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Abstract:
We use a Dirichlet process prior (DPP) to restrict

the pooling of nonresponse binary data from small
areas which may seem to be similar. Our objective is
to estimate the proportion of individuals with a par-
ticular characteristic from each of a number of areas
under nonignorable nonresponse. All hyperparame-
ters have proper prior densities. The griddy Gibbs
sampler is used to perform the computation. For
illustration, we use data on victimization in ten do-
mains from the National Crime Survey (NCS). We
show empirically that there could be difference in
inference between the two nonignorable models.
Key words: Beta-Binomial model; Dirichlet pro-
cess prior; Exchangeability; Griddy Gibbs sampler;
Latent variable; Selection approach.

1. Introduction
Recently there has been much activity in the anal-

ysis of survey nonresponse. Indeed, the response
rates in many surveys have been decreasing inter-
nationally (De Heer 1999 and Groves and Couper
1998). For many of these surveys the responses are
binary. To permit a flexibility in robustness to the
prior specifications, we study a nonparametric hier-
archical Bayes model that can be used to study non-
ignorable nonresponse for binary data from many
areas.

Stasny (1991) used a hierarchical Bayesian model
to study victimization in the National Crime Sur-
vey (NCS). She used the Bayesian selection approach
which was developed primarily to study sample se-
lection problems (e.g., Heckman 1976 and Olson
1980). However, the Stasny Bayes empirical Bayes
approach assumes that the hyper-parameters are
fixed but unknown, and these parameters are es-
timated using maximum likelihood methods. This
approach has been extended in several directions.
See Nandram and Choi (2002 a, b) and Nandram,

Han and Choi (2002) for full Bayesian analyses.
In small area estimation, it is usual to assume that

the parameters indexing the areas share an effect.
That is, the parameters follow a common probabil-
ity density function. This assumption can lead to
overshrinkage.

We believe that there are groups of areas whose
members are more similar than others. Furthermore,
we also believe that the compositions of these groups
are unknown to us. A natural way to deal with this
situation is to use the Dirichlet process prior (hence-
forth, DPP). Ferguson ( 1973, 1974); Escobar (1994)
and Escobar and West (1995) have used the DPP to
perform nonparametric Bayesian analysis on normal
data. Also Kong, Liu, and Wong (1994) have used
nonparametric Bayesian analysis for binomial data.

We use a nonparametric Bayesian method to an-
alyze nonignorable nonresponse binary data. We
start with the model proposed by Stasny (1991) to
model nonresponse data with several areas. But, we
assume a DPP for these parameters. Thus, in our
model with a DPP, the Stasny’s nonignorable model
is our baseline model. However, unlike Forster and
Smith (1998) and Nandram and Choi (2002 a, b),
we do not express uncertainty about ignorability in
this paper.

A related literature is on what is now known as
uncertain pooling used primarily for pooling exper-
iments. The experiments are partitioned and there
can be many partitions. The experiments in each
partition set are believed to be similar and the par-
tition sets are different. There is uncertainty about
which partition is the correct one. This methodology
works well for a small number of experiments, but for
problems with many experiments (or areas) it may
be infeasible. Malec and Sedransk (1992), Evans
and Sedransk (2001), Mallick and Walker (1997)
and Consoni and Veronese (1995) discussed Bayesian
methodology for combining results from several nor-
mal or binomial experiments.

We consider a nonparametric hierarchical
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Bayesian model with a DPP to study the propor-
tion of individuals possessing a characteristic in the
presence of nonignorable nonresponse when there
is uncertainty about the hyper-parameters. For
illustration, we use data from the National Crime
Survey (NCS) which we describe briefly in Section
2. In Section 3 we describe the hierarchical Bayesian
model and how to analyze this model using Markov
chain Monte Carlo (MCMC) methods. In Section 4
we present some empirical results.

2. National Crime Survey
We used the data created by Stasny (1991), who

took a random start at the record for the eighth
household (ordered on the original longitudinal file)
in the full data set and then every fifteenth record
after that. The data are poststratified into domains
according to three neighborhood characteristics: (i)
urban (U) and rural (R), (ii) central city (C), other
incorporated place (I), and unincorporated or not a
place (N), and (iii) low poverty level (L) (9% or fewer
of families below poverty level) and high poverty
level (H) (10% or more of families below poverty
level). Since it is practically impossible for a ru-
ral area to be a central city, as observed by Stasny
(1991), this poststratification results in ten domains.
Let

yij =
{

1, if household j in area i is victimized
0, if household j in area i is not victimized

and

rij =
{

1, if household j in area i is a respondent
0, if household j in area i is not a respondent,

i = 1, . . . , �, j = 1, . . . , ni. Essentially our models

start with the yij and rij . We define yi =
ri∑

j=1

yij

and ri =
ni∑

j=1

rij .

