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1. INTRODUCTION

The modelling problem addressed in this paper has been
caled correlated failure-time modelling, multivariate
survival modelling, multiple spells modelling, or a
recurrent events problem, and is studied in biomedical
(e.g., Lin, 1994, Hougaard, 2000), socia (Blossfeld and
Hamerle, 1989, Hamerle, 1989) and economic literature
(Lancaster, 1979, Heckman and Singer,1982). Generally
this type of modelling is required for data that arise in
time-to-event studies when two or more events happen to
the same subject. In such a case, the failure times are
correlated within subject, and thus the assumption of
independence of failure times conditional on given
measured covariates, required by standard survival models,
isviolated. The research interest is usualy to assess the
effect of various covariates considered as potential risk
factors.

In studies of duration of spells (poverty, jobless-ness,
etc.), the ‘failure’ isequivalent to ‘exit’ out of the state of
interest. The dependence among the observed spellsfrom
the same individual comes from the fact that these spells
share certain unobserved characteristics of the individual.
The effect of these unobserved characteristics can be
explicitly modelled as arandom effect (e.g., Clayton and
Cuzick, 1985). When this is done, it is assumed that the
random effect followsaknown statistical distribution. The
gamma distribution with mean 1 and unknown variance
seems to be the distribution of choice in many
applications. Then, estimates of random and fixed effects
can be obtained by some suitable method (e.g., two-stage
likelihood (Lancaster, 1979), using an EM agorithm
(Klein, 1992), etc.). The paper does not explore this
method any further.

Another approach is to treat the dependence among
multiple spells as a nuisance, and to model the margina
distributions of the individual spells without explicit
modelling of the dependencies among the spells, with a
possible utilization of the order of the spellsin the model
specification. Following Linand Wei (1989) it ispossible
to modify only the ‘naive’ covariance matrix of the
estimated modd parametersobtained under the assumption
of independence since the correlated durations need to be
accounted for in the variance estimates but not in the
estimates of parameters per se. An additional property of
many multiple spells, often ignored, is that they are
ordered ‘events': the second spell cannot occur before the
first. This approach of working independence and
corrected variance can easily be made to account for the
order of the spells.
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In socio-economic studies of duration of spells the
data usually come from longitudina surveys with
complex sample designs that involve dtratification,
sampling in severd stages, selection with unequal
probabilities, stochastic adjustmentsfor attrition and non-
response, calibration to known parameters, etc. Thereis
aneed to account for the sample design when estimating
the model parameters and the variances of these
estimates. One of the early references for the use of
complex sample data for estimation of proportional
hazards models is Chambless and Boyle (1985). They
estimated the discrete proportiona hazards model
introduced by Prentice and Gloecker (1978) by solving
the likelihood score equations weighted by the sampling
weights. This method is known in survey sampling
literature as the pseudo-likelihood method (Skinner,
1989). In order to estimate the standard errors, they first
verified the asymptotic normality of the weighted
likelihood estimates, and then applied Binder’s (1983)
method for the design-based estimation of the variances
of asymptoticaly norma estimators. Binder (1992)
examinesthefitting of acontinuous proportiona hazards
model to survey data by first defining the finite
population parameter of interest as the solution to the
partial likelihood score equations based on the entire
finite population and then estimating thefinite popul ation
parameters and the variance of these estimates by
applying Binder’'s method (1983). In order to estimate
the variance he used an aternative expression of the
partial likelihood score equation derived by Lin and Wei
(1989) for independent sampling. Recently, Lin (2000)
provided formal justification of Binder’s (1992) method
and extended it to the superpopul ation framework where
inference accounts for both sources of randomness, one
generated by the assumed model and the other coming
from the sample design.

Our approach isto modd the marginal distributions
of the multiple spells using single spell models, treating
the dependence among the spells as a nuisance. The
finite population parameters are defined as a solution of
the resulting partia likelihood score equations and these
parameters are estimated using design-based estimation.
The covariance is estimated using an appropriate design
cong stent lineari zation method assuming that the primary
sampling units are sampled with replacement within
strata. Thisassumptionisviable giventhe small sampling
rates usually used in socio-economic surveys. Also, for
such samples, the difference between finite population
and superpopulation inference (i.e. the standard errors
and the test statistics) has been found to be rather
negligible (Lin, 2000). Therefore, the results from
inference based on our approach extend beyond thefinite
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population under study.

