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1. Introduction 

The Department of Housing and Urban 
Development is responsible for assessing the physical 
condition of the public and assisted housing portfolios.  
This includes: 
• Approximately 14,000 properties owned by public 

housing authorities (public housing), and 
• Approximately 28,000 properties that are FHA-

insured and/or HUD-assisted (multifamily 
housing). 
To meet this responsibility, HUD conducts 

physical inspections, observing the condition of the 
properties by recording deficiencies.  Due to cost 
constraints, only a sample of dwelling units is inspected 
in most properties (those with at least 6 dwelling units).  
In addition, an inspection is limited to a sample of 
buildings in some properties.  Thus, inspection scores 
are subject to sampling error. 

After an overview of the sample design and the 
scoring methodology, this paper discusses the 
procedure used to estimate physical inspection score 
sampling errors.  Some possible uses of these error 
estimates are also discussed.  The sections of this paper 
are as follows: 
2. Inspection sample design; 
3. Scoring methodology; 
4. Sample error estimation using the jackknife 

method; 
5. Sample error estimation using a model; 
6. Uses of sample error estimates; and 
7. Conclusion and future study. 
 
2. Inspection sampling design 

The first step in sampling for inspections is to draw 
a sample of dwelling units.  Any building that contains 
a selected dwelling unit is automatically selected for 
inspection.  Buildings with no dwelling units (common 
buildings) are also automatically selected for 
inspection.  If necessary, the sample of buildings is 
augmented by including some buildings that did not 
contain selected dwelling units. 

For a given inspection, i, the size of the dwelling 
unit sample, ni, is computed as: 
 

ni = Ceiling(M / (1 + M/Ni))    (1) 
 
Here: 
• M, the infinite population sample size, is 26.471, 
• Ni is the number of dwelling units on inspection i’s 

target property, and 
• Ceiling indicates rounding up to the next highest 

integer. 
Ni is found by summing the number of dwelling units 
Nij across all buildings j on the target property. 

Once ni is calculated, the sampling interval, Ri, is 
computed as: 

 
Ri = Ni / ni.        (2) 
 
Ri is then used to divide the population of buildings 

into three classes: 
• Large residential buildings (Nij >= Ri), 
• Small residential buildings (Nij < Ri & Nij > 0), and 
• Common buildings (Nij = 0). 
Buildings are then randomly ordered within building 
type. 

Once this is done, each residential building (Nij > 
0) is given a number range from Njjl to Njju such that: 

 
Nij = Niju – Nijl.       (3) 

 
Then, a systematic sample of numbers rk (k = 1 to 

ni) is selected so that 0 < ri ≤ Ri, and rk = ri+Ri*(k-1).  
The number of dwelling units selected from each 
building j, nij, is: 

 
 ni 

nij = Σ(Nijl < rk) * (rk ≤ Niju).    (4) 
k=1 

 
This is the number of rk values between Nijl and Niju. 

All common buildings and all residential buildings 
where nij > 0 are selected for inspection.  The sample of 
buildings is augmented if: 
• mir (selected residential buildings) < ni, and 
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• Mir (residential buildings on the property> mir.  
If needed, the augmentation sample, mira, is: 
 
Mira = min(ni,Mir) – mir     (5) 
 
Thus, the residential building sample is augmented 

up to the number of selected dwelling units or the 
number of residential buildings on the property 
whichever is the smallest.  If Nij > 0 and mir < Mir, the 
probability of selecting building j, Pij, is: 

 
Pij = P1ij + (1-P1ij)*P2ij.     (6) 

 
Here: 
• P1ij = min(Nij/Ri,1), and 
• P2ij = mir/(Mir – mir). 

Otherwise, Pij = 1. 
 
3. Scoring methodology 

Each inspection score is comprised of 5 area 
scores.  These areas are 
• Site (a = 1) 
• Building Exterior (a = 2) 
• Building Systems (a = 3) 
• Common areas (a = 4) and 
• Dwelling units (a = 5). 

