, ¥), e ~ (0, ®), X, is ann x [ matrix, ( 2 2) (Ko = %o
Xy is ann x (p — l) matrix, the random vecta8, is
independent o, andg,, is a fixed vector.
The best linear mod(_el unbiased pr_edic_tormfﬁ is Q zxéq)—lxo
w'y, where the vectow is chosen to minimize

and

— XD TIX, (T4 X507 1X,) T X507 1X,
! g — ! ! I
VAWl = x5} = Vi{w'e + (WX, —%2.1)8,} (31) The estimator defined with the vector of weights (36) is

subject to the constraint _ _ _ _ 5
) Yrreg = Yr + (XN - Xﬂ)H ) (37)

w'Xo = Xo,x 32 where

n__ -1 rdH—1
andx, = (Xo ,X2 y) IS the population mean of. If 0=Hy, Xy,
« is a vector of preliminary weights and#« isinthe  and
column space oKX, then the vectow can be obtained

rp—L 1 -1
from the Lagrangean Hy,, = Xo® Xo Xo®  Xo

X,e X, , T4 XX,

/ / S
Q= (W/_ ) ®(w h a) 4/_ (“// X2 = XQ’N?\P (33)  The estimator defined in (37) is a design consistent esti-
X (W'Xy =% n) + 2N (WXo —%on) mator and is the best predictor under the mixed model.
Estimation for the population mean in the present con-
text differs from the situation under the model (29) in that
the population mean dX, is assumed to be known in
10Q estimation under model (30). Thus, in the estimation un-

25w Pw—Pa+X,U(Xyw—x) )+XoX , (34)  der model (30) we are estimating a linear combination of

where is a vector of Lagrangian multipliers. The par-
tial derivatives with respect ta and\ are
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fixed and random effects, while the regression estimatowhere a; = y; — x0y and Qgga,n = Qugyn —
under model (29) is an estimator of fixed effects. Qzo2,v0~. By (44),

To derive the large sample properties of the estimator,
consider a sequence @ . If ¥ ' is increasing at the Quga,y —AxOy =0 .

same rate as the sample sizethe estimator (37) is a .
design consistent estimator of the population mean of The error off in estimatingd  is

Theorem 3. Let{Fy, Ay, Py, Py} beasequenceof 1 -1
populations, samples, and positive definite matrices such® — &~ = <nNwa:> EQQMZW -0y
that

1 ! 1
e %) = (o %] =0y (nah) - (39) () {ay e+

Ny UsN
1
wheren, is the sample size for th&/-th sample and - EQIMGN - ANHN}
(Jn,Xy) is the population mean @f, x). Assume there 3
exists a sequendq.4. » such that — (1wa) (1Qz¢a _ AN9N>
N Ny
N ZBTZ — Qupen] |[Fu =0, (n32) (39 1 1
[ N N Q ¢ ’N}’ N p( N ) ( ) = (Ham/w> (Qw¢a_Qﬂc¢a,N) s
Ny Ny
and (45)
lim N71Q2¢27N =Q.42 , (40) 1 1
N—oo where Q¢ = X'® X, Quyy = X'®@ 'y and

whereZ = (z},---2},), z; = (vi,%x;) andQ.¢. IS @  Quga = Qupy — Queb . By the assumption (39),
positive definite matrix. Assume

1 _1
lim (@] =@ (41) <nNQ“’“ - Q”’“’”) =0 (n*)

N—00

where W is a positive definite matrix. Then, estimator 5449 — 0y = O, n;% because(nN—lew) is

(37) satisfies bounded. The result follows from (39) and (43). W
If &, isfixed or¥, — oo asn — oo, then the esti-
. matoré approaches the weighted least squares estimator
=0, (n?) , and we obtain design consistency .., becaused
(42)  converges to the population analog of the weighted least
square estimator.
where The proof of Theorem 4 is a proof of the assertion that
Ox = [Quoen + A ]_1 Q the_: estimatogrreg define_d in (37) is the best_linear con-
N oo, N SN oPYN ditionally unbiased predictor for the population mean of

g’r’reg - :UN = gﬂ‘ - gN + ()_(N - iﬂ)eN + OP (n;fl)

