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1. INTRODUCTION

Sampling units independently at each draw from a
frame can be achieved using Bernoulli or Poisson
sampling. The use of Bernoulli sampling implies that
the probability of selection () is constant for each
draw, whereas Poisson sampling implies that the
probability of selection differs at every draw,
normally being proportional to the size measure of
the unit being selected. Estimators and associated
variances can be of a Horvitz-Thompson type.
However, auxiliary datain the form of population
counts or x-variables can be used advantageously to
improve the efficiency of the estimator. The well-
known Hajek estimator is such an example.

In the case of Bernoulli sampling, it will always have
avariance that is lower than the one corresponding to
the Horvitz-Thompson estimator. However, thisis
not always the case with Poisson sampling.
Thompson and Sigman (2000) presented cases from a
simulation study where the Hg ek estimated variance
exceeded the Horvitz-Thompson given a high
correlation between probability of selection (1) and
the variable of interest (yi). Other possible estimators
include the Brewer estimator and the optimal
regression estimator

In this paper, we study the properties of the Hgjek,
Brewer, and optimal regression estimators. We
provide conditions that determine as to which
estimator has the smaller population variance. These
estimators and their associated variances are
numerically compared using data from the Industrial
Research and Development Survey.

2. COMPARING POPULATION VARIANCES
BETWEEN THE HORVITZ-THOMPSON
ESTIMATOR AND THE HAJEK
ESTIMATOR

Let U be the population of interest, and s the resulting
sample. For Poisson sampling, Hgjek (1964), the

sample sis selected by carrying out N binomial trialsto
determine whether each unit in the population isto be
included in the sample or not. The Horvitz-Thompson
estimator of total is v, =" (y, /z,). Auxiliary
information such as population counts can be used to

improve the efficiency of \?HT , resulting in a number of

estimators other than \?HT . One such estimator is the Hgjek
estimator. Itisgiven by v, =(N/N )Y, , where

HT !

N = Zs (1/x, ). Theform of this estimator is the well-

known ratio-type. The associated population variances
with the H§ ek and Horvitz-Thompson estimators are

respectively:

V)= X, dlve-% 7
V(YAHT)=2J B Ve

where ¢= (1/m) - 1andy, =(3, y) /N

and

Result 1. Assumethat y, > 0. Then, the population

variance of \?HAJ and \?HT respect the following
conditions:

Vv (?HAJ )<V (?HT) ' Zzuﬁkyk

(i) v (\A(HAJ )2V (\?HT) otherwise.

Notethatif y, <0, then V (Vi )<V (V) if

22 A Y
Y

Proof: If V (\?HAJ)<V (\?HT) , then we have that
S o -2y Y+ )<Y, o ¥

orz ¢k
\ ZU¢I< <22u ¢k Yie:

L —2Y,)<0. Theresult follows, that is,
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We assume from hereon that y, > 0.

In the case of Bernoulli sampling V (Y, ( HAJ)<V (\?HT).
Thisfollows from result 1. Sncegbk (N-n)/n, we
have that 22,0 _ 20, [IN—ninly, o This
U U
s >, (N=n)/n
impliesthat V (\?HAJ )<V (\?HT ) We next construct
two examplesto illustrate result 1.

Example1: Let &, —n 2 fork= 1,2 ..,N1LWe

na(N —1)
N
ZU z, =n. Thebounds of athat guarantee

havethat 7 —n- (1 a+ 2 j because
N

O< 7Z'k<lare N(n_1)<a< N
n(N-1) N-1

forl<n<N.

DefineD, = (ﬁ—l) andD, = N
na n(N-Na+a)

Then

(N-1)D, + D, (1)

dub =
Z OV =

o )2V V), then

ZZJ A Yi
D%

Expression (3) is an inequality, we can solvefor "a"
by expressing it as an equality. That is, substituting
(1) and (2) into (3), we obtain

and

NV, =Yy )+D,y, @)

It v (Y,

©)

_ _.D/(NJ, -y )+D, y
:2 1 U N 2 N 4
Yu D, (N-1)+D, @
We solvefor " a" using:
2[D1(N yu —Yun )+ DZyN] (5)

-Yu [Dl(N _1)+ Dz]: 0

Equation (5) isaquadraticin"a", and itstwo

~B-VB2-4AC 4q
2A

—B+VB’-4AC \here A= n(N

2A

solutions are a, =

_1)yu !