Each area (except site) is comprised of several sub-
areas. 
• For building exterior, building systems, and 

common areas, each inspected building is a sub-
area. 

• For dwelling units, each inspected dwelling unit is 
a sub-area. 
Each sub-area score would be 100 if no 

deficiencies were found.  Each observed deficiency 
reduces the score based on: 
• Severity (a big crack in a wall is more severe than a 

small one); 
• Criticality (clogged drains are more critical than 

damaged cabinets); and 
• Item importance (the bathroom is more important 

than the laundry area). 
If deficiencies drive the sub-area score below 0, the 

sub-area score is set to 0. Thus, sub-area scores are 
bounded by 0 and 100.  Connell (1999) gives a 
technical discussion of the computation of sub-area 
scores. 

Area scores are weighted averages of their 
component sub-area scores.  For area a, in inspection i 
the area score, Sia, is computed as: 

 
Sia =   ΣWiak* Biak Siak / ΣWiak* Biak.   (7) 

k in a   k in a 
 

Here: 

• Siak is the sub-area score. 
• Wiak is the sub-area weight, and 
• Biak is the amenity weight (weighted items 

possessed by the sub-area), 
For sub-area k in area a in inspection i.  The formula 
used to compute sub-area weights, Wiak is: 
• 1 (for a = 1 or 5), 
• Miak,j /Piak,j (for a = 2 or 3), and 
• 1/Piak,j (for a = 4). 
Here, Miak,j is the size (Nij,k for residential buildings and 
Ni/Mi*Bi4k,j, Mi being the number of buildings on the 
property, for common buildings), and Piak,j is the 
selection probability of building j containing sub-area k.  
Thus, building level sub-areas are weighted to account 
for those buildings not selected for inspection; in 
addition, building exterior and system sub-areas are 
weighted to reflect building size.  

It will be useful to define the relative weight of 
sub-area k within area a of inspection i, W’iak, as:   

 
W’iak = Wiak*Biak /ΣWiak*Biak    (8) 
    k in a 

 
The inspection score, Si, is a weighted average of 

Sia and is computed as follows: 
 

   5      5 
Si =   Σαia*Wia*Sia/Σαia*Wia.    (9) 

  a=1   a=1 
 
Here: 
• αia is the area nominal weight, and 
• Wia is an adjustment to account for the absence of 

items from some sub-areas. 
The weight adjustment, Wia, is computed as: 
 

Wia = ΣWiak*Biak/ΣWiak     (10) 
 k in a    k in a 

 
Table 1 

Nominal weight of areas 
Area Scored Areas 
Name # 5 2 
Site 1 0.15 0.00 
Building Exterior 2 0.15 0.00 
Building systems 3 0.20 0.36 
Commons 4 0.15 0.00 
Dwellings 5 0.35 0.64 
 

The nominal weight, αia, depends on the area and 
the number of areas used in the scoring method.  The 5-
area scoring method is used for multifamily housing 
and was used for the first several years of public 
housing inspections (see Federal Register 2000).  The 
2-area scoring method is used to score current public 
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housing inspections (see Federal Register 2001).  Table 
1 gives the nominal weights for each score method. 

It will be useful to define the normalized area 
weight for area a in inspection i, W’ia, as: 
 

        5 
Wia =  αia*Wia /Σαia*Wia.     (11) 

      a=1 
 
4. Sample error estimation using the jackknife 

method 
Originally, three methods were considered for 

computing standard errors of physical scores (Jacobson 
1999).  Of these, the jackknife method (Wolter 1985) 
was selected because: 
• It did not require estimates of standard deviations 

for sub-areas, and 
• It would implicitly account for any correlation 

between sub-area scores. 
In this implementation of the jackknife method, ni 

replicates are created by excluding a dwelling unit.  
Replicate r will contain all sub-areas except: 
• The rth dwelling unit's sub-area (if dwelling unit 

r’s building has Pij’r = 1), and 
• The rth dwelling unit’s sub-area and the sub-areas 

for building j’r containing dwelling unit r 
otherwise. 