=H,, Qusyn y under the mixed model.
Hopz,n = Quga,n + Agpn Theorem 4. Consider the mixed model (30). Assume
and that there exists column vector such that
A¢.N:1[0 ’ 0—1] . b = Xyc
’ ny |0, ¥y 0C1
Proof. The estimator (37) is Let .y = W'y, Wherew is the vector of weights that

. minimizes
grreg =Yr+ (}_(N - )_(7r)01\r + ()_{N - )_(71') (0 - eN)
(43) (w—a)®(w—a)+(WwXo—X v )¥(WX2—X2 ),
The population characteristit, is _ (46)
subject to

0N :H;;@NQ-T¢U7N WIXO - )_(O,N =0 ) (47)

=H_ . v [QuéenOn + Qupany + AxOx — AxOy]  wherex, = (%o , X2.v) is the population mean of
=0, + Ht [Quoan — AxOy] x. Theng,..4 is the best linear conditionally unbiased
T, N Toa, ? . _ _
(44) predictor ofxg By + X2, xB5.
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Proof. Under the restriction (47), the objective function population mean vector. To force the regression through
(46) is (X1,x , Y=), We compute the regression gf— g, on

, , , X1 — X1,-. The transformed regression model for the
wew — 2w Pa +a'Pa sample can be written

+ (W/XQ — )_CQ}N)‘I’(W/XQ — )_(2,N)/

=w'®w — 2w'Xyc; + o' Pa (I-Ja')y =(I-Ja")X,8, +(I—Ja')e, (49)
+ (W'Xy — XQ,N)@(W/X_Q — )’(27]\])’ where X; — (Xll,lv L 7X/1,n)/' (Jr » Xigp) =
=w'®w —2u, ¢, + o' P a'(y, Xy),a = (ar, - ,a,) anda; were defined in
+ (WXy — %o ) O (WXy — %o ) (3). The regression estimator of the mean is expressed as
=wdw+ (WX — %X )T (WXy —Xon) +C1 _
( 2 2. ) ¥ 2 2.v) (148) Yreg = Z’wi Yi =: Z(ai +bi) yi (50)
i€EA i€A

where ,C; = o/®a — 2%( yc1, IS @ constant that is
independent ofw. The conditional expectation of the
error of a linear predictow’y under the model is

whereb; is to be determined. If the estimator is to be
location invariant we requirg_;_ , w; = 1 or equiva-

lently,
E{(w'y—%0,vBy—X2,x02)|X} = W' XoB)—%o By - Z b; =0 . (51)
- " €A
Thus, the sufficient and necessary conditionwdy to o © -
be unbiased for the population meanydf The restriction thap ;. , wixi; = X1~ becomes
w'Xo—Xon =0, Z bi(x1; —Xix) =Xin —Xim - (52)
. . . . i€EA
which is equivalent to (47). Under the constraint (47), c
the conditional variance of a linear estimator is To simplify the expressions, let
V{(w'y — %o,xBy — X2,v32)|X} b=y, bn) , zi=(1,%X1; —Xix)
=wow + (WIX2 — )_CQ’N)‘I’(W/XQ — )_(Q’N)/
2c:(O ilN*i17r> ’
Thus, minimizing the objective function (46) subject to
(47) is equivalent to minimizing the conditional variance adZ = (z --- ,z,)". Then theb; that give the mini-
of a linear predictor under the restriction for a linear es-mum variance of3, are obtained by minimizing the La-
timator to be conditionally unbiased. | grangian
. . p n
4. Construction of a model based design b'Seb+ 3 A (3 biz — 7 (53)
consistent regression estimator j=1 i=1

