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The evaluation of medical signs, symptoms, and tests for 
the purposes of diagnosis is usually framed within the context 
of estimating the sensitivity and specificity of the indicator.  
Sensitivity is the probability that a person with the disease will 
be positive on the indicator; specificity is the probability that a 
person without the disease will be negative on the indicator.  
The estimation of sensitivity and specificity depends on 
knowing who does and does not have the disease; that is, there 
must be a "gold standard" for diagnosis.  Rindskopf and 
Rindskopf (1986) applied latent class analysis to this problem, 
and showed that sensitivity and specificity could be estimated, 
under some conditions, even without a gold standard.  The 
current paper briefly reviews those findings, and then 
discusses extensions of latent class methods for diagnosis.  
These methods have attracted much attention in the medical 
statistics community in the past 15 years; a search of Pub Med 
(September, 2002) resulted in over 200 references for the key 
word term "latent class"; a selection of these is included in the 
Reference section. 

 
The next section of the paper gives a brief overview of 

latent class analysis, followed by a simple example from the 
literature.  Next, I discuss a model with a predictor of latent 
class, using as an example data on children's wheeze measured 
at four ages, with asthma predicted by whether or not the 
mother smokes.  Then I discuss a new conceptual model that 
adds floor and ceiling effects to logistic regression.  This 
model is similar to models with error of measurement, but 
with a different interpretation.  Finally, I present some 
implications of these models and their utility in medical 
diagnosis. 

 
Latent Class Analysis: A Brief Overview 

Latent class analysis hypothesizes the existence of one of 
more unobserved (underlying, latent) categorical variables to 
explain the relationships among a set of observed categorical 
variables.  In the medical diagnosis context, the observed 
variables are signs, symptoms, or test results, usually 
dichotomized into a binary classification (positive and 
negative).  The latent variable is true status on the disease; 
while this is often dichotomous (disease present or absent), it 
may not be (e.g., heart attack, congestive heart failure, or no 
heart problem).  Sometimes there is more than one latent 
variable; each might correspond, e.g., to the presence or 
absence of a particular disease.  In this paper, the examples are 
all cases in which there is only one latent variable. 

 
The observed data are usually presented in terms of a 

crosstabulation of the observed variables.  The statistical 
model has two kinds of parameters.  Unconditional 
probabilities are the probabilities of being in each latent class 
(i.e., each level of the latent variable, if there is only one such 
variable; or each combination of levels, if there is more than 

one).  Conditional probabilities are the probabilities of having 
a particular result on a test, given membership in a specific 
latent class.  There is a set of conditional probabilities for each 
observed variable; these are assumed to be independent, so 
that the latent variable explains the relationships among the 
observed variables.  The sensitivities and specificities of the 
observed measures are conditional probabilities, and thus are 
parameters in the model. 

 
Models can be tested using any of a number of fit statistics 

appropriate for categorical data, including various statistics 
with chi-square distributions, and adjusted fit statistics such as 
Akaike's or Schwartz's Information Criteria.  Care must be 
taken to be certain that a model is identified; that is, that all 
parameters are estimable.  This can be accomplished through 
algebraic proof, or (more commonly) using numerical 
techniques.  Sometimes more than one model is found that fits 
the data.  Nested models can be compared to see if the extra 
parameters are needed, although there is some disagreement 
about when this is appropriate. 

 
Once models are found that fit the data, the parameters can 

be interpreted.  Another goal is to use Bayes' Theorem to 
examine how well individuals can be assigned to latent 
classes.  In medical situations, this is the process of diagnosis.  
Some response patterns may be easier to classify than others.  
One can also determine whether it is possible to simplify the 
classification rules, e.g. by counting number of positive results 
or symptoms. 

 
A Simple Example:  Myocardial Infarction 

The following example is summarized from Rindskopf and 
Rindskopf (1986).  It illustrates the main points about the use 
of latent class analysis in medical diagnosis.   

 
Data come from a study of patients admitted to an 

emergency room suffering from chest pain (Galen & 
Gambino, 1975).  Each of four indicators was scored as either 
indicating a myocardial infarction (MI; commonly known as 
heart attack) or not indicating MI.  The indicators included 
history, EKG (inverted Q-wave), and two blood tests (CPK 
and LDH).  The data set consists of counts of the number of 
patients in each of the 16 possible patterns of indicators. 

 
The data were consistent with a simple 2-class model 

(LR=4.29, df=6, p=.64), where the classes represented those 
with and without MI.  The data were inconsistent with several 
other possible models, including the model of complete 
independence of indicators, and a quasi-independence model.  

  
Table 1 contains the parameter estimates for the model.  