In the next section we review single spell modelling
and the methods for robust estimation of the variances
when the model ismisspecified. Section 3 containsfurther
discussion on robust variance estimation for multiple
spells. Then, in Section 4, threemodel s areintroduced and
applied to the multiple spells. A full description of how to
fit these models using the single-spell robust estimation
methodsisalso given. In Section 5 wefit these modelsto
the data from the Canadian Survey on Labour and Income
Dynamics (SLID) and discuss the numerica results.
Finally, Section 6 contains some overall remarks.

2. DISTRIBUTION OF SINGLE SPELLSAND THE
STANDARD HAZARD RATE MODEL

The duration of aspell (or simply, aspell) experienced by
anindividual isarandom variabledenoted by T. Themain
characteristics of T such as the cumulative distribution
F(?), probability density £(¢), expectation p , etc., may be
defined inthe usual way. For thespell T, however, weare
more interested in quantities such as: (i) the survivor
function of T, S(f) = Prob{T>t} = 1- F(r), defined as
the probability that the spell is not completed at t, and (ii)
thehazard function of T at t, h(t),defined asthe probability
that the spell is completed at t given that it has not been
completed beforet,

h(f) = lim Prob {t<T<t+dt|T> #}
dt-0 dt

The value of the hazard function at t is called the exit rate
to emphasis that the completion of the spell is equivalent
to exit out of the state of interest. The hazard function
providesafull characterization of thedistribution of T, just
like F(%), f(?), or S(r). In other words, once the hazard
function is completely specified the distribution of the
spell is also completely specified. Duration models and
analysis of duration in genera are formulated and
discussed in terms of the hazard function and its
properties.

From a subject matter perspective, the main concern
is usually to study the impact of some key covariates on
thedistribution of T. We assume that the variation in
distribution of spells can be characterized by a vector of
observed explanatory variables x which can be time-
invariant or time-varying variables. Under the proportional
hazards model, the hazard function for the spell T
associated with a vector of possibly timevarying

covariates x = (xl,...,xp)’ is
h(t]x) = A (1) X' (2)
The function A (?)is an unspecified baseline hazard

function and gives the shape of the hazard function. If an
individual hasal x variables set at 0, the value (level) of
the hazard function is equal to the baseline hazard.
Similarly, if two individuals have identical values of the
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observed characteristics, they have identica hazard
functions (1). The baseline hazard describes the duration
dependance, namely whether the hazard rate depends on
time already spent in the spell. For example, negative
dependance describes the situation where the longer the
spell the smaller the probability of exit.

Vector [ contains the unknown regression
parameters showing the dependance of the hazard on the
X variables and may be estimated by maximizing the
partial likelihood function (Cox, 1975):
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Here 7,,..T are n durations possibly right-censored;
6,=1if T,isanobserveddurationand 6,=0 otherwise;
and x,(¢) isthe corresponding covariate vector observed
on [0, 7,]. The denominator sum is taken over the spells
that are at risk of being completed at time T, [i.e,
Yj(t):l if ts]}., and is equa to O, otherwise]. The

estimate of themodel parameter B isobtained by solving
the partia likelihood score equation

UyB) = 2-1 u,(T,p)=0 ()
here u,,(T,B) = 6,{x(T) 7SO%TPB) is the score
Wi u. N =0.9x(1.)— i
1/ ANE i [ASN 2 S(O)(Ti, ﬁ)

