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1. INTRODUCTION 
 
Sampling units independently at each draw from a 
frame can be achieved using Bernoulli or Poisson 
sampling. The use of Bernoulli sampling implies that 
the probability of selection (Bk) is constant for each 
draw, whereas Poisson sampling implies that the 
probability of selection differs at every draw, 
normally being proportional to the size measure of 
the unit being selected. Estimators and associated 
variances can be of a Horvitz-Thompson type. 
However, auxiliary data in the form of population 
counts or x-variables can be used advantageously to 
improve the efficiency of the estimator. The well-
known Hájek estimator is such an example. 
 
In the case of Bernoulli sampling, it will always have 
a variance that is lower than the one corresponding to 
the Horvitz-Thompson estimator. However, this is 
not always the case with Poisson sampling. 
Thompson and Sigman (2000) presented cases from a 
simulation study where the Hájek estimated variance 
exceeded the Horvitz-Thompson given a high 
correlation between probability of selection (Bk) and 
the variable of interest (yk). Other possible estimators 
include the Brewer estimator and the optimal 
regression estimator 
 
In this paper, we study the properties of the Hájek, 
Brewer, and optimal regression estimators. We 
provide conditions that determine as to which 
estimator has the smaller population variance. These 
estimators and their associated variances are 
numerically compared using data from the Industrial 
Research and Development Survey. 
 
2. COMPARING POPULATION VARIANCES 

BETWEEN THE HORVITZ-THOMPSON 
ESTIMATOR AND THE HÁJEK 
ESTIMATOR  

 
Let U be the population of interest, and s the resulting 
sample.  For Poisson sampling, Hájek (1964), the 

sample s is selected by carrying out N binomial trials to 
determine whether each unit in the population is to be 
included in the sample or not.  The Horvitz-Thompson 
estimator of total is ( )∑=

s kkHT yY π/ˆ . Auxiliary 

information such as population counts can be used to 

improve the efficiency of HTŶ , resulting in a number of 

estimators other than HTŶ . One such estimator is the Hájek 

estimator. It is given by ( ) HTHAJ YNNY ˆˆ/ˆ = , where 

( )∑=
s kN π/1ˆ . The form of this estimator is the well-

known ratio-type.  The associated population variances 
with the Hájek and Horvitz-Thompson estimators are 
respectively:  
 
 ( ) ( )∑ −≈

U UkkHAJ yyYV 2ˆ φ  

and 
 ( ) ∑=

U kkHT yYV 2ˆ φ   

 
where Nk = (1 /Bk) ! 1 and ( ) Nyy

U kU /∑= . 

 
Result 1: Assume that 

Uy  > 0. Then, the population 

variance of HAJŶ  and HTŶ  respect the following 
conditions:  

(i) ( ) ( )HTHAJ YVYV ˆˆ < , if 
∑

∑<
U k

U kk

U

y
y

φ
φ2   

(ii) ( ) ( )HTHAJ ŶVŶV ≥ otherwise. 
 

Note that if 
Uy  < 0, then ( ) ( )HTHAJ YVYV ˆˆ < if 

∑

∑>
U k

U kk
U

y
y

φ
φ2

. 

 

Proof:  If ( ) ( )HTHAJ YVYV ˆˆ < , then we have that  
 

( ) ∑∑ <+−
U kkU UUkkk yyyyy 222 2 φφ   

 
or ( ) 02 <−∑U kUk yyφ . The result follows, that is,  

kU kU kU yy ∑∑ < φφ 2 . 
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We assume from hereon that 
Uy  > 0. 

 

In the case of Bernoulli sampling ( ) ( )HTHAJ YVYV ˆˆ < . 

This follows from result 1. Since Nk = (N!n) / n, we 

have that ( )[ ]
( ) UU

U

U k

U k

U kk
yy

nnN

ynnNy
>=

−
−

=
∑

∑

∑

∑
2

/

/22

φ
φ . This 

implies that ( ) ( )HTHAJ ŶVŶV < .  We next construct 
two examples to illustrate result 1. 
 

Example 1: Let 
N

a
nk =π  for k = 1, 2, …, N-1. We 

have that ( )







 +−=−−=
N

a
an

N

Nna
nN 1

1π  because 

n
U k =∑ π .  The bounds of a that guarantee 

0 < Bk < 1 are ( )
( ) 11

1

−
<<

−
−

N

N
a

Nn

nN  for 1 < n < N. 