The unconditional probabilities of being classes 1 and 2 are 
about .46 and .54 respectively.  To determine what these 
classes mean, one must examine the conditional probabilities.  
For each indicator, in class 1 there is a relatively high prob 
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__________________________________________________________________ 

Table 1.  Parameter Estimates for MI Data, 2-class 
unrestricted model __________________________________________________________________ 

           mi     no mi 
0.4578  0.5422 __________________________________________________________________ 

cpk  1   1.0000  0.1956 
cpk  0   0.0000  0.8044 
 
ldh  1   0.8279  0.0269 
ldh  0   0.1721  0.9731 
 
his  1   0.7914  0.1951 
his  0   0.2086  0.8049 
 
qwa  1   0.7669  0.0000 
qwa  0   0.2331  1.0000 __________________________________________________________________ 

 
ability of the indicator being positive; for class 2, there is a 
relatively low probability of the indicator being positive.  
Therefore, class 1 represents those with MI, and class 2 
represents those without MI.  The indicators vary in their 
sensitivities and specificities; for example CPK has a high 
sensitivity, but low specificity, while Q wave on an EKG has a 
high specificity but lower sensitivity.  History is modest on 
both measures, while LDH is similar to EKG results.  
Sometimes a graphical presentation of results is easier to 
examine; Figure 1 shows a plot of sensitivities by specificities, 
similar to ROC plots in signal detection theory.  The ideal 
indicator would be at the point (1,1) in the upper right-hand 
corner.  The closer an indicator is to that ideal point, the better 
the indicator is. 
 

Figure 1.  Plot of sensitivity and specificity of 
indicators in MI data, similar to ROC plot. 

 
The actual statistical process of diagnosis is the assignment 

to latent classes.  The usual procedure is to use all observed 
variables, as shown in Table 2.  The largest probability of 
error is for patients who were positive on CPK and history, but 
negative on LDH and Q-wave. 

 
In medical diagnosis, unlike the typical situation in latent 

class analysis, one might be interested in class assignment on 
the basis of only a subset of the observed variables.  For  

 

_________________________________________________________________________ 

Table 2.  Assignment to latent class for MI data, with error 
probabilities for each pattern of indicators _________________________________________________________________________ 

 C  L  H  Q    F     1    2  Diag  Err _________________________________________________________________________ 

 1  1  1  1   24   1.00 0.00  1   0.00 
 1  1  1  0    5   0.99 0.01  1   0.01 
 1  1  0  1    4   1.00 0.00  1   0.00 
 1  1  0  0    3   0.89 0.11  1   0.11 
 1  0  1  1    3   1.00 0.00  1   0.00 
 1  0  1  0    5   0.42 0.58  2   0.42 
 1  0  0  1    2   1.00 0.00  1   0.00 
 1  0  0  0    7   0.04 0.96  2   0.04 
 0  1  0  0    1   0.00 1.00  2   0.00 
 0  0  1  0    7   0.00 1.00  2   0.00 
 0  0  0  0   33   0.00 1.00  2   0.00 _________________________________________________________________________ 

Note: C= CPK, L=LDH, H=History, Q=Q wave.  Response 
patterns with zero observed frequency are omitted. 

 
example, one might want to use only history and EKG results, 
which are available more quickly than the LDH and CPK, 
which are based on blood tests.  Technically, of course, this is 
no problem; one merely applies Bayes' Theorem.  Results are 
shown in Table 3.  If Q wave is positive, history is irrelevant; 
the patient had an MI.  If both are negative, the patient 
probably did not have an MI.  If Q wave is negative but 
history is positive, there is quite a bit of uncertainty. 
 ___________________________________________________________________________ 

Table 3.  Using a subset of indicators to make a diagnosis ___________________________________________________________________________ 

Q-wave   History     P(MI|Q,H)  Prop. _______________________________________________________ 

   0              0               .04853         .47 
   0              1               .44394         .18 
   1              0             1.00000         .06 
   1              1             1.00000         .29 ___________________________________________________________________________ 

 
Latent class analysis with a categorical predictor of class:  

Wheeze in children 
In some analyses one or more predictors of the latent class 

is available.  Consider data on wheeze in children from the Six 
Cities study (see, e.g., Cunningham, et al, 1994), for which 
data from one city are widely used as an example data set.  
Children were assessed for presence or absence of wheeze 
each year from age 7 through 10 years.  If no other 
information were available, a latent class analysis similar to 
that for the MI data would be suitable.  In this case, one such 
additional variable was whether or not the mother smoked.  
Theoretically, passive smoke might affect asthma in children.   

