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1. INTRODUCTION
The modelling problem addressed in this paper has been
called correlated failure-time modelling, multivariate
survival modelling, multiple spells modelling, or a
recurrent events problem, and is studied in biomedical
(e.g., Lin, 1994, Hougaard, 2000), social (Blossfeld and
Hamerle, 1989, Hamerle, 1989) and economic literature
(Lancaster, 1979, Heckman and Singer,1982). Generally
this type of modelling is required for data that arise in
time-to-event studies when two or more events happen to
the same subject. In such a case, the failure times are
correlated within subject, and thus the assumption of
independence of failure times conditional on given
measured covariates, required by standard survival models,
is violated.  The research interest is usually to assess the
effect of various covariates considered as potential risk
factors.

In studies of duration of spells (poverty, jobless-ness,
etc.), the ‘failure’ is equivalent to ‘exit’ out of the state of
interest.  The dependence among the observed spells from
the same individual comes from the fact that these spells
share certain unobserved characteristics of the individual.
The effect of these unobserved characteristics can be
explicitly modelled as a random effect (e.g., Clayton and
Cuzick, 1985). When this is done, it is assumed that the
random effect follows a known statistical distribution. The
gamma distribution with mean 1 and unknown variance
seems to be the distribution of choice in many
applications. Then, estimates of random and fixed effects
can be obtained by some suitable method (e.g., two-stage
likelihood (Lancaster, 1979), using an EM algorithm
(Klein, 1992), etc.).  The paper does not explore this
method any further.

Another approach is to treat the dependence among
multiple spells as a nuisance, and to model the marginal
distributions of the individual spells without explicit
modelling of the dependencies among the spells, with a
possible utilization of the order of the spells in the model
specification. Following Lin and Wei (1989) it is possible
to modify only the ‘naive’ covariance matrix of the
estimated model parameters obtained under the assumption
of independence since the correlated durations need to be
accounted for in the variance estimates but not in the
estimates of parameters per se.  An additional property of
many multiple spells, often ignored, is that they are
ordered ‘events’: the second spell cannot occur before the
first. This approach of working independence and
corrected variance can easily be made to account for the
order of the spells.

In socio-economic studies of duration of spells the
data usually come from longitudinal surveys with
complex sample designs that involve stratification,
sampling in several stages, selection with unequal
probabilities, stochastic adjustments for attrition and non-
response, calibration to known parameters, etc. There is
a need to account for the sample design when estimating
the model parameters and the variances of these
estimates. One of the early references for the use of
complex sample data for estimation of proportional
hazards models is Chambless and Boyle (1985). They
estimated the discrete proportional hazards model
introduced by Prentice and Gloecker (1978) by solving
the likelihood score equations weighted by the sampling
weights. This method is known in survey sampling
literature as the pseudo-likelihood method (Skinner,
1989).  In order to estimate the standard errors, they first
verified the asymptotic normality of the weighted
likelihood estimates, and then applied Binder’s (1983)
method for the design-based estimation of the variances
of asymptotically normal estimators. Binder (1992)
examines the fitting of a continuous proportional hazards
model to survey data by first defining the finite
population parameter of interest as the solution to the
partial likelihood score equations based on the entire
finite population and then estimating the finite population
parameters and the variance of these estimates by
applying  Binder’s method (1983). In order to estimate
the variance he used an alternative expression of the
partial likelihood score equation derived by Lin and Wei
(1989) for independent sampling. Recently, Lin (2000)
provided formal justification of Binder’s (1992) method
and extended it to the superpopulation framework where
inference accounts for both sources of randomness, one
generated by the assumed model and the other coming
from the sample design.

Our approach is to model the marginal distributions
of the multiple spells using single spell models, treating
the dependence among the spells as a nuisance.  The
finite population parameters are defined as a solution of
the resulting partial likelihood score equations and these
parameters are estimated using design-based estimation.
The covariance is estimated using an appropriate design
consistent linearization method assuming that the primary
sampling units are sampled with replacement within
strata. This assumption is viable given the small sampling
rates usually used in socio-economic surveys. Also, for
such samples, the difference between  finite population
and superpopulation inference (i.e. the standard errors
and the test statistics) has been found to be rather
negligible (Lin, 2000). Therefore, the results from
inference based on our approach extend beyond the finite
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population under study. 
In the next section we review single spell modelling

and the methods for robust estimation of the variances
when the model is misspecified. Section 3 contains further
discussion on robust variance estimation for multiple
spells. Then, in Section 4, three models are introduced and
applied to the multiple spells. A full description of how to
fit these models using the single-spell robust estimation
methods is also given.  In Section 5 we fit these models to
the data from the Canadian Survey on Labour and Income
Dynamics (SLID) and discuss the numerical results.
Finally, Section 6 contains some overall remarks.