2:
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B=N[2y,-(N+n)y,].and C = N[(N +1)y, -2y, ]-
If “a@” iscontained in the closed interval, [a,,a,], then
v > ZZ DY , implying that V(\?HAJ) > V(\?HT). If

b =2
k

“a” isnot contained intheinterval [a,,a,], then

m implying that V(\?HAJ) < V(\?HT).

k

U

Example 2 The variable of interest yx and the inclusion
probability 7, are normally linked viaa simple regression
model of the form yy = by 7 + by + €, . We have that

V(Y )< v( )lf the following conditions hold:
(i) by < 0and by > 0; (i) E, (g )=0; and

(iii) Cov, (¢,,&,)=0.

Proof: Using the above conditions (ii) and (iii), the slope
b, and intercept b, are respectively:

_ G (Y8 and b, =y, —b,7z, , where
Cov, (7. 9,)

7, =n/N . SinceE, (g, )= 0 and Cov, (¢,,6,)=0,

1

we have that y, :%+b0, and

2>, 4V 2b(N-n)
P DI

Recall the Cauchy -Schwarz inequality is

(2, % J <[5, %23, vi )| Using this inequality
we have that (¥, 1" < HZ“ n_lkJ(ZU z, )} . This

implies that N(Nn—n)sZquk :(ZuﬂlJ‘N' Hence
k

+2b,"

2(N-n)_2n,

2% N

Sinceb; <0and by > 0, 2y, SM+2b0,and
0

o) <V ().

We next provide anumerical illustration of result 1. Let
the population size be N=100, and the sample size n=10,
Yy, =15and yy = 964. Thetwo solutionsto equation 5

area; = —2.84843 and a, = 0.97638. Notethat ais
bounded by (0.90,1.01) to guarantee al 7 are between

zero and one. ForV(\?HAJ) > V( ) (when N =100,

from Result 1 it follows that V (\A(H
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n=10, y, =15, and yy =964), choose a in the range

(0.90,0.97638] . When ais 0.90, thereis one unit
selected with probability one (7 = 1) and the
remaining unitsis a Bernoulli sample. The reason
thatV(\?HAJ ) > V(\?HT ) is because yy is used for the
computation of y;, in the function g(a).

D, (N ¥y —Yu)+D, vy
D, (N-2)+D,
versus“a” isgivenin Figure 1.

Theplot of g(a)=2
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Figure 1: Plot of g(a) versusa

Figure 1 covers awider range of a than constraints
allow only so that the reader can see what the shape
of the function g(a) looks like. There are two vertical
asymptotes and the horizontal asymptoteis at

g(a)= Zyu :

3. COMPARING POPULATION VARIANCES
BETWEEN THE HORVITZ-THOM PSON
ESTIMATOR AND THE BREWER'S
ESTIMATOR

Denote as a, as an indicator variable taking the value

one if the k-th unit is selected into the sample, and
zero otherwise. The realized sample isthen

m=Y &, wherem < N. The expected sample

sizeis n= ZU 7, . An alternative estimator to the

Hajek estimator is Yoy = (0/M) Y, , givenin

Brewer and Hanif (1983). Its population variance is

2

-~ N _

V(YBREW)z ZU Ty (1_7[k )[:;_k__YUj

k

We next provide conditions when this varianceis
greater or smaller than the one associated with the
Horvitz-Thompson estimator.

Result 2: The population variance of \?BREW and \?HT
respect the following conditions:
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ZHZ 1 ﬂ'k Yy

() V( BREW)<V( )If Yu < |\|(n—zU V)
~ 2 1-7)y«

(ii) V( BREW)>V( HT) iy, 2 rlll%—zu”ﬂk;/

Proof: If V(\?BREW)<V(A ) then we have that

« N _
ZU ”k(l_”k)[;l__)/uj <Z o Ve
N2 _, 2N _
:Zu |:nzyuﬂ-k(1_ﬂ.k)_nyU(l_ﬂ-k)yk:|<o

N? _ 2N _
=ZU |:nsz”k(1_7[k)_n(1_ﬂ-k)yki| Yo <0

Therefore, VV (Vmny )<V (Y, ) implies that
N? _ 2N
TYU Zu s (1_7[k)<TZU(1_7[k)yk - Hence

Weha!\/ethaty <2n2u - ”k)yk.

N(n- ZU 77)
Once more for Bernoulli sampling we have that
\Y% (YBREW)<V( HT), because 7, =n/ N and

ZI’IZ‘M (1_77k)yk_ o
N(n->, 77) =2

We next construct two examplesto illustrate result 2.