 

Define 






 −= 11 na

N
D and ( ) 








−

+−
= 12 aNaNn

N
D . 

Then  
 

( )∑ +−=
U k DDN 211φ     (1) 

and  
( ) NU NUkk yDyyNDy∑ +−= 21φ   (2) 

 

If ( ) ( )HTHAJ YVYV ˆˆ ≥ , then  
 

∑

∑≥
U k

U kk
U

y
y

φ
φ2     (3) 

 
Expression (3) is an inequality, we can solve for "a" 
by expressing it as an equality. That is, substituting 
(1) and (2) into (3), we obtain  
 

( )
( ) 21

21

1
2

DND

yDyyND
y NNU

U +−
+−

=   (4) 

We solve for " a " using: 
 

( )[ ]
( )[ ] 01

2

21

21

=+−−
+−

DNDy

yDyyND

U

NNU  (5) 

 
Equation (5) is a quadratic in "a", and its two 

solutions are 
A

ACBB
a

2

42

1

−−−=  and 

A

ACBB
a

2

42

2

−+−= , where ( ) UyNnA 1−= , 

( )[ ]UN ynNyNB +−= 2 , and ( )[ ]NU yyNNC 21 −+= . 

If  “a” is contained in the closed interval, ],[ 21 aa , then 

∑

∑≥
U k

U kk
U

y
y

φ
φ2 , implying that ( ) ( )HTHAJ YVYV ˆˆ ≥ . If  

“a” is not contained in the interval ],[ 21 aa , then 

∑
∑<

U k

U kk

U

y
y

φ
φ2  implying that ( ) ( )HTHAJ YVYV ˆˆ < .  

 
Example 2 The variable of interest yk and the inclusion 
probability Bk are normally linked via a simple regression 
model of the form yk = b1Bk + b0 + ke . We have that 

( ) ( )HTHAJ ŶVŶV <  if the following conditions hold: 

(i) b1 < 0 and b0 > 0; (ii) ( ) 0=kU eE ; and 

(iii) ( ) 0, =kkU eCov φ . 

 
Proof: Using the above conditions (ii) and (iii), the slope 
b1 and intercept b0 are respectively:  

),(

),(
1

kkU

kkU

Cov

yCov
b

φπ
φ

=  and 
UU byb π10 −= , where 

NnU /=π  .  Since ( ) 0=kU eE  and ( ) 0, =kkU eCov φ , 

we have that 0
1 b
N

nb
yU += , and 

( )
0

1 2
22

b
nNby

U kU k

U kk +−=
∑∑

∑
φφ

φ . 

 
Recall the Cauchy -Schwarz inequality is 

( ) ( )( )[ ]∑∑∑ ≤
U kkUkkU

yxyx 222
. Using this inequality 

we have that ( ) ( )



















≤ ∑∑∑ kUU

k
U

π
π
1

1
2

. This 

implies that ( )
N

n

nNN
U

k
U k −








=≤−
∑∑ π

φ 1 .  Hence 

( )
N

nnN

U k

22 ≤−

∑ φ
.  

Since b1 < 0 and b0 > 0, 
( )

0
1 2

2
2 b

bnN
y

U k
U +

−
≤
∑ φ

, and 

from Result 1 it follows that ( ) ( )HTHAJ ŶVŶV < .  

 
We next provide a numerical illustration of result 1.  Let 
the population size be N=100, and the sample size n=10, 

15=Uy and yN = 964.  The two solutions to equation 5 

are a1 . !2.84843 and a2 . 0.97638. Note that a is 
bounded by )01.1,90.0(  to guarantee all Bk are between 

zero and one.  For ( ) ( )HTHAJ YVYV ˆˆ ≥ , (when N =100, 
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n =10, 15=Uy , and yN =964), choose a in the range 

]97638.0,90.0( .  When a is 90.0 , there is one unit 

selected with probability one (BN = 1) and the 
remaining units is a Bernoulli sample. The reason 

that ( ) ( )HTHAJ YVYV ˆˆ ≥  is because yN is used for the 

computation of 
Uy  in the function g(a). 

 

The plot of 
( )

( ) 21

21

1
2)(

DND

yDyyND
ag NNU

+−
+−

=  

versus “a” is given in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
            Figure 1: Plot of g(a) versus a 
 
Figure 1 covers a wider range of a than constraints 
allow only so that the reader can see what the shape 
of the function g(a) looks like.  There are two vertical 
asymptotes and the horizontal asymptote is at 

Uyag 2)( = . 