/
residual, with S(O)(tﬁ):LS:Yi(t)exi(t)B and
n =1

/
SO, p)=L f: YD x 1) e P .If themodel (1) istrue,
n =1

the model-based variance matrix of the score function

Uy(B) is
J(B) = aUy(PB)/ P
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where S(2>(t,[3)=li: YD x)x/ e . The
n =1

i=1

approximate variance of 8, obtained by linearizarion, is

T NB).
If the real dependance structure is misspecified by
the model, Lin and Wei (1989) provide the robust

variance estimator for f as
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JNBYGB)Y T (B, 3)
where G(B) = 3 £(B)&/(B) and
i=1
8(B) = uy(T,B)
%(T) (1)
Y(T)e ™/ SOTP)|. (4
3, ,(0,>e oT)- 0( B @
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For estimation of the parameters of a proportional
hazards model from clustered survey datain the case of a
single spell per individual, Binder (1992) used the
estimating equationsmethod. In particular, hefirst defined
the finite population parameter of interest asasolution of

the partia likelihood score eguation (2) calculated from
the spells of the entire population

Uy(B) = fl: uy,(T,B)=0

where u,,(T,B) isthe sét_)re residual defined in the same
way as u,(T,Pp) , aswell as SO(z,B) and SP(7,B). An
estimate B of the parameter B is obtained as a solution to
the partial pseudo-score estimating equation

U,(B) = ﬁ? w(s) i, (T,B) = 0
wherew (s) =w, if iesl ,and O otherwise, and w (s) denotes
ascaled samplingweight (3w (s) = 1). Function 4, (T, B)

takes theform

$U(T,B)

$9(z,B)
where (T, B) and §(T, B) are the estimates of the
respective means defined previoudly.

Generally, thedesign-based variance of an estimate B
which satisfies the estimating equation
UB)=Y, wuB)=0 can be obtained using
linearization as

ﬁio(Ti’B) = 6i{xi(Ti) -

I B)) J! (5)

where J=0U(B)/0B is evdluaed a B=B, and

V(U(B))is the variance of the total estimated by some
standard variance estimation method, see for example
Cochran (1976).

Binder (1983) gave the conditions that the u(B)

functions should satisfy in order to provide consistent
estimates of the variances of the implicitly defined

parameters. In the case above, U, (B)does not satisfy
these conditions since the u,,‘s are the functions of the
sumsthat depend on T',. Rewriting the scoreresidualsin a
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different way, Binder (1992) provided a weighted form
of residuas (4) and the ul.(l?)functions such that the

resulting U () conforms to the conditions:

§(1)(Ti’ﬁ) }

xT)B

Y s, Y(T)x(T)e
— 7 © 5
e S, B)
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{xi@ i w}
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Using these values it is possible to obtain a design
consistent estimate 77 ( U(B)) by application of some of
the design-based methods.

The design-based approach provides estimation of a
well-defined quantity even when the mode is
misspecified. Note that for a simple random sample of
individuals the variance estimator (5) reducesto (3).

3. ROBUST INFERENCE FOR THE MULTIPLE
SPELL HAZARDS MODELS

If more than one spell is observed for an individual, it is
reaistic to assume that these spells are not independent.
Thus the likelihood function based on model (1) is
misspecified for multiple spellssinceit does not account
for intra-individual correlation of the spells observed on
the sameindividual. Following Linand Wei (1989), itis
necessary and sufficient to modify only the covariance
matrix of the estimated model parameters since the
correlated durations affect the variance while the model
parameters can be estimated consistently without
accounting for this correlation. This implies that the
model parameters can be estimated by treating events as
independent, and then the variance estimates can be
modified to account for the dependencies. The modified
variance estimator (3) is robust to this type of model
misspecification.

Socio-economic data are usually collected using a
multi-stage sampledesign with compact geographic areas
called primary sampling units (PSU) (e.g., census
enumeration areas, neighbourhoods, city blocks or
villages, etc.) being sampled at the first stage, and
individuals being subsampled at the fina stage. In a
longitudinal study the multipleeventsare observed onthe
same person. These data are cluster-correlated at two
nested levels: the spellsare clustered within anindividual,,
and individuals are clustered within the PSUs. The
positiveintra-cluster correlation at any level addsan extra
variation to estimates cal culated from such data, beyond
what is expected under independence. Assuming
independence of observations when they are cluster-
correlated leads to underestimation of the true standard
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errors, inflates the values of test statistics, and ultimately
resultsin too frequent rejection of null hypotheses.