Example 3: Using the same pattern of 7, valuesgivenin

example 1, the population variances of the Horvitz-
Thompson and Brewer’s estimator are equal when:

g n (N na)yu — I’](l— a) Yn

o) o]

Once more, thisis aquadratic equation in thea's, where
A= _nzN(N _1)% »B= ZnZN(N Yo - yN)’ and

C =-nN[N(n+1)y, —2ny, |- Let N=100, n=10,

Yy, =15and yy = 964. The two solutionsto y,, = g(a) are
a, = -0.2025 and & = 0.9244. For V (Ve )>V (Vs ),
(when N=100, n=10, y,, =15and yy = 964) choose ain
the range (0.90,0.9244]

Plotting
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(N na)yu — n(l_ a) Yn

s RLe |

versus“a”’ isgivenin Figure 2.

9(a) =2

Figure 2 also covers awider range of a than
congtraints allow only so that the reader can see what
the shape of the function g(a) looks like. There are
two vertical asymptotes and the horizontal asymptote
isatg(a) =0.
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Figure 2: Plot of g(a) versusa

Notethat if a= 1, i.e. Bernoulli Sampling, then the
Hgjek and Brewer estimators always have lower
variances and 1 is always within the congtraints of a.
One can choose aset of (N, n, y, , and yy) such that

the Horvitz-Thompson estimator will always have
higher variance, i.e. the solutions of afor y, = g(a)

fall outside the congtraints of a. Example: N = 100,
n=10, y, = 20and yy = 964.

Example 4: Assume that the model linking the
variable of interest yy and the inclusion probability 7

iSYk=b17+ o+ €. Then V(YABREW) < V(YAHT) if
the following conditions hold: (i) by > 0; and
(i) E, (e )=0; and (iii) Cov, (7,6 )=0.

Note that thisis aweaker condition that the one given
in example 2 for the H4 ek procedure.

Proof: Using the above conditions (ii) and (iii) the
slope by and intercept by are
bl_ COVU(yk'ﬂ-k) and b = yu blﬂ'u .
o5 (7)
Conditions (ii) and (iii) respectively imply that
9, = 2N 41, and, that
N
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2n 1 T —_n?
Z K yk:2m+2b Nn—n

N(n-Y, 7{) N "°Nn-NY 7}

Using the Cauchy-Schwarz inequality

2=, 17 f <3, 12)(, 72)=N(>, #2)

Nn—n?
Nn—NZUﬂf
2nzU a-=,) Vi
N(n- ZU 77)

4. COMPARING POPULATION VARIANCES
BETWEEN THE HORVITZ-THOM PSON
ESTIMATOR AND THE OPTIMUM REGRESSION
ESTIMATOR

Hence it follows that >1-Sinceby >0,

then 2y,

So far we have only used counts as auxiliary data.
Assume that the data {(x, , y, ), ke s} are observed,

where x, isthevalue for unit k. The population total
X = Z , X Of that variableis assumed to be known
from areliable source. The GREG estimator of Yis

Yores = Z s W O Vi where
’ ’ -1
gk=1+(x_;<m){z u} X and
G Cy

w, =1/ m, . The stetistician specifies the choice of c, .
Sérndal (1996) discussed various possible values of ¢, at
length. Deville and Sérndal (1992) justified the estimator
\?GREG asfollows. New weights w, are generated as close
as possible to the basic sampling weights w, , subject to
the calibration constraint W, X, = X . The new
weights (calibration weights) are given as W, =w, g, .
when the minimized distance is given by

2. ¢ (W —W,)/w, . Theform of GREG for this

distance measure can alternatively be expressed as:
YAGREG=X,é+ZSWk(yk_X; é) (7)
wherel_3)=(zswk X, x’k/ck)lzswk X, Vi /€, -

For Poisson sampling, the population variance of \?GREG
is given by V( GREG) D, 0 e wheree =y, —x; B
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-1
’
X, X X .
k k) ZU X Y isthe census
Ck

and B :[ZU .

regression vector. Thompson and Sigman (2000)
presented results from their smulation study that

showed thatV (Vg )= 3 w0, & , with
& =V, — X B isvery strongly negatively biased.
Another alternative solution isto use the GREG to

obtain the post-stratified version of the H§ ek
estimator. Tothisend, assumethat N b is known for

sub-populations U ; of the universe U, and that

p
JU,=U,whereU U =9 if p£p’. The
p=1

post-stratified Hgjek estimator is given by:
P N
,\—p ¥4
N, Zsp Yi ! 7y

where N, =Zspl/ﬂ'k ,and s, =snU . The

Yhias post
p=1

population variance of \A(HAJ,Posr isgiven by:
\Y (YAHAJ,POST)zz; Zup%(yk - YUP )2 .
Notethat e =y, — ¥, ,wherey, => vy /N,.