Throughout, yi is the number of successes (i.e.,
households with crimes in the NCS), ri is the number
of respondents and ni is the number of households
sampled in the ith domain (or area), i = 1, . . . , �
where � = 10 domains. The nonresponse rate in
these domains ranges from 9.4% to 16.9%, and one
reason for nonresponse is that a woman may be em-
barrassed to report a rape committed by an attacker.

Stasny (1991) suggested that nonresponse does
not occur at random with respect to victimization
status (see also Stasny 1990 and Saphire 1984). For
the analysis of this data set, Nandram and Choi
(2002 a) made two key contributions (a) discern

whether nonresponse is ignorable or not, and (b)
introduce a new model in which the degree of ignor-
ability may vary from one area to another. Here, our
contribution is to perform a nonparametric Bayesian
analyis of these data by providing a prior that makes
our procedure more robust. This can help to reduce
overshrinkage, a nuisance in small area estimation.

3. Hierarchical Bayes Nonresponse Models
In this section, we describe the baseline nonig-

norable nonresponse model and the nonparametric
Bayesian model.

3.1 Baseline Nonresponse Model
Our baseline model is a nonignorable nonresponse

model, and is given by

yij | pi
iid∼ Bernoulli (pi), j = 1, . . . , ni, i = 1, . . . , �,

rij | yij = s, πis
iid∼ Bernoulli (πis), s = 0, 1. (1)

pi | µ21, τ21
iid∼ Beta (µ21τ21, (1 − µ21)τ21), (2)

πis | µ2,s+1, τ2,s+1
iid∼ Beta (A, B), (3)

where A = µ2,s+1τ2,s+1 and B = (1 − µ2,s+1)τ2,s+1

, s = 0, 1.
Assumptions (2) and (3) express similarity among

the states. This similarity helps when the weakly
identified parameters like the πi1 and πi2 are esti-
mated. This is not very robust because it may en-
courage too much pooling. Therefore, to restrict the
pooling one may use a more robust prior specifica-
tion.

We complete the prior specification by taking
µk, k = 1, 2, 3 and τk, k = 1, 2, 3 to be independent.
Specifically,

µ1
iid∼ U(0, 1)

and

µ2 | µ3 ∼ U(µ3, 1) and µ3 ∼ U(0, 1). (4)

The assumption that µ2 ≥ µ3 is used to avoid a
possible computational difficulty. In the NCS this is
a reassonable assumption because it is known that
households that are victimized tend not to respond
to the survey. In other situations, with expert opin-
ion this equality can be reverse. For the τk, we take

τk
iid∼ S(1), k = 1, 2, 3

The notation X
iid∼ S(a) means that p(x) = a/(a +

x)2, x ≥ 0 and a ≥ 0 is the shrinkage prior density.
3.2 Model with Dirichlet Process Prior
We maintain the structure in (1), but instead of

the prior densities in (2) and (3), we use the DPP.
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Letting θi =(pi, πi0, πi1), we assume that, given a
cumulative distribution function, G say, that

θi | G
iid∼ G(·).

To express the uncertainty about G(·), we assume
that given α and G0(·),

G(·) ∼ Dirichlet {αG0(·)} ,

a Dirichlet procces defined by α, a positive real num-
ber, and G0(·) the prior specification of G(·). In fact,
E(G(θ)) = G0(·) for all θ and α is a precision param-
eter, determining the concentration of the prior dis-
tribution for G(·) around G0(·). Here α is assumed
unknown, and G0(·) has a specified form with its
parameters unknown, as in the baseline model.

A key feature of DPP is associated with the dis-
cretness of G(·) under the Dirichlet process assump-
tion (Ferguson, 1973). In any sample, θi, i = 1, ..., �,
from G(·), there is a positive probability that some
of these θi coincide. That is, there are k, 1 ≤ k ≤ �,
parameters that describe the � areas. The structure
is such that the posterior distribution will strongly
support common values of individual parameters, θi

and θ
(′)
i for data points (yi, ri) and (y(′)

i , r
(′)
i that are

close. Thus, we can combine information locally in
the sample space to estimate the local structure.