Note that for purposes of discussing replicates, the 
author defines building j’r as the building containing 
dwelling unit r. 

The area a score for replicate r, Si(r)a, is: 
 

Si(r)a = ΣW’iak*δi(r)ak*Siak/ ΣW’iak*δi(r)ak  (12) 
 k in a        k in a 

 
Here, δi(r)ak =1 if sub-area k is included in replicate r 
and 0 otherwise. 

Once Si(r)a is computed, the replicate r inspection 
score, Si(r), is computed as: 
 

    5     5 
Si(r) = Σαia*Wi(r)a*Si(r)a/Σαia*Wi(r)a   (13) 

   a=1    a=1 
 
The replicate r weight adjustment for area a, Wi(r)a, is: 
 

Wi(r)a = ΣWiak*δi(r)ak*Biak/ ΣWiak *δi(r)ak  (14) 
   k in a     k in a 
 
Once the replicate inspection scores are calculated, the 
standard error of the inspection score, sei is computed 
as: 
 
       ni 
 sei = Fi*((ni-1)/ni)*Σ(Si(r) – Si)

2    (15) 

      r=1 
 
Here, Fi (the finite population correction factor for 
inspection i) is (Ni-ni)/Ni. 

As of April 24, standard errors had been computed 
for 6,639 inspections: 
• 2,887 were scored under the 5-area method, and 
• 3,752 were scored under the 2-area method. 
Table 2 gives summary statistics for these standard 
errors. 

It is apparent that scores based on 2 areas have 
larger standard errors than do scores based on all 5 
areas.  This is because 2-area scores put more emphasis 
on the dwelling unit area, always subject to sample 
error, than do 5-area scores.  The next section shows 
that a model can be fit for both 2-area and 5-area 
scores. 
 

Table 2 
Summary of Standard Error estimates 

Statistic Scoring Method 
 5-area 2-area 
Inspections 2,887 3,752 
Mean 1.37 2.62 
Standard deviation 0.94 1.68 
Percentiles   
5th 0.01 0.02 
10th 0.15 0.39 
25th 0.52 1.21 
50th 1.35 2.52 
75th 2.09 3.92 
90th 2.68 4.88 
95th 2.96 5.31 

 
5. Standard error estimation using a model 

Because only part of an inspection is subject to 
sample error, the standard error estimate should be 
related to the weight of areas where sampling occurs.  
Also, because sub-area scores are bounded by 0 and 
100, sampled areas with scores near the boundaries 
should have relatively low standard errors because the 
component sub-area scores must be homogeneous.  
This leads to the attempt to model standard error 
estimates documented in this section. 

The model was based on 4,154 inspections that had 
• Dwelling units that were not inspected; 
• A sufficient sample of dwelling units to produce an 

acceptable score; and 
• An inspection date before February 22, 2002. 
The modeled standard error, se’i, is computed as: 

 
       5 

 se’i = √(ΣFia*W’ia
2*Da

2*Sia*(100-Sia).  (16)  
     a=2 
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Fia accounts for the sample size and finite 
correction factor.  For a = 2, 3, or 4, 

 
 Fia = Σ((1/Piak,j) –1)/(1/Piak,j))*W’iak

2.  (17) 
     k in a 
 
For a = 5,  
 
Fia = Fi *ΣW’iak

2  , for a = 5    (18) 
      k in a 

 
Da is the distribution factor that could range from 0 

(all sub-areas have the same score) to 1 (all sub-areas 
either have the maximum score, 100, or the minimum 
score, 0).  To compute distribution factors, areas from 
inspections were chosen if: 
• The inspection was used to create the model; 
• There were at least 20 inspected sub-areas in the 

area; and 
• Sia*(100–Sia) > 100. 