In the previous section, we obtained the condition for theit, respect td. The solution vector is
BLUP to be design consistent. In this section, we con-
sider the problem of constructing a model based design b =z, (Z/EE_;Z)il Y75l (54)
consistent regression estimator when condition (14) or
(18) is not satisfied. We call a regression model for whichThus, the regression estimator (50) witlof (54) is
(14) holds dull model If (14) does not hold, we call the .
model areduced model Uregn = (@+b)'y = + (X1,y —X1.2)8; , (55)
We can not expect condition (14) for a full model to
hold for everyy in a general purpose survey becausewhereg is the second component of
3. Will be different for differenty’s. Therefore, given N .
a reduced model, we search for a good model estimator (ﬂo,ﬂl) =(zx'z) 7'y . (56)
under the model (1) in the class of design consistent esti-
mators of the form (4). As we have seen in the previous In constructing the regression estimator (50), we ob-
section, the estimator of the form (4) is design consistentained design consistency by forcing the regression line
if the estimator of the regression coefficient is a desigrthrough the design consistent estimator of the population
consistent estimator of a constant. mean. We can also construct a design consistent estima-
By (4), the requirement of design consistency is essentor by adding a vector satisfying (14) to tb& matrix if
tially a requirement that the estimated regression functhe original matrixX does not satisfy (14). This creates
tion pass through the design consistent estimator of tha full model from the original reduced model.
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To describe this approach letdenote the added vari-
able, where’ = (24, - , 2,,)’ satisfies

z=3.L. . (57)

whereL, is defined in (14). We will find it convenient
to work with the vector of deviations

zg=z—-X(X'T'X)"'X'® 'z, (58)
whereX is the original matrix of auxiliary variables with
known population mean vectog,. The vectorz, is
orthogonal in the metri&.. to X. Under this approach
our full model for the sample is

y :legy,Zl +e,

e~ (0,3..) , 59)

where
Z1 = (Zd y X) .

where

@W7)_<Tr) = (

-1
2.

i€A

S o wnx) =Y aiyi xi)

i€A €A

-

_ —1
ai= |27

JEA

-1

and
B,x = (X'=)X) ' XEly |

Also, the vector of weights used to define the regression
estimator (63) is

w=a + (Xy — X,) (X’EQ_JX)71 X's!, (64

wherea = (aq,--- ,a,)’, is identically equal to the vec-

There are two possible situations associated with thig,, o weights defined in (55).
approach. In the first, the population mean of the added

variable,z, v, is known. In this case, the resulting esti-
mator X
Yreg = Zl,Nﬁ%Zl ) (60)
where
zl,N = (Zd,N 3 )_(N) )
and
Byz = (Z\3.)2:) ' 72y

is the best linear, conditionally unbiased predictor under_

the full model (59). If¥... is known and if an equal prob-

ability sample is selected, then the regression estimator.

(60) is calculable.
If the population mean of the added variable is not
known, the mean of the added variablg can be esti-

Proof. By constructionZ’ X_'Z, is block diagonal
with z,3 'z, as one block an&X'X_' X as the other

block. ThusB%Xl is expressed as

= B1 z
,6 .- |:AJ7 d
v 6y,X
_ -1 _
(zSccza) 23y

(X' )X) X2y
{Lzg} MLy - LLX (X'S./X) T X'S, ly)
(X' )X) X2y

because

mated with a design consistent estimator. A design con-

sistent estimator of;  is

()

icA
Then a regression estimator of the population mean of
can be constructed by replacing the unknown meat of
with the estimated mean to obtain

(61)

-1
-1
E T Zdi -

i€EA

g’r’eg,2 - ('gd,ﬂ)XN)ﬂy,Zl ) (62)

WhereB%Z1 is of (60). The regression estimator (62)
has the form of (55). For the estimator to be location
invariant, we assume the first elemenigfis identically
equal to one and let the mat& = (J,,, X4).

Theorem 5.
written as

The regression estimator of (62) can be

greg,Q =Y+ ()ZN - xﬂ')By’X y (63)

2,5 2 = L., Ly —L.X (X'S'X) ' X'L,
L {EeeLw X (X'mX) X’Lﬂ}
— L {z X (X'mx) X’Ee_elz}
=Llzq .

The regression estimator (62) is

gr’eg - (Zd,Tra )_(N)/By,Zl

= _d’“ﬁy,zd +5{Nﬁy’X

—1
( 7Ti_1> (Lyza)(Lozq)
1€EA

X

( wi1> {0 = %aByx } +%uB, x
i€A
Ur + (X ¢

- iﬂ)ﬁy,X .