The design-based variance estimation for the nested-
cluster-correlated data can be greatly simplified by
assuming that individuals from different PSU’s are
independent. Thisis equivalent to assuming that the PSUs
are sampled with replacement. This assumption holds in
large samples when the sampling rate at the first stageis
very small so that the probability of having the same PSU
sampled twiceisnegligible. Insuch acase, the estimate of
the between-PSU variance captures the variability among
units in al subsequent stages, alowing for arbitrary
dependence structure among observationswithin acluster.
For arecent summary of robust variance estimation for
cluster-correlated data see Williams (2000).

This implies that Binder's (1992) approach for the
robust variance estimation of the single spell models can
be directly applied to the multiple spells situation since it
accounts for the clustering at the PSU level, while

individuals are within PSU’s. Briefly, the estimate B is
obtained by solving the corresponding partial pseudo score

equation U,(B) = 0 assuming theindependence of spells.
The estimated design-based covariance matrix of B is
obtained as J ' (B) PAUB)} ! (B) where U(B) isthe
design-based estimate of the total of the ﬁi(ﬁ) functions

defined by (6) with the quantities $©(z, B) and S (¢, B)
appropriately defined and estimated.

4. THREE MODELSFOR MULTIPLE SPELLS
Inorder to alow thecovariatesto have different effectsfor
spellsof different ordersaswell asto alow different time
dependancies (basdline hazards) we are fitting three
modelsto multiple spells. The models differ according to
the definition of the risk set and the assumptions about the
baselinehazard. Two of thesemodelsaccount for the order
of the spells.

It should be noted, however, that the spell order refers
only to the observation period from which the data are
collected and not to the entire history of an individual
(unless these two time periods coincide). For example by
the first spell we consider a first spell in the observation
period athough it may be a spell of any higher absolute
order over the person’slifetime. Thislimitation impliesa
careful interpretation of any effect that spell order may
have on covariate effects or on time dependency.

Model 1. Inthefirst model, therisk setiscarefully defined
to take the order of the spellsinto account in the sense that
an individual cannot be at risk of completing the second
spell before he completes the first. This model known as
the conditional risk set model was proposed by Prentice,
Williams and Peterson (1981) and was reviewed by Lin
(1994). It was aso discussed by Hamerle (1989) and
Blossfeld and Hamerle (1989) in the context of modelling
multi-episode processes. Generaly, the conditional risk
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set at time t for the completion of a spell of order |
consistsof all individualsthat arein their j-th spells. This
model allows spell order to influence both the effect of
covariates and the shape of the basdline hazard function

The hazard function for the i th individual for the
spell of jth order is

x()B;
hj(t|xl.j) = A.Oj(t)e e

where for each spell order, a different baseline hazard
function and a different coefficient vector are alowed.
An appropriate partia likeihood for this modd,
pretending that the spells within the sameindividual are
independent, is

5T y

N.
LBbp-11 II @)

11 | £ TB
Y (T,) ™ T%
— g

Here T.,..
1)

censored j-th order spells, 61.1.:1 if Tl.j is an observed

.Tle. are ]\/; durations of possibly right-

duration and 6,-,-= 0 otherwise. The denominator sum is
taken over the j-th spells that are at risk of being
completed at time Tl.j, i.e, Yrj(t):l if thrj, and is
equal to 0 otherwise. x!.,.(t) isthe corresponding covariate
vector observed on [0, Tij]. Partia likelihood (7) can be

maximized separately for eachj if there are no additional
restrictions on Bj.