For each chosen area, the distribution ratio, Dia, 
was computed as: 

 
 
    Σ(Siak– Sia.)

2/n 
  k in a 

 Dia = √----------------------.     (19) 
  Sia.*(100-Sia.) 
 
The model distribution factor, Da, was found by 

taking the median, within each area, of the distribution 
ratios, Dia.  These factors are as follows: 
• .4906 for building exteriors; 
• .8957 for building systems; 
• .8334 for common areas; and 
• .5841 for dwelling units. 
Thus, the sub-area scores for building exteriors and 
dwelling units tend to be relatively homogeneous while 
the sub-area scores for building systems and common 
areas tend to be near 100 or 0.  The distribution factor 
and the square root term that follows constitute the 
model estimate of the standard deviation of sub-area 
scores. 

For the inspections used in model creation, the 
average model standard error, se’i, was 2.03 compared 
to the average system generated standard error, sei, of 
2.13.  When the analysis was limited to the 3,963 model 
inspections with a model standard error of at least 0.25, 
the standard error ratio, sei/se’i, followed the 
distribution given in table 3. 

It appears that the model used here is reasonably 
good.  For more than 70% of cases the system 
generated standard error is between .75 and 1.5 times 
the model standard error. 
 

Table 3 
Distribution of Standard Error Ratios 

for Inspections used in Model Creation 
 

Ratio Score Type 
Range 5-area 2-area 
< 0.5 9 8 
0.5 to < 0.75 16 18 
0.75 to < 0.9 12 11 
0.9 to 1.1 24 25 
> 1.1 to 1.25 19 20 
>1.25 to 1.5 18 16 
>1.5 2 2 
Total 2,268 1,695 
 
Table 4 gives the standard error ratio distribution 

for the 1,975 inspections used to test the model.  These 
inspections: 
• Were not used in model creation, and 
• Had a model standard error of at least 0.25. 
Note that the distributions in Tables 3 and 4 are very 
similar. 

 
Table 4 

Distribution of Standard Error Ratios 
for Other Inspections 

 
Ratio %Inspections 
Range 5-area 2-area 
< 0.5 10 9 
0.5 to < 0.75 18 20 
0.75 to < 0.9 12 13 
0.9 to 1.1 24 22 
> 1.1 to 1.25 18 18 
>1.25 to 1.5 16 15 
>1.5 2 2 
Total 1,154 821 
 
The model is almost as good when applied to 

inspections not used to create the model as it was for 
inspections used for model creation.  Again, for about 
70% of inspections, system generated standard errors 
are between 0.75 and 1.5 times the model standard 
error.  The next section gives evidence that inspections 
in the other 30% may have more data quality issues 
than do inspections where the system and model 
standard errors are similar. 

 
6. Uses of standard error estimates 

Currently, standard errors are used along with 
inspection scores to assist in the administration of 
HUD’s multifamily housing portfolio.  These standard 
errors are also being used to determine the optimal 
number of dwelling units to be selected for future 
inspections. 
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It may also be possible to use system generated and 
model generated standard errors to assure the quality of 
inspections.  System generated standard errors are 
based on reported sub-area scores.  By contrast, model 
generated standard errors are based on estimates of sub-
area score standard deviation given a typical 
distribution of sub-area scores for an area.  The model 
also assumes no correlation between sub-area scores in 
different areas. 

A disparity between these estimates of standard 
error indicates either an atypical distribution of sub-area 
scores or correlation (positive or negative) between the 
sub-area scores in different areas. 

Some atypical distributions may be legitimate.  For 
instance, if a property provides two types of housing 
(elderly or families), then a relatively large standard 
error may reflect the fact that the first type of housing is 
easier to manage than the latter. 