 
3. COMPARING POPULATION VARIANCES 
BETWEEN THE HORVITZ-THOMPSON 
ESTIMATOR AND THE BREWER'S 
ESTIMATOR  
 
Denote as ka as an indicator variable taking the value 
one if the k-th unit is selected into the sample, and 
zero otherwise. The realized sample is then 

∑=
U kam , where m # N.  The expected sample 

size is ∑=
U kn π . An alternative estimator to the 

Hájek estimator is ( ) HTBREW YmnY ˆˆ = , given in 
Brewer and Hanif (1983). Its population variance is 

( ) ( )∑ 









−−≈

U U
k

k
kkBREW y

n

Ny
YV

2

1ˆ
π

ππ  

We next provide conditions when this variance is 
greater or smaller than the one associated with the 
Horvitz-Thompson estimator.  
 

Result 2: The population variance of BREWŶ  and HTŶ  
respect the following conditions:  

(i)  ( ) ( )HTBREW ŶVŶV < if 
( )

)(

12
2
kU

kkU
U

nN

yn
y

π
π

∑

∑
−

−
< . 

 

(ii) ( ) ( )HTBREW ŶVŶV ≥  if 
( )

)(

12
2
kU

kkU
U

nN

yn
y

π
π

∑

∑
−

−
≥ . 

 
Proof:  If ( ) ( )HTBREW YVYV ˆˆ < , then we have that 

( )

( ) ( )

( ) ( ) 01
2

1

01
2

1

1

2

2

2
2

2

2

2
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−−−=

<







−−−=
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Therefore, ( ) ( )HTBREW YVYV ˆˆ <  implies that 

( ) ( )∑∑ −<−
U kkkkUU y

n

N
y

n

N πππ 1
2

1
2

2

. Hence 

we have that ( )
)(

12
2
kU

kkU
U nN

yn
y

π
π

∑

∑
−

−
< . 

Once more for Bernoulli sampling we have that 
( ) ( )HTBREW YVYV ˆˆ < , because Bk = n / N and  

 
( )

U
kU

kkU y
nN

yn
2

)(

12
2

=
−

−

∑

∑
π

π . 

 
We next construct two examples to illustrate result 2. 
 
Example 3: Using the same pattern of kπ values given in 
example 1, the population variances of the Horvitz-
Thompson and Brewer’s estimator are equal when: 
 

( )

( )
22

11

)1(
2
















 +−−






−−

−−−=

N

a
an

N

na
Nn

yanynaN

N

n
y NU

U

  

 
Once more, this is a quadratic equation in the a’s, where 

( ) UyNNnA 12 −−= , ( )NU yyNNnB −= 22 , and 

( )[ ]NU nyynNnNC 21 −+−= . Let N=100, n=10, 

15=Uy and yN = 964. The two solutions to )(agyU = are 

a1 . !0.2025 and a2 . 0.9244. For ( ) ( )HTBREW YVYV ˆˆ > , 

(when N=100, n=10, 15=Uy and yN = 964) choose a in 

the range ]9244.0,90.0(  
 
Plotting 

-60

-40

-20

0

20

40

60

80

-20 -10 0 10 20 30a

g(a)

Uy

Joint Statistical Meetings - Section on Survey Research Methods

1446



 

( )

( )
22

11

)1(
2)(
















 +−−






−−

−−−=

N

a
an

N

na
Nn

yanynaN

N

n
ag NU  

versus “a” is given in Figure 2. 
 
Figure 2 also covers a wider range of a than 
constraints allow only so that the reader can see what 
the shape of the function g(a) looks like.  There are 
two vertical asymptotes and the horizontal asymptote 
is at g(a) = 0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
                    Figure 2: Plot of g(a) versus a 
 
Note that if a = 1, i.e. Bernoulli Sampling,  then the 
Hájek and Brewer estimators always have lower 
variances and 1 is always within the constraints of a.  
One can choose a set of (N, n, 

Uy , and yN) such that 

the Horvitz-Thompson estimator will always have 
higher variance, i.e. the solutions of a for )(agyU =  

fall outside the constraints of a.  Example: N = 100, 
n = 10, 20=Uy and yN  = 964. 

 
Example 4: Assume that the model linking the 
variable of interest yk and the inclusion probability Bk 

is yk = b1Bk + b0 + ke . Then ( ) ( )HTBREW YVYV ˆˆ <  if 

the following conditions hold: (i) b0 > 0; and 
(ii) ( ) 0=kU eE ; and (iii) ( ) 0, =kkU eCov π . 