In our application, we take the prior G0(·) for θi

as

G0(pi, πi0, πi1) = G01(pi)G02(πi0)G03(πi1), (5)

where the prior densities for pi, πi0 and πi1, which
are specified as in the baseline, would be

pi | µ21, τ21
iid∼ Beta (µ21τ21, (1 − µ21)τ21),

πis | µ2,s+2, τ2,s+2
iid∼ Beta (A, B),

where A = µ2,s+2τ2,s+2 and B = (1−µ2,s+2)τ2,s+2 ,
s = 0,1; we complete the prior specification by taking
µk, k = 1, 2, 3 and τk, k = 1, 2, 3 to be exactly same
as in (4).

Let θ(i) = (θ1, ..., θi-1, θi+1, ..., θ�)(′), i = 1, ..., �.
That is, θ(i) consists of all components except the ith

one. It is pertinent to describe the conditional poste-
rior density of θi | θ(i), r, y, µ, τ, α. First, we describe
two important components of this distribution.

Under the baseline model, the likelihood function
is

p(yi, ri | θi) =
(

ni

ri

) (
ri

yi

)

×(πi1pi)yi(πi0(1 − pi))ri−yi

×((1 − πi1)pi + (1 − πi0)(1 − pi))ni−ri ,

yi = 0, ..., ri and ri = yi, yi+1, ..., ni, with indepen-
dence over i, i = 1, ..., �.

Since the number of victimizations for the non-
respondents is unknown, we denote it by the la-
tent variable zi, and the number of households
with no victimizations among the nonrespondents
is ni − ri − zi. The zi simplify the computations.
Then, the augmented likelihood function is

p(yi, ri, zi | θi) =
(

ni

ri

) (
ri

yi

)
(πi1pi)yi(πi0(1 − pi))ri−yi

×{(1 − πi1)pi}zi{(1 − πi0)(1 − pi)}ni−ri−zi ,

i, i = 1, ..., �.
Then, marginalizing over θi, we have

A(yi, ri) =
(

ni

ri

) (
ri

yi

) ni−ri∑
zi=0

(
ni − ri

zi

)

×B(yi + zi + µ1τ1, ri − yi − zi + (1 − µ1)τ1)
B(µ1τ1, (1 − µ1)τ1)

×B(ri − yi + µ2τ2, ni − ri − zi + (1 − µ2)τ2)
B(µ2τ2, (1 − µ2)τ2)

×B(yi + µ3τ3, zi + (1 − µ3)τ3)
B(µ3τ3, (1 − µ3)τ3)

,

i = 1, ..., �.
The second quantity is the posterior density of θi

under the baseline model. It is easy to show that

f(pi, π0i, π1i | y, r, µ, τ) ∝
ni−ri∑
zi=0

{(
ni − ri

zi

)

×B(yi + zi + µ1τ1, ri − yi − zi + (1 − µ1)τ1)

×B(ri − yi + µ2τ2, ni − ri − zi + (1 − µ2)τ2)

×B(yi + µ3τ3, zi + (1 − µ3)τ3)

× pyi+zi+µ1τ1−1
i (1 − pi)ri−yi−zi+(1−µ1)τ1−1

B(yi + zi + µ1τ1, ri − yi − zi + (1 − µ1)τ1)

× πri−yi+µ2τ2−1
i0 (1 − πi0)ni−ri−zi+(1−µ2)τ2−1

B(ri − yi + µ2τ2, ni − ri − zi + (1 − µ2)τ2)

× πyi+µ3τ3−1
i1 (1 − πi1)zi+(1−µ3)τ3−1

B(yi + µ3τ3, zi + (1 − µ3)τ3)

}
,

i = 1, ..., �.
Then, using Theorem 1 of Escobar (1994) and ex-

pressing probability

Qj =
p(yi, ri | θj)

αA(ri, yi) +
∑�

j=1,j �=i p(yi, ri | θj)
,
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we have θi | θ(i), r,y, µ, τ, α =

{
θj with Qj , i �= j

∝ π0(θi | r,y, µ, τ, α) with (1 − ∑�
j=1,j �=i Qj).

Note that the original � areas are replaced by at
most � areas (i.e., this conditional posterior density
describes how the discreteness arises).