The corresponding score equations that define the
finite population parameter are

i=

N,
u®-3 Y ,o(TjsB) = 0
j=1 i=1

i SUT.,B)
with u (T .B)=38 4x(T)-— L and
HoNT 5 gy |7y i S(O)(]:-j»Bj)

N,
1 x./ B.
S(°>(t, Bj_):F Zl: Yij(t) e /0B, and
J
1 & OB
S(l)(t,Bj)=F z; Y,-,-(’) x,-,(’) e T,
Jr

The design-based estimates of the parameters BJ. are
obtained by solving equations

gy J

N,
Z w(s) uyy (T, B)) = 0 separately for each .
i=1

Note that the sampling weights correspond to the
individualsand not to the spells. Similarly, estimation of
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the variances will be done separately for each spell order
using the same robust estimator (5). Technicaly, thisisa
set of analyses separated by spell order.

Model 2. The second model considered is the marginal
model (Wei, Lin and Weissfeld, 1989)

_ 2 OB
hj(t|xi].) = A.Oj(t)e y

where for each spell order we alow a different baseline
hazard function while the covariate effects are kept the
sameover different spell orders. Thecorresponding partial
likelihood function as well asthe risk set, pretending that
the spells within the same individual are independent, is
the same as for Model 1. The corresponding score
equation that defines the finite population parameter is
N,
U,B) = fl: 2; uy.o(Tt.j,B) =0
=

i=

_ SU(T,.B)
with  u,(7,,B) = 8, \x(T) - —— % % where
’ ST, B)

N,

|=

/
SOt,B)= Y,(t) e " and

=

~
~.

1

N,

/
x (OB
) 7, x, (1) e %

SM(,B)=
i=1

1

Nj
The design-based estimate of the parameter B is

obtained by solving the weighted score equations

N,
jﬁ; 2:; w(s) ”go(zj,ﬁ) =0.

The estimation of the variance will be done using the
robust estimator (5). Technicaly, this is an anaysis
stratified by spell order.

Model 3. Thelast model considered isaso amodel of the
marginal hazard function

/
h(t]x;) = ho(0) e

In this model we assume that the basdine hazard
functions and the effects of covariates are common for
different ordersof spells. Therisk setisdefined differently
thanfor Models1 and 2, and containsall spellswith < Tl.j,

effectively assuming that spells come from different
individuals.  Technicaly, this modd is a single-spell
model.

5. EXAMPLE WITH SLID DATA AND
DISCUSSION
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The data set that we use for illustration, comes from a
six-year panel (1993-1998) of the Canadian Survey of
Income and Labour Dynamics (SLID). About 31,000
longitudinal individuals were followed for six yearswith
some being lost over time for any number of reasons.
Some individuals lost to one or more interviews were
found and resumed their participation. A complex
welghting of the responding SLID individuals each year
takesinto account different types of attrition so that each
respondent is weighted against the relevant reference
population of 1993; thisresultsin aseparate longitudinal
weight for each wave (i.e. year) of data. For thisanalysis
we used the longitudinal weightsfrom thelast year of the
panel, i.e., 1998. A good summary of the sample design
issuesin SLID isgivenin Lavigne and Michaud (1998).
A good review of the issues related to studies of
unemployment spellsfrom SLID isgivenin Robertsand
Kovacevic (2001).

The state of interest is* unemployment” defined, for
our example, as the state after permanent layoff from a
full-time job until another full-time job begins. A job is
“full-time” if it requires at least 30 hours of work per
week. The event of interest is ‘the exit from
unemployment.” Only spells beginning after January 1,
1993 were included. Spells that were not completed by
the end of the observation period (December 31, 1998)
were considered as censored. Sample counts of the
number of individual sexperiencing spellsand thenumber
of spellsof each order aregivenin Table 1. Thedatafile
used for this illustration contains 17,880 layoff records
from 8401 longitudinal individuas. Evidently, about half
of the sampled individuals (4260) who had spells
experienced two or moreunemployment spells. Thereare
3394 spellsthat remained uncompleted due to the end of
the panel.