2. DISTRIBUTION OF SINGLE SPELLS AND THE
STANDARD HAZARD RATE MODEL
The duration of a spell (or simply, a spell) experienced by
an individual is a random variable denoted by T.  The main
characteristics of T such as the cumulative distribution

, probability density , expectation , etc., may be
defined in the usual way.  For the spell T , however, we are
more interested in quantities such as: (i) the survivor
function of T ,  , defined as
the probability that the spell is not completed at t, and (ii)
the hazard function of T at t, h(t),defined as the probability
that the spell is completed at t given that it has not been
completed before t, 

 

The value of the hazard function at t is called the exit rate
to emphasis that the completion of the spell is equivalent
to exit out of the state of interest.  The hazard function
provides a full characterization of the distribution of T, just
like  , , or .  In other words, once the hazard
function is completely specified the distribution of the
spell is also completely specified. Duration models and
analysis of duration in general are formulated and
discussed in terms of the hazard function and its
properties.

 From a subject matter perspective, the main concern
is usually to study the impact of some key covariates on
the distribution of T. We assume that the variation in
distribution of spells can be characterized by a vector of
observed explanatory variables x which can be time-
invariant or time-varying variables. Under the proportional
hazards model, the hazard function for the spell T
associated with a vector of possibly time-varying
covariates  is

(1)

The function is an unspecified baseline hazard

function and gives the shape of the hazard function. If an
individual has all  x variables set at 0, the value (level) of
the hazard function is equal to the baseline hazard.
Similarly, if two individuals have identical values of the

observed characteristics, they have identical hazard
functions (1). The baseline hazard describes the duration
dependance, namely whether the hazard rate depends on
time already spent in the spell. For example,  negative
dependance describes the situation where the longer the
spell the smaller the probability of exit. 

Vector  contains the unknown regression
parameters showing the dependance of the hazard on the
x variables and may be estimated by maximizing the
partial likelihood function (Cox, 1975):

.  

Here  are n durations possibly right-censored;

 if   is an observed duration and  otherwise;

and  is the corresponding covariate vector observed

on [0, ]. The denominator sum is taken over the spells

that are at risk of being completed at time , [i.e.,

, and is equal to 0, otherwise]. The

estimate of the model parameter  is obtained by solving
the partial likelihood score equation

(2)

where  is the score

residual, with  and

. If the model (1) is true,

the model-based variance matrix of the score function
 is 

 

where  .  The

approximate variance of , obtained by linearizarion, is

. 
If the real dependance structure is misspecified by

the model, Lin and Wei (1989) provide the robust

variance estimator for  as 
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, (3) 

where  and 

. (4)

For estimation of the parameters of a proportional
hazards model from clustered survey data in the case of a
single spell per individual, Binder (1992) used the
estimating equations method. In particular, he first defined
the finite population parameter of interest  as a solution of
the partial likelihood score equation (2) calculated from
the spells of the entire population 

where is the score residual defined in the same

way as , as well as  and . An

estimate  of the parameter B is obtained as a solution to
the partial pseudo-score estimating equation

 

where  if , and 0 otherwise, and denotes

a scaled sampling weight ( ). Function 

takes the form 

 

where  and are the estimates of the

respective means defined previously.

Generally, the design-based variance of an estimate 
which  sat isf ies  the  es t imat ing eq ua t io n

 can be obtained using

linearization as 

(5) 

where  is evaluated at , and

is the variance of the total estimated by some
standard variance estimation method, see for example
Cochran (1976). 

Binder (1983) gave the conditions that the 

functions should satisfy in order to provide consistent
estimates of the variances of the implicitly defined

parameters. In the case above, does not satisfy

these conditions since the ‘s are the functions of the

sums that depend on . Rewriting the score residuals in a

different way, Binder (1992) provided a weighted form

of residuals (4) and the functions such that the

resulting conforms to the conditions:

(6)

Using these values it is possible to obtain a design

consistent estimate  by application of some of
the design-based methods.

The design-based approach provides estimation of a
well-defined quantity even when the model is
misspecified. Note that for a simple random sample of
individuals the variance estimator (5) reduces to (3).