3.3 Computations for the Model with
Dirichlet Process Prior

We use the griddy Gibbs sampler to obtain sam-
ples from the joint posterior density of all the pa-
rameters. See Tanner (1993) for a more elaborate
pedagogy on the Griddy Gibbs Sampler. We can
draw from π0(θ(i) | y, r, µ, τ ) as follows. We note
that π0(θ(i), zi | y, r, µ, τ ) = π0(θ(i) | zi, y, r, µ, τ )
p(zi | y, r, µ, τ ).

Note that, given zi, yi, ri, µ, τ , the parameters
pi, π10, and πi1 are independent with

pi | zi, yi, riµ1, τ1
ind∼

Beta(zi + yi + µ1τ1, ri − zi − yi + (1 − µ1)τ1),

πi0 | zi, yi, ri, µ2, τ2
ind∼

Beta (ri − yi + µ2τ2, ni − ri − zi + (1 − µ2)τ2),

πi1 | zi, yi, ri, µ3, τ3
ind∼

Beta(yi + µ3τ3, zi + (1 − µ3)τ3).

The posterior distribution of zi is as follows. Letting

p(Zi = zi | y, r, µ, τ ) ∝ ωzi∑ni−ri

zi=0 ωzi

where

ωzi =
(

ni − ri

zi

)

× B(zi + yi + µ1τ1, ri − zi − yi + (1 − µ1)τ1)
× B(ri − yi + µ2τ2, ni − ri − zi + (1 − µ2)τ2)
× B(yi + µ3τ3, zi + (1 − µ3)τ3),

zi = 0, . . . , ni − ri and i = 1, . . . , �. Thus, we draw
zi from p(Zi = zi | y, r, µ, τ ), and, with this zi, we
draw pi, πi0, and πi1, independently.

The conditional posterior density of α is only re-
lated to k. Escobar and West (1995) show how to
get samples from the conditional posterior density.
We use grids to obtain samples from the conditional
posterior density of (µ, τ), given θ. Let θ∗

1,..., θ∗
k be

the k distinct values, where θ∗
i =(p∗i , π

∗
0 , π∗

1). Then,

p(µ, τ | θ(∗), k) ∝
k∏

i=1

{
p∗i

(µ1τ1−1)(1 − p∗i )
(1−µ1)τ1−1

B(µ1τ1, (1 − µ1)τ1)

×π∗
i0

(µ2τ2−1)(1 − π∗
i0)

(1−µ2)τ2−1

B(µ2τ2, (1 − µ2)τ2)

× π∗
i1

(µ3τ3−1)(1 − π∗
i1)

(1−µ3)τ3−1

B(µ3τ3, (1 − µ3)τ3)

}

×
3∏

r=1

1
(1 + τr)2

.

For example, letting a =
k∏

i=1

p∗i and b =
k∏

i=1

(1−p∗i ),

for (µ1, τ1) the joint conditional posterior density is

p(µ1, τ1 | θ∗, k) ∝ 1
(1 + τ1)2

aµ1τ1−1b(1−µ1)τ1−1

B(µ1τ1, (1 − µ1)τ1)
.

Then, for µ1

p(µ1 | τ1, θ
∗, k) ∝ a(µ1τ1−1)b(1−µ1)τ1−1

B(µ1τ1, (1 − µ1)τ1)
.

For τ1, we make the transformation τ1 = ν1/(µ1 −
ν1), with 0 < ν1 < µ1, to have

p(ν1 | µ1, θ
∗, k) ∝ a

µ1
ν1

µ1−ν1
−1

b
(1−µ1)

ν1
µ1−ν1

−1

B(µ1
ν1

µ1−ν1
, (1 − µ1) ν1

µ1−ν1
)
,

where 0 < ν1 < µ1.
The conditional posterior density of p(α | k) is ob-

tained as follows. Using results in Antoniak (1974),
Escobar and West (1995) presented the probability
mass function

p(k | α) = sn(k)αk Γ(α)
Γ(α + n)

, k = 1, ..., n

where sn(k), not involving α, are the absolute values
of the Sterling numbers of the first kind.

Letting Dn represent a configuration of the data
into k groups, Escobar and West (1995) argued that

p(α | k, θ, Dn) = p(α | k)

where clearly p(α | k) ∝ p(α)p(k | α) and p(α) is the
prior density for α. Escobar and West (1995) took
α ∼ G(a, b) where they specified a = 2 and b = 4 for
the astronomy data studied by Roeder (1990).