 
Note that this is a weaker condition that the one given 
in example 2 for the Hájek procedure. 
 
Proof: Using the above conditions (ii) and (iii) the 
slope b1 and intercept b0 are  

)(

),(
21

kU

kkU yCov
b

πσ
π=  and UU byb π10 −= . 

 
Conditions (ii) and (iii) respectively imply that 

0
1 b
N

nb
yU += , and, that 

( )
∑∑

∑
−

−+=
−

−

U kkU

kkU

NNn

nNn
b

N
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nN
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2

2

0
1

2
22

)(

12

ππ
π

 

 
Using the Cauchy-Schwarz inequality 
 

( ) ( )( ) ( )∑∑∑∑ =<⋅=
U kU kUkU

Nn 22222 11 πππ  

 

Hence it follows that 1
2

2

>
−

−
∑U kNNn

nNn

π
. Since b0 > 0 , 

then  ( )
)(

12
2

2
kU

kkU
U nN

yn
y

π
π

∑

∑
−

−
< . 

 
4. COMPARING POPULATION VARIANCES 
BETWEEN THE HORVITZ-THOMPSON 
ESTIMATOR AND THE OPTIMUM REGRESSION 
ESTIMATOR 
 
So far we have only used counts as auxiliary data. 
Assume that the data ( ){ }skykk ∈,,x  are observed, 

where kx  is the value for unit k. The population total 

∑=
U kxX of that variable is assumed to be known 

from a reliable source.  The GREG estimator of Y is  

∑=
s kkkGREG ygwŶ  where 

( )
k

k

s
k

kkk
HTk cc

w
g

xxx
XX

1

ˆ1
−










 ′′
−+= ∑ , and 

kk /w π1= . The statistician specifies the choice of kc . 

Särndal (1996) discussed various possible values of kc  at 
length.  Deville and Särndal (1992) justified the estimator 

GREGŶ  as follows.  New weights kw~  are generated as close 

as possible to the basic sampling weights kw , subject to 

the calibration constraint ∑ =
s kkw Xx~ . The new 

weights (calibration weights) are given as kkk gww~ = .  
when the minimized distance is given by 

( )∑ −
s kkkk wwwc /~ . The form of GREG for this 

distance measure can alternatively be expressed as:  
 

     ( )∑ ′−+′=
s kkkGREG ywY BxBX ˆˆˆ         (7) 

where ( ) ∑∑
−′=

s kkkks kkkk cywcw //ˆ 1
xxxB . 

 

For Poisson sampling, the population variance of GREGŶ  

is given by ( ) ∑≈
U kkGREG eYV 2ˆ φ  where Bx kkk ye ′−=  
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kk
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y

c

xxx
B

1

 is the census 

regression vector. Thompson and Sigman (2000) 
presented results from their simulation study that 

showed that ( ) ∑=
S kkkGREG ewYV 2ˆˆˆ φ , with 

Bx ˆˆ kkk ye ′−=  is very strongly negatively biased. 
 
Another alternative solution is to use the GREG to 
obtain the post-stratified version of the Hájek 
estimator.  To this end, assume that pN  is known for 

sub-populations pU  of the universe U, and that 

U
P

p
p UU

1=

= , where φ=∩ ′pp UU  if pp ′≠ .  The 

post-stratified Hájek estimator is given by: 

∑ ∑
=

=
P

p
s kk

p

p
POSTHAJ

p
y

N

N
Y

1
, /

ˆ
ˆ π  

where ∑=
ps kpN π/1ˆ , and pp Uss ∩= .  The 

population variance of POST,HAJŶ  is given by: 

( ) ( )∑ ∑
=

−=
P

p
U UkkPOSTHAJ

p p
yyYV

1

2

,
ˆ φ . 

Note that 
pUkk yye −= , where ∑=

p kp U pU Nyy / .  

We can guarantee that the population variance 

associated with POST,HAJŶ  will be smaller than the one 

associated with HTŶ  if   

( ) ∑ ∑∑ ∑
==

<−
P

p
U kk

P

p
U Ukk

pp p
yyy

1

2

1

2 φφ  

 

implying that ∑ ∑∑ ∑
==

<
P

p
U Ukk

P

p
U Uk

p Pp P
yyy

11

2 2 φφ  for 

p=1, …, P. 
 