However, abnormally large or small standard errors 
may indicate data quality problems.  A large standard 
error may indicate an inspector’s varying diligence in 
finding deficiencies over the inspection (for example, 
the inspector may want to leave the property before 
dark and may therefore rush through the last part of the 
inspection).  By contrast, a very low standard error may 
indicate that an inspector is very diligent in finding 
some deficiencies but is not at all diligent in finding 
others.  The result is artificially homogeneous sub-area 
scores caused by the same deficiencies being reported 
in every sub-area. 

For purposes of this study, each inspector was 
scored to see if there is a link between atypical standard 
error ratios and data quality.  The standard error ratio of 
inspections was compared to the data quality score of 
the inspector who conducted the inspection.  The data 
quality score reflects the inspector’s inspection record 
with regard to: 
• Time taken to conduct inspections; 
• Average inspection score; 
• Consistency in reporting the existence of items; 
• Changes in scores based on technical reviews; 
• Engineer rejection of inspection; and 
• Comparison with on site inspection quality control. 

For purposes of this study, the inspectors' data 
quality score was rated using color codes: “Green” for 
the fewest data quality concerns through “Yellow” and 
“Orange” to “Red” for the most data quality concerns.  
Table 5 shows the relationship between standard error 
ratios and inspector color codes for the 5,644 
inspections conducted by inspectors with enough 
experience to be scored. 

  

Table 5 
Distribution of Inspector Ratings 

Within Standard Error Ratio Class 
 
Ratio %Distribution  
Range Green Yellow 

Orange 
Red Total 

< 0.5 59 25 16 484 
0.5 to < 0.75 64 19 17 981 
0.75 to < 0.9 75 17 8 655 
0.9 to 1.1 75 15 11 1,377 
> 1.1 to 1.25 76 16 8 1,086 
>1.25 to 1.5 73 17 10 957 
>1.5 57 28 15 104 
Total 71 17 12 5,644 
 

Although the relationship is far from deterministic, 
inspections with atypical standard error ratios (<0.75 or 
>1.5) tend to be conducted by inspectors with data 
quality concerns (color other than green).  Of the 660 
inspections conducted by “Red” inspectors, 252 (38%) 
have a standard error ratio, sei/se’i, less than 0.75 and 
20 (3%) have sei/se’i > 1.5.  By contrast, of the 4,037 
inspections conducted by “Green” inspectors, only 23% 
have sei/se’i less than 0.75 and only 1.5% have sei/se’i 
greater than 1.5.  Inspectors in the marginal “Yellow” 
and “Orange” categories also are more likely to produce 
inspection scores with atypical standard error ratios 
than are inspectors in the “Green” category. 
 
7. Conclusion and future study 

This paper gives a description of the sample design 
for HUD inspections and a description of how they are 
scored.  The method for computing system generated 
standard errors is described in some detail. 

A relatively complex generalized variance function 
used to derive model generated estimates of standard 
error for these inspections is described.  Finally, a ratio 
of the system generated to the model generated standard 
error estimate was computed for each studied 
inspection that had a model generated standard error of 
at least 0.25 points.  Table 5 shows that this ratio may 
be useful for finding problems with the quality of 
inspection data. 

This merits some future analysis of inspections 
with atypical standard errors.  The scores from these 
inspections could be compared with the scores for 
inspections with typical standard error ratios.  If 
inspections with atypical standard error ratios are 
higher than other inspection scores, it could indicate 
that deficiencies are missed in these inspections.  
Likewise, the difference between the current and 
previous inspections for a property can be investigated.  
If atypical standard error ratio inspections have 
relatively high score differences, this could indicate that 
deficiencies are being missed. 
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Inspected items could be ordered by the time when 
they were recorded (timestamp analysis) to see if there 
is a relationship between inspection order and: 
• Deficiency status (no deficiency, a deficiency, or 

item does not exist), and 
• Time taken to record the item (elapsed time 

between the previously recorded and current item). 
It would prove useful to find out if inspections with 

atypically low standard errors have a typical 
distribution of deficiencies.  A typical distribution 
would come from inspections with typical standard 
errors. 
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