The data set for the illustration is prepared in the
“counting process’ style where each respondent is
represented by aset of rows, and each row correspondsto
aspell. Although arow containstime of entry to the spell
t,, and time of exit #, or time of censoring ¢ , the

duration time for analysis is always considered in the
form (O, z,-7,) or (O, 7,-7,). The covariates of interest

are attached to each row. Some of them aredescribing the
respondent (e.g., sex, age, and income), some of them are
related to the job that ended when the spell commenced
(e.g. firm size), and some are characteristics of the spell
(e.g. receipt of employment insurance during the spell, or
going back to school during the spell). Since some of
these variables were recorded only once a year, for this
illustration we used their values from the year in which
the spell ended or was censored. Some covariates stayed
constant over the life of the panel (e.g., sex), and others
changed from spell to spell. Also attached to each row,
for the purposes of point estimation and variance
estimation, are the person longitudina weight, and
identifiers for the stratum and psu of the person whose
spell is being described by that record.
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We now apply the models and techniques described
in the previous sections to the SLID data set. We used
SAS and SUDAAN for carrying out our computations.
For the purpose of this illustration we restricted the
analysis to the first four spells, which meant that all
sampled individuals with spells would be included in the
analysisbut that recordsfor spellsafter thefourth were not
considered. The estimated average duration of completed
spells is 33.3 weeks while the average duration for
censored (uncompleted) spellsis 48.5 weeks.

Visua examination of estimated survival functions
(not shown) indicated that, as order increased, the value of
the SDF at any fixed time t decreased, indicating that
single spells are the longest among compl eted spells, and
that the higher the order of amultiple spell the shorter isits
duration. Thisisadirect consequence of the limited life of
the panel, so that an individual with more spellsislikely to
have shorter spells.

Fromalonglist of available covariateswe choseonly
ten. Thevariable SEX of thelongitudinal individual isthe
only variable that remains constant over different spells.
Other variables have vauesrecorded at the end of the year
in which the spell commenced (education level
[EDUCLEV], marital status[MARST], family income per
capita, age) or they have the values from the lay-off job
preceding the spell (type of job ending[TYPJBEND],
occupation, firm size) or they represent thesituation during
the spell (having a part time job[PARTTJB], attending
school[ATSCH]).

The main results on fitting the three models to the
SLID data are given in Table 2. For this analysis we did
not distinguish single spells from the first spells of
multiple-spell individuals. The standard errors of the
estimated model coefficients needed for testing
significance of each coefficient are obtained using the
robust Binder (1992) approach. Thedesign-based variance
method used was Taylor linearization, assuming a survey
designthat is stratified with with-replacement selection of
psu’sat thefirst stage. Coefficientsfound significant at the
5% level are given in bold.

Model 1isconditional on the spell order and reduces
to four modelsfitted separately. Visual observation of the
differencesinthe estimated coefficientsacrossspell orders
and the significance of the model coefficients within a
spell order were used to identify whether or not there
appearsto beadifferentia effect of the covariateson spell
duration. For example, variables having significant
negative effect for one spell order and not being significant
for others are education levels lower then ‘“M’, having a
part timejob, and attending school during the lay-off. All
of them are significant for the first three spell orders and
not for the fourth. This can be at |least partly attributed to
the small sample size for the fourth spells. Another
example is the small company size which has an
insignificant negative effect for the first two spell orders
and has a significant positive effect for the fourth order.
Age has significant negative effect for all four orders;
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however, the magnitude of effect decreaseswith the spell
order. Thus, an increase in age by a year reduces the
hazard of exit from an unemployment spell by about 5%
for the first spell, about 3% for the second and the third
spell, and 2% for the fourth. The estimated empirical
cumulative baseline hazard functions for Modd 1 are
givenin Figure 1. These functions are estimated as

Hoj(t) = -log Soj(t) ,forj=1to 4.

where S, (¢) is the estimated baseline survivor function
implicitly given by

S & By(TB]
‘S}(];j’xl'j') = {Soj(];j)}cxp vy Bj
and §j(t,x)is the estimated survivor function (see

Kalbfleisch and Prentice, 1980, page 84). From Figure 1
we can see that for durations up to 50 weeks the
cumulative baseline hazards are ordered according to the
spell order, with the dominance of the first order spell
function. Also in this interval al the functions have a
concave shape, essentially meaning that thereisapositive
time dependence of the exit rate (the longer the spell the
higher the probability of exit) with the strongest
dependencefor thefirst order spells. For durationslonger
than 50 weeks the shape becomes convex suggesting
negative time dependance for the longer spells with the
strongest dependence for the third order spells.