 
Särndal (1996) proposed the design optimal version 

of GREGŶ . For this case, it can be shown that 

minimising the variance of GREGŶ  yields the optimal 

estimator OPTŶ . The form of this estimator is 
 

   ( )∑ ′−+′=
s OPTkkkOPTOPT ywY BxBx ˆˆˆ  

 

where ( ) .ˆ 1

∑∑
−′=

s kkkks kkkkOPT yww xxxB φφ  

Suppose that ∑=
U kkk z/znπ  where kz is a size 

measure specified for each Uk ∈ . Särndal (1996)  
showed that:  

( ) ( ) ( ) ( )HTOPTs kkkOPTHTOPT YVYVYV ˆˆˆ 1 ≤′′−= −
∑ BxxB φ  

 
where ( ) ∑∑

−′=
U kkkU kkkOPT yxxxB φφ 1 . 

 
The optimal case that corresponds to the count is obtained 
by setting 1=kx  for Uk ∈ . This yields  

( )
( )∑ ∑

∑

−+=

−+=

s OPTs kkk

s OPTkkOPTOPT

BwNyw

BywBNY

ˆ

ˆˆˆ
 

where
∑

∑=
U kk

U kkk

OPT
w

yw
B

φ
φ

ˆ . 

 
Once more, if post-stratified counts are available, then the 
optimal count estimator can be suitably modified to 
account for them. 
 
5. EMPIRICAL INVESTIGATIONS USING DATA  
FROM THE INDUSTRIAL RESEARCH AND 
DEVELOPMENT SURVEY 
 
The Industrial Research and Development (R&D) survey 
is a company survey conducted annually and collects, 
among other things, information on R&D expenditures by 
types of R&D, by industry groupings, and by state.  The 
frame is split-up into some certainty strata, some random 
sampling strata, and some non-certainty unequal 
probability strata.  We focused our concentration on the 
latter.  Each stratum was an industry grouping where 
measures of size xk were assigned to each company, 
(sampling unit).  The measures of size were calculated by 
using regression models.  Prior year total R&D was the 
dependent variable and payroll was the independent 
variable.  Values of Bk were originally assigned 
proportional to xk, but some values of Bk were changed to 
meet the minimum probability requirement.  We also only 
looked at one variable of interest, total R&D. 
 
If one were to look at the population and substitute xk for 
the yk then almost all the time the Hájek estimator would 
have higher variance than the H-T estimator and almost 
all the time the Brewer estimator would have lower 
variance than the H-T estimator.  What we then decided 
to do was to look at the sample variances of these 
estimators given real data from that survey.  Again we 
remind the readers that we focused only on the non-
certainty unequal probability strata. 
 
There were 45 industry estimates of total R&D where the 
sample variance was greater than zero.  Figure 3 shows a 
histogram where the horizontal axis is the percent change, 
rounded to nearest 10%, in the sample variance of the 
Hájek estimator to the H-T estimator and the vertical axis 
is the number of estimates that fall within the labeled 
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range.  The range goes from a 50% reduction in 
variance to a 138% increase in variance. 
 
 
      Figure 3: Percent change in Hájek Estimator 
 

 
Figure 4 is the corresponding histogram for the 
Brewer estimator.  The range goes from a 50% 
reduction in variance to a 24% increase in variance. 
 

 
 
     Figure 4: Percent change in Brewer Estimator 
 
All but two sample variances of the Brewer estimator 
are lower than the sample variances of the H-T 
estimator. 
 
 
 
Figure 5 is the corresponding histogram for the 
GREG estimator.  The range goes from a 99% 
reduction in variance to a zero difference. The value 
of B̂  that was chosen, for calculation purposes, 
was

OPTB̂ . 

 
 
 
 

 
 
 
 

Figure 5: Percent change in GREG Estimator 
 
 
 
As a final note, there were: 
 
3 estimates where ( ) ( )BREWHAJ YVYV ˆˆˆˆ < ,  

9 estimates where ( ) ( )OPTHAJ YVYV ˆˆˆˆ < , and 

13 estimates where ( ) ( )OPTBREW YVYV ˆˆˆˆ < . 

 
6. CONCLUSION 
 
The choice of estimator between Horvitz-Thompson, 
Hájek, and Brewer depend on the distribution of 
population of yk and Bk. If yk and Bk are negatively 
correlated, then 

HAJŶ  is better than 
HTŶ , while if b0 > 0 

then 
BREWŶ  is better than 

HTŶ . The best estimator, 

however, in terms of variance reduction, is the optimal 
regression estimator 

OPTŶ . 
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