 
The results of fitting a latent class model with mother's 

smoking as a predictor of class are contained in Table 4.  First, 
note that at each age at which wheeze was measured, the 
probability of wheeze was somewhat high in class 1, and very 
low in class 2; this makes class 1 the class with probable 
asthma.  This class contains about 16 percent of the children in 
the study; the class without asthma contains about 84 percent 
of the children.  While specificity of wheeze was good 
(relatively low) at each age, sensitivity was not as high as 
might be desired, being generally above .50 but less than .75. 
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___________________________________________________________________________ 

Table 4.  Parameter estimates for wheeze data ___________________________________________________________________________ 

 class                      1          2 _______________________________________ 

p(class)             0.1607  0.8393 _______________________________________ 

smo       yes      0.4487  0.3290 
age7      yes      0.5924  0.0796 
age8      yes      0.7222  0.0636 
age9      yes      0.7019  0.0542 
age10    yes      0.5119  0.0418 ___________________________________________________________________________ 
Note:  LR = 13.6793, df=20, p=0.8464.  Data are available 

online at http://www.statsci.org/data/general/wheeze.html 
 

The probability of the mother smoking was about 45 
percent among children with asthma, and 33 percent among 
children without asthma.  To test whether this effect was 
significant, the model was run again, constraining the 
conditional probabilities of smoking to be equal in both 
classes.  This model fit the data very well. 
 

For the model with equal rates of smoking in the two 
classes, Bayes' Theorem was used to assign children to class 
based on the four observed measures of wheeze.  The results 
are shown in Table 5.  In general, as would be expected, the 
most difficult response patterns to assign were those where 
wheeze occurred on two occasions and did not occur on the 
other two.  Even in these cases, the probability was relatively 
high (about .6 to .8)  that the child actually had asthma.  In 
fact, because of the approximately equal sensitivities and 
specificities across ages, it is possible to deduce a simple rule 
for assignment to classes:  If wheeze occurred not at all or 
only once, the child probably does not have asthma; if wheeze 
occurred two or more times, the child probably does have 
asthma.  Such a simple rule will not always suffice, even for a 
two-class model. 
 ___________________________________________________________________________ 

Table 5.  Assignment to latent classes, wheeze data, for model 
with no effect of mom's smoking; sorted by modal class ___________________________________________________________________________ 

  A7 A8 A9 A10      P(1)     P(2)   Class  P(err) ___________________________________________________________________________ 

    1     1    1    1      0.9961   0.0039   1     0.0039 
    1     1    1    2      0.9131   0.0869   1     0.0869 
    1     1    2    1      0.8597   0.1403   1     0.1403 
    1     2    1    1      0.8693   0.1307   1     0.1307 
    2     1    1    1      0.9373   0.0627   1     0.0627 
   
    1     1    2    2     0.2030   0.7970   2     0.2030 
    1     2    1    2     0.2165   0.7835   2     0.2165 
    1     2    2    1     0.1388   0.8612   2     0.1388 
    1     2    2    2     0.0067   0.9933   2     0.0067 
    2     1    1    2     0.3832   0.6168   2     0.3832 
    2     1    2    1     0.2660   0.7340   2     0.2660 
 
    2     1    2    2     0.0148   0.9852   2     0.0148 
    2     2    1    1     0.2822   0.7178   2     0.2822 
    2     2    1    2     0.0161   0.9839   2     0.0161 
    2     2    2    1     0.0094   0.9906   2     0.0094 
    2     2    2    2     0.0004   0.9996   2     0.0004 ___________________________________________________________________________ 

Note:  If positive 0 or 1 time, class = 1; If positive 2 or more 
times, class = 2 

 

Other contributors to the literature who have proposed 
similar models include Clogg (1981), Dayton and Macready 
(1988, 2002), Hagenaars (1990), Vermunt (1997), and 
Vermunt and Magidson (2002).  

 
Formally, this model is equivalent to a two-group latent 

class model, with equality of all conditional probabilities 
across the two groups (mothers who do and do not smoke).  
There are several advantages of the current formulation over 
the two-group form of the model.  First, it is easier to extend 
this approach to the case with multiple predictors.  Second, 
this method gives a direct estimate of the relationship between 
the predictor and the latent variable; this is even more 
important with multiple predictors.  Third, it is easy to extend 
this model to the case where there are continuous or quasi-
continuous predictors (e.g. several levels of a quantitative 
variable).  The following example illustrates a variation on 
this model. 
 
Logistic regression with floor and ceiling effects 

Logistic regression models assume that for a low enough 
value of the predictor(s), the probability of a response is zero, 
and that for a high enough value of the predictor(s), the 
probability of a response is one.  In some applications, one or 
both of these assumptions is likely to be false.  For example, 
in predicting graduation from college using SAT scores, there 
will undoubtedly be a proportion of students who graduate in 
spite of low SAT scores, and another group who will not 
graduate in spite of high SAT scores.    