Modéd 2 has the same beta coefficients for al spell
orders. Numerically the estimated coefficient values are
mostly situated between the estimates for the first and
second order spells obtained for Model 1 due to the
method of egtimation and the sample shares that
correspond to these orders. Since the entire sample is
used to egtimate the single set of coefficients, the
estimates are more precise; however, this caused little
changeinwhich variableswere found to have significant
coefficients. The cumulative baseline hazard functions
for thismodel are presented in Figure 2. The shape of the
curvesremainsasintheModel 1indicatingthe sametype
of time dependance for the exit rates. However, the
ordering of the curves changed completely, with the
dominance of spells of fourth order.

Modd 3 isasingle spell model resulting in asingle
set of model coefficients and a single baseline hazard
function. The estimated model coefficients are similar to
the estimates obtained by Modd 2. This fact could
indicatethat if Model 2 is approximately true, then miss-
specification of the effect of spell order as is done in
Model 1 still leadsto reasonable estimates of the effects
of risk factors. The cumulative baseline hazard function
for Model 3 isgivenin Figure 3. Evidently its shapeis
the same as the shape of the hazard curves discussed
previoudly.

The generd conclusion from results given in Table
2 is that from the particular population of spells being
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studied, thereis an interaction between the spell order and
the covariates chosen for the model, as indicated by the
different coefficients for the different orders of Model 1.
However, if you were willing to restrict yourself to a
model with the same coefficients for al spell orders (i.e.
Model 2 or 3), the estimates of the covariate effects are
approximately the samefor themarginal model (Model 2)
and the‘single spell’ model (Model 3), suggesting that the
‘singlespell’ model would giveadequateresultsunder this
restriction, ascompared to the extraeffort needed to fit the
marginal model.

We aso examined the coefficient standard errors for
Models 1 and 2 estimated by (i) the‘ naive’ method where
the coefficient estimatesare obtained under theassumption
of independence of individuals and of the spells and then
the ‘naive’ variance estimate is corrected for the spell
dependency (which is a modification of the method
described in Lin and Wel (1989) to include sampling
weights); and by (ii) the robust Binder approach (which
again estimatesthe coefficientsby the ' naive’ approach but
correctsfor the correlation between and withinindividuals
induced by the survey design in the variance estimation).
The standard errors obtained by correcting for the sample
design effect are larger than the standard errors obtained
by correcting only for the spell dependencies within
individuals. Thedesign-based varianceestimation method
used automatically accounts for the correlations between
individuals and the correlation between multiple spells
experienced by an individual because of the assumption of
with-replacement sampling of psu’'s and because both
individuals and spells are nested within psu’s. (Each spell
from the same individua is given the individual weight,
since, giventhat anindividual ischosenfor thesample, the
individual’'s spells are chosen with probability 1.) The
ratio of the two standard errors could be considered as a
measure of the magnitude of the sample clustering effect.
The sample clustering effect on B for covariate SEX, for
example, ranges between 1.35 and 1.65 for Mode 1,
while for Model 2 it is1.80.

6. CONCLUDING REMARKS

We explored the problem of analysisof multiple spellsby
considering two general approaches for dealing with the
lack of independence among the exit times: a variance-
corrected approach and adesign-based approach. Thefirst
approach estimates the model parameters assuming the
independence of the spells, and then corrects the naive
covariance matrix to account for the within-individua
dependencies. This approach does not account for the
clustering between individuals induced by the sample
design. Thesecond approach definesthemodel parameters
asfinite population parameters. These parameters are then
estimated accounting for possible unegqual selection
probabilities of individuals. A design-based variance
estimation method that appropriately accounts for the
correlations between individual s ‘ automatically’ accounts
for the unspecified dependancies of spells within
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individuals. For large sample sizes this design-based
inference extends directly to the super-population which
hypothetically underlies the finite population. The
deficiency of the first approach is that it totally ignores
the clustering between individuas. A possible
disadvantage of the second approach is that it relies on
the assumption of with replacement sampling of clusters
of individuas. The two approaches coincide in the case
of simplerandom sampling. Weapplied theseapproaches
to three models: two of which use information on the
spell order to specify theinteraction of the spell order and
covariates, and to alow for differential unspecified
baseline hazards. The third model was a simple single
spell model. Wefound that using information onthe spell
order affects the modelling of multiple spells.
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Tablel. Countsofindividualsinthe six-year panel of SLID with unemployment spellsbeginning between January 1993
and December 1998 by the total number of spells and by order of spell (C-completed, U-uncompl eted)