1097



Joint Statistical M eetings - Section on Survey Research M ethods

The matrixZ that was used to define the vectoon (55) 5.  Bibliography

is expressed . L -
P Brewer, K.R.W. (1963). Ratio estimation and finite pop-

Z=(J, Xi—J.X1x) ulation: some results deductible from the assumption of
1 —%ia an underlying stochastic procesaustralian Journal of
=(In Xi) (0 I ) Statistics 5, 93-105.
= (J, Xq)T, Brewer, K.R.W. (1979). A class of robust sampling de-
where signs for large scale surveysournal of the American
T — (1 —x1m> Statistical Association74, 911-915.
—\0 I ‘
B ing the i f bartitioned matrix. th . Brewer, K.R.W., Hanif, M. and Tam, S. M. (1988). How
iny(g;nig € inverse of partiioned matrix, the vector nearly can model-based prediction and design-based es-

timation be reconciled3dournal of the American Statis-
tical Association83, 128—-132.

b=(0 Xinx—Xin)
<[ () ==«
=(0 Xin =)
= ( )

X1
0 Xiv—Xix

)

-1
J X )T} T (%) -1 Cassel, C.M., &ndal, C.E. and Wretman, J.H. (1976).
n 1 X’ ee . . . .
1 Some results on generalized difference estimation and
-1 (X/Eflx)_l X/5—1 generalized regression estimation for finite populations.

< Biometrika 63, 615-620.

PR Y Prediction theory for finite populations when model-
x (X Ve X) X 26_61 based and design-based principles are combiSedn-

=%y — %) (X'Z'X)  X'®) . dinavian Journal of Statistics, 97—106.

1 Xin
0 I > Cassel, C.M., &ndal, C.E. and Wretman, J.H. (1979).

The result follows from (55) and (64). B Cassel, C.M., &mndal, C.E. and Wretman, J.H. (1983).

Thus the regression estimator of the finite populationsome uses of statistical models in connection with t.he
mean based on the full model, but with the meargof NONfespPonse problem._ In: W.G. Madow and I. Olkin
unknown and estimated, is the regression estimator Witlgeds_.),lncomplete Data in Sample Surveysl. 3. Aca-
B,.. estimated by the generalized least squares regreg-em'c Press, New York, pp. 143-160.

sion of y on x using the covariance matriX... The  cochran, W.G. (1942). Sampling theory when the sam-
estimator is conditionally model unbiased under the re—p”ng units are of unequal sizedournal of the American
duced model containing only if the reduced model is  giatistical Associatior87, 199—212.

true. If the coefficient forz, is not zero, the reduced

model is not true. Then the estimator is conditionally Cochran, W.G. (1977).Sampling Techniques3rd ed.
model biased, but the estimator is unconditionally unbi-Wiley, New York.

ased for the finite population mean because
Du Mouchel, W. H. and Duncan, G. J. (1983). Using

E {E [Qw + Xy — f(w),@y,x} } survey weights in multiple regression analysis of strati-
_ _ _ _ fied samplesJournal of the American Statistical Associ-
=E {%xBy x + ZanByzy + (%n =%a)Byx | F} 4400 78 535543,

=Z4,NBy, ., + XnBy x
(65) Fuller, W. A. (1984). Least squares and related analyses

. _ for comples survey designsSurvey Methodology 10,
where the approximation is due to the use of the ratiog;_;1g

estimatorz, . defined on (61).
Because the variableis the variable whose omission Gerow, K. and McCulloch, C.E. (2000). Simultaneously

from the full model can produce a bias, it seems prudentnodel unbiased, design-unbiased estimati@iomet-

to test the coefficient of before using the reduced model rics. 56, 873—-878.

to construct an estimator for the population meany.of

This can be done using a model estimator of the variance;lansen, M.H., Madow, W.G. and Tepping, B.J. (1983).
o = = An evaluation of model-dependent and probability-
%4 {ﬁy@ ]Zl} = (z’lzee Z1) sampling inferences in sample surveydournal of the