 
In this section we consider models in which the 

asymptotes of the logistic regression equation are not 
constrained to be zero and one as they are in traditional 
models.  The idea is presented graphically in Figure 2. 

 
Figure 2.  Logistic regression with floor and ceiling effect 

 
This idea has some precedent in related areas.  In item 

response theory (IRT) models, guessing parameters allow 
items to have a probability greater than zero of being 
responded to correctly, primarily to adapt to guessing on true-
false or multiple choice tests.  Finney proposed a probit model 
with a floor effect in toxicity studies; he called it a model for 
toxicity with natural mortality.  He never seems to have had a 
ceiling effect for situations in which a certain proportion of 

1

0

pp ii( )

r ii( )

77 ii

Joint Statistical Meetings - Social Statistics Section

2914



animals were not affected by a poison or drug, and his floor 
effect never found its way into standard computer programs 
for logistic regression or probit models. 

 
Technically, the model is identical to a model for errors in 

variables proposed by Ekholm and Palmgren (1982).  The 
interpretation is different, even though the fit of the model is 
identical.  In this case, Ekhlolm and Palmgren would interpret 
the floor and ceiling effect as solely due to errors of 
measurement.   

 
The model with floor and ceiling effects (or, equivalently, 

the logistic regression model with errors of measurement) is 
also equivalent to a special kind of latent class model.  This 
model has only one (binary) observed indicator, and one or 
more predictors of the latent variable.  With a single 
continuous predictor having five or more levels, the model is 
identified, even though traditional latent class models would 
require four or more indicators.  The interpretation of the 
latent class model would be similar to that of the Ekholm and 
Palmgren model, rather than the model with floor and ceiling 
effects. 

 
Table 6 presents the results of an analysis of data on 

wheeze in coalminers, originally from Ashford & Sowden 
(1970).  These data were analyzed by Ekholm and Palmgren 
using their errors-in-variables model.  Here we should get the 
same results, but the interpretation is different.  The floor 
effect could also be due to some miners contracting asthma (or 
wheeze alone) from other causes, and the ceiling effect could 
be miners whose lungs are particularly resistant to developing 
wheeze, and would not develop it no matter how long they 
were miners.  Only replicate measurements at the same time 
period would allow an analysis that would separate these 
possibilities from errors of measurement. 
 ___________________________________________________________________________ 

Table 6 Coal miner data, wheeze, model with floor and 
 ceiling effects ___________________________________________________________________________ 

                           Latent Class                                      ____________________________ 

                              1              2 ______________________________________________ 

Marginal prob    0.7052     0.2948 
Wheeze status 
      yes                 0.0000    0.6792 
      no                  1.0000    0.3208 
Age group   
       1                  0.9224     0.0776 
       2                  0.8904     0.1096 
       3                  0.8474     0.1526 
       4                  0.7915     0.2085 
       5                  0.7219     0.2781 
       6                  0.6395     0.3605 
       7                  0.5480     0.4520 
       8                  0.4532     0.5468 
       9                  0.3616     0.6384 ___________________________________________________________________________ 

 
In keeping with the different interpretation of this model, 

the entries in Table 6 are not all the same as in the usual latent 
class output.  The marginal probabilities are the unconditional 
probabilities of being in each latent class.  Wheeze status 
contains the conditional probability of having wheeze or not, 

given class membership.  The numbers for age group, 
however, are the reverse of the usual interpretation; they are 
the conditional probability of latent class membership given 
age, and must be read in rows instead of columns.  For 
example, miners in age group 1 have a probability of about .92 
of being in latent class 1, which represents no wheeze. 

 
The results are consistent with those of Ekholm and 

Palmgren.  The floor is 0; that is, extrapolating to younger 
ages would give negligible probability of wheeze.  The ceiling 
is about .68, so extrapolating to older miners would give a 
probability of .68 of wheeze; we would predict that about 32 
percent of miners would never get wheeze. 

 
Discussion 

Latent class analysis has many advantages over traditional 
methods of (i) estimating sensitivity and specificity, and (ii) 
developing diagnostic rules on the basis of medical tests and 
indicators.  The lack of need for a gold standard is the most 
important reason for preferring latent class models.  In 
addition, one can determine whether certain simple rules for 
diagnosis (e.g. symptom counts) are reasonable. 

 
Traditional latent class models can be extended in several 

ways that are useful in medical statistics.  First, one can 
construct and test prediction models for the true (latent) status 
on the disease.  Second, these extensions can allow the 
estimation of sensitivity and specificity with fewer indicators 
than a traditional latent class model.  Third, with appropriate 
data, it is possible to separate floor and ceiling effects from 
measurement error.  This requires repeat observations at the 
same time, and either several times of measurement, or a set of 
predictors. 
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