Finally, introducing the latent variable γ, where

γ | α, k ∼ Beta(α + 1, n),

they showed that

α | γ, k ∼ λγ,kG{a + k, b − log(γ)}+

(1 − λγ,k)G{a + k − 1, b − log(γ)}
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where

λγ,k =
a + k − 1

a + k − 1 + n(b − log(γ))
.

From above, we have

p(α | k) ∝ p(α)αk Γ(α)
Γ(α + �)

, 0 < α < ∞.

We use the shrinkage prior

p(α) ∝ a/(a + α)2, 0 < α < ∞

where a is to be chosen. Then, the conditional pos-
terior density for α is

p(α | k) ∝ 1
(a + α)2

αk Γ(α)
Γ(α + �)

, 0 < α < ∞.

Transforming α to ρ = α/(α + 1), 0 < ρ < 1, the
conditional posterior density for α is

p(α | k) ∝ (1 − ρ)−2{ρ/(1 − ρ)}k{a + ρ/(1 − ρ)}−2

× Γ(ρ/(1 − ρ))
Γ(� + ρ/(1 − ρ))

, 0 < ρ < 1.

For both µ1 and ν1, our procedure is the same.
Bounded intervals improve the grid method. We
stratify the range into a large number of grids (e.g.,
100) to approximate the probability density function
by a probability mass function.

We have used the griddy Gibbs sampler to fit both
the baseline and the DPP models. The baseline
model was fit using the Metropolis-Hastings sam-
pler in our previous work. We drew 11,000 iter-
ates, threw out the first 1000, and took every tenth.
This is very conservative because convergence is very
rapid.

4. Numerical Results
We have used the NCS data to consider inference

about p in Table 1, in which we have presented the
posterior means (PM), the posterior standard devi-
ations (PSD), the numerical standard errors (NSE)
and the 95% credible intervals (CI) for the DPP
model. The PMs are very similar for the two models
except for RIH, RNL, and RNH. As is expected, the
PSDs are similar larger for the DPP model. The
NSEs are larger for the first seven domains than
the last three which are somewhat smaller. Conse-
quently, the 95% credible intervals for the first three
domains are wider than the last three.

We have considered sensitivity to inference for
the specification of a in the prior density for
α. We have looked at five choices: a =

Table 1: Comparison of the posterior means (PM),
posterior standard deviations (PSD), numerical
standard errors (NSE), and 95% credible intervals
(CI) for p from the baseline and Dirichlet process
prior (DPP) models

Domain PM PSD NSE CI
(a) Baseline Model
UCL 0.269 0.036 0.017 (0.200, 0.329)
UCH 0.262 0.038 0.016 (0.190, 0.328)
UIL 0.273 0.037 0.018 (0.198, 0.332)
UIH 0.254 0.034 0.014 (0.187, 0.313)
UNL 0.295 0.046 0.019 (0.205, 0.374)
UNH 0.291 0.056 0.020 (0.186, 0.408)
RIL 0.269 0.058 0.019 (0.164, 0.389)
RIH 0.178 0.049 0.020 (0.087, 0.274)
RNL 0.168 0.034 0.013 (0.105, 0.234)
RNH 0.213 0.034 0.015 (0.150, 0.275)
(b) DPP Model
UCL 0.274 0.045 0.041 (0.196, 0.327)
UCH 0.274 0.045 0.041 (0.196, 0.327)
UIL 0.275 0.045 0.041 (0.196, 0.329)
UIH 0.272 0.045 0.040 (0.186, 0.327)
UNL 0.280 0.049 0.041 (0.197, 0.365)
UNH 0.276 0.048 0.042 (0.196, 0.342)
RIL 0.270 0.049 0.039 (0.185, 0.331)
RIH 0.186 0.049 0.022 (0.084, 0.265)
RNL 0.183 0.042 0.020 (0.096, 0.248)
RNH 0.223 0.051 0.030 (0.126, 0.312)

NOTE: p = Pr(y = 1 | p) where y = 1 for a
victimized household and 0 otherwise.

0.001, 0.01, 1.00, 100, 1000. Table 2 shows some sen-
sitivity to inference about the pi, but this is reason-
ably small.

As a summary, there are differences between the
DPP and the baseline models. The posterior means
for p, π0 and π1 are very similar (not shown because
of space limit), but their posterior standard devi-
ations under the DPP model are generally larger.
Inference for p is not very sensitive to the choice of
a.
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