3. ROBUST INFERENCE FOR THE MULTIPLE
SPELL HAZARDS MODELS
If more than one spell is observed for an individual, it is
realistic to assume that these spells are not independent.
Thus the likelihood function based on model (1) is
misspecified for  multiple spells since it does not account
for intra-individual correlation of the spells observed on
the same individual. Following Lin and Wei (1989), it is
necessary and sufficient to modify only the covariance
matrix of the estimated model parameters since the
correlated durations affect the variance while the model
parameters can be estimated consistently without
accounting for this correlation. This implies that the
model parameters can be estimated by treating events as
independent, and then the variance estimates can be
modified to account for the dependencies. The modified
variance estimator (3) is robust to this type of model
misspecification.

Socio-economic data are usually collected using a
multi-stage sample design with compact geographic areas
called primary sampling units (PSU) (e.g., census
enumeration areas, neighbourhoods, city blocks or
villages, etc.) being sampled at the first stage, and
individuals being subsampled at the final stage. In a
longitudinal study the multiple events are observed on the
same person. These data are cluster-correlated at two
nested levels: the spells are clustered within an individual,
and individuals are clustered within the PSUs.  The
positive intra-cluster correlation at any level adds an extra
variation to estimates calculated from such data, beyond
what is expected under independence. Assuming
independence of observations when they are cluster-
correlated leads to underestimation of the true standard
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errors, inflates the values of test statistics, and ultimately
results in too frequent rejection of  null hypotheses.

The design-based variance estimation for the nested-
cluster-correlated data can be greatly simplified by
assuming that  individuals from different PSU’s are
independent. This is equivalent to assuming that the PSUs
are sampled with replacement. This assumption holds in
large samples  when the sampling rate at the first stage is
very small so that the probability of having the same PSU
sampled twice is negligible.  In such a case, the estimate of
the between-PSU variance captures the variability among
units in all subsequent stages, allowing for arbitrary
dependence structure among observations within a cluster.
For a recent summary of  robust variance estimation for
cluster-correlated data see Williams (2000).    

This implies that Binder’s (1992) approach for the
robust variance estimation of the single spell models can
be directly applied to the multiple spells situation since it
accounts for the clustering at the PSU level, while

individuals are within PSU’s. Briefly, the estimate  is
obtained by solving the corresponding partial pseudo score

equation   assuming the independence of spells.

The estimated design-based covariance matrix of  is

obtained as  where is the

design-based estimate of the total of the functions

defined by (6) with the quantities   and 
appropriately defined and estimated.

4. THREE MODELS FOR MULTIPLE SPELLS
In order to allow the covariates to have different effects for
spells of different orders as well as to allow different time
dependancies (baseline hazards) we are fitting three
models to multiple spells.  The models differ according to
the definition of the risk set and the assumptions about the
baseline hazard. Two of these models account for the order
of the spells.

It should be noted, however, that the spell order refers
only to the observation period from which the data are
collected and not to the entire history of an individual
(unless these two time periods coincide). For example by
the first spell we consider a first spell in the observation
period although it may be a spell of any higher absolute
order over the person’s lifetime. This limitation implies a
careful interpretation of any effect that spell order may
have on covariate effects or on time dependency. 

Model 1. In the first model, the risk set is carefully defined
to take the order of the spells into account in the sense that
an individual cannot be at risk of completing the second
spell before he completes the first. This model known as
the conditional risk set model was proposed by Prentice,
Williams and Peterson (1981) and was reviewed by Lin
(1994). It was also discussed by Hamerle (1989) and
Blossfeld and Hamerle (1989) in the context of modelling
multi-episode processes.  Generally, the conditional risk

set at time t for the completion of a spell of order j
consists of all individuals that are in their j-th spells. This
model allows spell order to influence both the effect of
covariates and the shape of the baseline hazard function
.  

The hazard function for the i th individual for the
spell of jth order is 

where for each spell order, a different baseline hazard
function and a different coefficient vector are allowed.
An appropriate partial likelihood for this model,
pretending that the spells within the same individual are
independent, is

(7)

Here  are  durations of possibly right-

censored  j-th order spells,  if   is an observed

duration and  otherwise. The denominator sum is

taken over the j-th spells that are at risk of being
completed at time , i.e.,  , and is

equal to 0 otherwise.  is the corresponding covariate

vector observed on [0, ].  Partial likelihood (7) can be

maximized separately for each j if there are no additional
restrictions on .