Individuals by Spells by order
number of spells
First Second Third Fourth 5"+
C ] C C U C U C U
1spel | 4141 2221 | 1920 - - - - - - -
2spells | 1915 1915 - | 1154 | 761 - - - - - -
3gpels | 1044 1044 - | 1044 612 | 432 - - - -
4 spells 629 629 - 629 629 - 348 281 - -
5+ gpells 672 672 - 672 672 - 672 - | 1158 | 415
Total | 8401 6481 | 1920 | 3499 | 761 | 1913 | 432 | 1020 281 | 1158 | 415

1940
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Table 2. Estimated B coefficients for three models

Mode 1 Model 2 | Modd 3
Orderl Order2 Order3 Orderd
SEX (F)
M 0.4417 0.3781 0.3299 0.4435 0.4049 0.4090
EDUCLEV (H)
L -0.4561 -0.5234 -0.3748 -0.1065 -0.4128 -0.4331
LM -0.2330 -0.2700 -0.3310 -0.1653 -0.2436 -0.2474
M -0.0744 -0.1060 -0.1156 0.0668 -0.0684 -0.0671
MARST (M)
Single -0.1142 -0.1290 -0.0622 -0.1375 -0.1357 -0.1330
Other 0.0985 -0.0894 0.1124 -0.1072 0.0328 0.0401
TYPJIBEND (Fired)
Voluntary 0.0704 0.2752 0.4207 0.3413 0.1579 0.1284
OCCUPATION(Cthrs)
Professionals 0.1592 -0.1364 -0.1388 0.0903 0.0490 0.0485
Admin -0.0265 -0.2930 -0.1769 0.0579 -0.0971 -0.0938
PrimSector -0.0211 -0.2175 -0.1187 0.2032 -0.0410 -0.0201
Manufacture -0.0003 -0.0994 -0.1295 0.2862 -0.0093 -0.0088
Construction 0.1290 -0.1862 -0.0879 0.2339 0.0490 0.0813
FIRMSIZE (1000+)
<20 -0.0027 -0.0097 0.1005 0.4403 0.0441 0.0408
20-99 0.0358 0.0881 0.0815 0.3999 0.0928 0.0951
100-499 0.0436 -0.0905 0.0328 0.0257 0.0214 0.0278
500-999 -0.0006 0.0153 -0.0623 -0.0067 -0.0005 0.0020
PARTTJB (No)
Yes -0.2903 -0.5414 -0.5109 -0.1407 -0.3693 -0.3743
ATSCH (No)
Yes -1.0832 -1.1516 -1.2956 -1.3541 -1.1205 -1.1266
Family Income Per
Capita (10K-)
10K-20K 0.1294 0.1802 0.0692 0.1117 0.1345 0.1330
20K-30K 0.1644 0.3611 0.1572 0.4900 0.2241 0.2141
30K+ 0.1712 0.3916 0.3005 0.4241 0.2280 0.2115
AGE -0.0491 -0.0311 -0.0269 -0.0207 -0.0424 -0.0435
Spells inrisk set 8386 4255 2345 1300 16286 16286
Censored 1913 759 432 281 3385 3385
Completed 6473 3496 1913 1019 12901 12901

The values significant at 5% level are bold
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Figure 1. Cumulative Baseline Hazard — NModel 1
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Figure 2. Cumulative Baseline Hazard — Model 2
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Figure 3. Cumulative Baseline Hazard — Model 3
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