We can guarantee that the population variance
associated With Yy, pogr Will be smaller than the one

associated with Y,,; if

Z zup¢k(yk _yup)2 <z Zup¢kyf
p=1 p=1

. . P P
implyingthat 3 3 6,55, <23 3, 4%, O

p=1 p=1
p=1, .., P.

Sérndal (1996) proposed the design optimal version
of Ygree - FOr this case, it can be shown that

minimising the variance of \?GREG yields the optimal
estimator \?OPT . Theform of this estimator is

YOPT =x’ BOPT +z s W (yk - Xl,< BOPT)

~ L\
where B =(stk¢k X Xk) stk¢k Xy Y-
Supposethat T, =nz, /Y. 7z where z isasize

measure specified for each ke U . Sérndal (1996)
showed that:
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V(YAOPT)zv(YAHT)_ B,OPT(ZS¢k Xy XileOW SV(YAHT)

where Bopr =(ZU B X, XLVZU% Xie Y+
The optimal case that corresponds to the count is obtained
by setting x, =1 for ke U . Thisyields
YAOPT =N éop'r + z s Wk (Yk - éOF’T)

=2 WY+ (N -2 ka)éopT
D0 Wil Vi

Zu Wi &,
Once more, if post-stratified counts are available, then the

optimal count estimator can be suitably modified to
account for them.

where éop'r =

5.EMPIRICAL INVESTIGATIONS USING DATA
FROM THE INDUSTRIAL RESEARCH AND
DEVELOPMENT SURVEY

The Industrial Research and Development (R& D) survey
is acompany survey conducted annually and collects,
among other things, information on R& D expenditures by
types of R&D, by industry groupings, and by state. The
frameis split-up into some certainty strata, some random
sampling strata, and some non-certainty unequal
probability strata. We focused our concentration on the
latter. Each stratum was an industry grouping where
measures of size x, were assigned to each company,
(sampling unit). The measures of size were calculated by
using regression models. Prior year total R& D was the
dependent variable and payroll was the independent
variable. Vauesof m, were originally assigned
proportional to X, but some values of 7 were changed to
meet the minimum probability requirement. We also only
looked at one variable of interest, total R&D.

If one wereto look at the population and substitute x, for
the y, then almost all the time the Hgjek estimator would
have higher variance than the H-T estimator and almost
all the time the Brewer estimator would have lower
variance than the H-T estimator. What we then decided
to do wasto look at the sample variances of these
estimators given real datafrom that survey. Again we
remind the readers that we focused only on the non-
certainty unequal probability strata.

There were 45 industry estimates of total R& D where the
sample variance was greater than zero. Figure 3 shows a
histogram where the horizontal axisisthe percent change,
rounded to nearest 10%, in the sample variance of the
H4jek estimator to the H-T estimator and the vertical axis
is the number of estimatesthat fall within the labeled
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range. The range goes from a’50% reduction in
variance to a 138% increase in variance.

Figure 3: Percent change in H§ ek Estimator
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Figure 4 is the corresponding histogram for the
Brewer estimator. The range goes from a 50%
reduction in variance to a 24% increase in variance.
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Figure 4: Percent change in Brewer Estimator

All but two sample variances of the Brewer estimator
are lower than the sample variances of the H-T
estimator.

Figure 5 is the corresponding histogram for the
GREG estimator. The range goes from a 99%
reduction in variance to a zero difference. The value
of B that was chosen, for calculation purposes,

Was B, -
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Figure 5: Percent change in GREG Estimator

As afinal note, there were:

3 estimates where V (V,,,, )<V (Vyre )
9 estimates where V (¥, )<V (v,

oPT )’ and
13 estimates where Vv (\?BREW)<\7 (\? )

OPT

6. CONCLUSION

The choice of estimator between Horvitz-Thompson,
Hgjek, and Brewer depend on the distribution of
population of yx and 7. If y, and 7 are negatively
correlated, then V,,,, is better than Y, , whileif by >0

then Y, is better than Y, . The best estimator,

BREW
however, in terms of variance reduction, isthe optimal

regression estimator V. .
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