The corresponding score equations that define the
finite population parameter are 

w i t h   a n d

 and

 . 

The design-based estimates of the parameters  are

obtained by solving equations 

 separately for each  j. 

Note that the sampling weights correspond to the
individuals and not to the spells. Similarly,  estimation of
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the variances will be done separately for each spell order
using the same robust estimator (5). Technically, this is a
set of analyses separated by spell order.

Model 2. The second model considered is the marginal
model (Wei, Lin and Weissfeld, 1989)

 

where for each spell order we allow a different baseline
hazard function while the covariate effects are kept the
same over different spell orders. The corresponding partial
likelihood function as well as the risk set, pretending that
the spells within the same individual are independent, is
the same as for Model 1. The corresponding score
equation that defines the finite population parameter is 

wi th   where

 and

. 

The design-based estimate of the parameter  is
obtained by solving the weighted score equations 

.

The estimation of the variance will be done using the
robust estimator (5). Technically, this is an analysis
stratified by spell order.

Model 3. The last model considered is also a model of the
marginal hazard function

 

In this model we assume that the baseline hazard
functions and the effects of covariates are common for
different orders of spells. The risk set is defined differently
than for Models 1 and 2, and contains all spells with ,

effectively assuming that spells come from different
individuals.   Technically, this model is a single-spell
model.

5. EXAMPLE WITH SLID DATA AND
DISCUSSION

The data set that we use for illustration, comes from a
six-year panel (1993-1998) of the Canadian Survey of
Income and Labour Dynamics (SLID). About 31,000
longitudinal individuals were followed for six years with
some being lost over time for any number of reasons.
Some individuals lost to one or more interviews were
found and resumed their participation. A complex
weighting of the responding SLID individuals each year
takes into account different types of attrition so that each
respondent is weighted against the relevant reference
population of 1993; this results in a separate longitudinal
weight for each wave (i.e. year) of data. For this analysis
we used the longitudinal weights from the last year of the
panel, i.e., 1998. A good summary of the sample design
issues in SLID is given in Lavigne and Michaud (1998).
A good review of the issues related to studies of
unemployment spells from SLID is given in Roberts and
Kovacevic (2001). 

The state of interest is “unemployment” defined, for
our example, as the state after permanent layoff from a
full-time job until another full-time job begins. A job is
“full-time” if it requires at least 30 hours of work per
week.  The event of interest is ‘the exit from
unemployment.’ Only spells beginning after January 1,
1993 were included.  Spells that were not completed by
the end of the observation period (December 31, 1998)
were considered as censored. Sample counts of the
number of individuals experiencing spells and the number
of spells of each order are given in Table 1.  The data file
used for this illustration contains 17,880 layoff records
from 8401 longitudinal individuals. Evidently, about half
of the sampled individuals (4260) who had spells
experienced two or more unemployment spells. There are
3394 spells that remained uncompleted due to the end of
the panel.   

The data set for the illustration is prepared in the
“counting process” style where each respondent is
represented by a set of rows, and each row corresponds to
a spell. Although a row contains time of entry to the spell

, and time of exit  or time of censoring , the

duration time for analysis is always considered in the
form (0, - ) or  (0, - ). The covariates of interest

are attached to each row. Some of them are describing the
respondent (e.g., sex, age, and income), some of them are
related to the job that ended when the spell commenced
(e.g. firm size), and some are characteristics of the spell
(e.g. receipt of employment insurance during the spell, or
going back to school during the spell). Since some of
these variables were recorded only once a year, for this
illustration we used their values from the year in which
the spell ended or was censored.  Some covariates stayed
constant over the life of the panel (e.g., sex), and others
changed from spell to spell. Also attached to each row,
for the purposes of point estimation and variance
estimation, are the person longitudinal weight, and
identifiers for the stratum and psu of the person whose
spell is being described by that record.
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We now apply the models and techniques described
in the previous sections to the SLID data set.  We used
SAS and SUDAAN for carrying out our computations.
For the purpose of this illustration we restricted the
analysis to the first four spells, which meant that all
sampled individuals with spells would be included in the
analysis but that records for spells after the fourth were not
considered.  The estimated average duration of completed
spells is 33.3 weeks while the average duration for
censored (uncompleted) spells is 48.5 weeks.