American Statistical Associatio8, 776—793.
or using the design estimator of variance. See Du

Mouchel and Duncan (1983) and Fuller (1984). Isaki, C.T. (1970). Survey designs utilizing prior infor-

1098



Joint Statistical M eetings - Section on Survey Research M ethods

mation. Unpublished Ph.D. thesis. lowa State Univer-Statistical Association/6, 924—930.

sity.
Y Royall, R.M. and Herson, J. (1973a). Robust estimation

Isaki, C.T. and Fuller, W.A. (1982). Survey design un- in finite populations I1Journal of the American Statistical
der the regression superpopulation modelrnal of the  Association 68, 880—889.

American Statistical Associatioi7, 89—-96. o
Royall, R.M. and Herson, J. (1973b). Robust estimation

Jessen, R.J. (1969). Statistical investigation of a sampli finite populations II: Stratification on a size variable.
survey for obtaining farm factsowa Agriculture Exper-  Journal of the American Statistical Associati@8, 890—
iment Station Research BulletiB04. 893.

Lazzeroni, L. C. and Little, R. J. A. (1998). Random- Sarndal, C.E. (1980). Om inverse weighting versus
effects models for smoothing poststratification weightsbest linear unbiased weighting in probability sampling.
Journal of Official Statistics14, 61-78. Biometrika 67, 639-650.

Little, R.J.A. (1993). Post-stratification : a modeler's Sarndal, C.E. (1996). Efficient estimators with simple
perspective.Journal of the American Statistical Associ- variance in unequal probability samplingpurnal of the
ation. 88, 1001-1012. American Statistical Associatiof1, 1289-1300.

Montanari, G.E. (1987). Post-sampling efficient Q-R Scott, A. and Smith, T.M.F. (1974). Linear superpopu-
prediction in large-sample surveyiiternational Statis-  lation models in survey and samplin§ankhya, C36,
tical Review 55, 191-202. 143-146.

Montanari, G.E. (1999). A study on the conditional prop- Tam, S.M. (1986). Characterization of best model-based
erties of finite population mean estimatoMetron 57,  predictors in survey samplin@iometrika 73, 232-235.

21-35. Tallis, G.M. (1978). Note on robust estimation infinite

Pfeffermann, D. (1984). Note on large sample proper-PopulationsSankya C40, 136-138.
ties of balanced sample3ournal of the Royal Statistical

Society 46, 38-41. Watson, D. J. (1937). The estimation of leaf area in field

crops.Journal of the Agricultural Scienc@7, 474-483.

Rao, J. N. K. (2002)Small area estimation : Theory and

Methods Wiley, New York. Wright, R.L. (1983). Finite population sampling with

multivariate auxiliary informationJournal of the Amer-
Robinson, P.M. and 8ndal, C.E. (1983). Asymp- ican Statistical Associatiorv8, 879-884.
totic properties of the generalized regression estimato

in probability samplingSankhya Series.B5, 240-248. Eysklnd, G. (1976). On canonical forms, non-negative

covariance matrices and best and simple least squares

Royall, R.M. (1970). On finite population sampling the- linear estimators in linear model&nnals of Mathemati-
ory under certain linear regression moddiometrika ~ cal Statistics 38, 1092-1109.
57, 377-387.

Royall, R.M. (1976). The linear least squares prediction
approach to two-stage samplingournal of the Ameri-
can Association71, 657-664.

Royall, R.M. (1992). Robust and optimal design under
prediction models for finite populationSurvey Method-
ology. 18, 179-185.

Royall, R.M. and Cumberland, W.G. (1981a). An em-
pirical study of the ratio estimator and estimators of its
variance. Journal of the American Statistical Associa-
tion. 76, 66—77.

Royall, R.M. and Cumberland, W.G. (1981b). The finite
population linear regression estimator and estimators of
its variance, an empirical studyournal of the American

1099



	Return to Main Menu
	=================
	Search CD-ROM
	================
	Next Page
	Previous Page
	=================
	Program book
	Table of Contents
	=================
	Full Text Search
	Search Results
	Print
	=================
	Help
	Exit CD