Visual examination of estimated survival functions
(not shown) indicated that, as order increased, the value of
the SDF at any fixed time t decreased, indicating that
single spells are the longest among completed spells, and
that the higher the order of a multiple spell the shorter is its
duration. This is a direct consequence of the limited life of
the panel, so that an individual with more spells is likely to
have shorter spells.

From a long list of  available covariates we chose only
ten. The variable SEX of the longitudinal individual is the
only variable that remains constant over different spells.
Other variables have values recorded at the end of the year
in which the spell commenced (education level
[EDUCLEV], marital status [MARST], family income per
capita, age) or they have the values from the lay-off job
preceding the spell (type of job ending[TYPJBEND],
occupation, firm size) or they represent the situation during
the spell (having a part time job[PARTTJB], attending
school[ATSCH]). 

The main results on fitting the three models to the
SLID data are given in Table 2. For this analysis we did
not distinguish single spells from the first spells of
multiple-spell individuals. The standard errors of the
estimated model coefficients needed for testing
significance of each coefficient are obtained using the
robust Binder (1992) approach. The design-based variance
method used was Taylor linearization, assuming a survey
design that is stratified with with-replacement selection of
psu’s at the first stage. Coefficients found significant at the
5% level are given in bold. 

Model 1 is conditional on the spell order and reduces
to four models fitted separately. Visual observation of the
differences in the estimated coefficients across spell orders
and the significance of the model coefficients within a
spell order were used to identify whether or not there
appears to be a differential effect of the covariates on spell
duration. For example, variables having significant
negative effect for one spell order and not being significant
for others are education levels lower then ‘M’, having a
part time job, and attending  school during the lay-off. All
of them are significant for the first three spell orders and
not for the fourth. This can be at least partly attributed to
the small sample size for the fourth spells. Another
example is the small company size which has an
insignificant negative effect for the first two spell orders
and has a significant positive effect for the fourth order.
Age has significant  negative effect for all four orders;

however, the magnitude of effect decreases with the spell
order. Thus, an increase in age by a year reduces the
hazard of exit from an unemployment spell by about 5%
for the first spell, about 3% for the second and the third
spell, and 2% for the fourth.  The estimated empirical
cumulative baseline hazard functions for Model 1 are
given in Figure 1.  These functions are estimated as 

, for j=1 to 4. 

where  is the estimated baseline survivor function

implicitly given by 

and is the estimated survivor function (see

Kalbfleisch and Prentice, 1980, page 84). From Figure 1
we can see that for durations up to 50 weeks the
cumulative baseline hazards are ordered according to the
spell order, with the dominance of the first order spell
function. Also in this interval all the functions have a
concave shape, essentially meaning that there is a positive
time dependence of the exit rate (the longer  the spell the
higher the probability of exit) with the strongest
dependence for the first order spells. For durations longer
than 50 weeks the shape becomes convex suggesting
negative time dependance for the longer spells with the
strongest dependence for the third order spells.

Model 2 has the same beta coefficients for all spell
orders. Numerically the estimated coefficient values are
mostly situated between the estimates for the first and
second order spells obtained for  Model 1 due to the
method of estimation and the sample shares that
correspond to these orders. Since the entire sample is
used to estimate the single set of coefficients, the
estimates are more precise; however, this caused little
change in which variables were found to have significant
coefficients.  The cumulative baseline hazard functions
for this model are presented in Figure 2. The shape of the
curves remains as in the Model 1 indicating the same type
of time dependance for the exit rates. However, the
ordering of the curves changed completely, with the
dominance of spells of fourth order.

Model 3 is a single spell model resulting in a single
set of model coefficients and a single baseline hazard
function. The estimated model coefficients are similar to
the estimates obtained by Model 2.  This fact could
indicate that if Model 2 is approximately true, then miss-
specification of the effect of spell order as is done in
Model 1 still leads to reasonable estimates of the effects
of risk factors.  The cumulative baseline hazard function
for Model 3 is given in Figure 3. Evidently its shape is
the same as the shape of the hazard curves discussed
previously.

The general conclusion from results given in Table
2 is that from the particular population of spells being
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studied, there is an interaction between the spell order and
the covariates chosen for the model, as indicated by the
different coefficients for the different orders of Model 1.
However, if you were willing to restrict yourself to a
model with the same coefficients for all spell orders (i.e.
Model 2 or 3), the estimates of the covariate effects are
approximately the same for  the marginal model (Model 2)
and the ‘single spell’ model (Model 3), suggesting that the
‘single spell’ model would give adequate results under this
restriction, as compared to the extra effort needed to fit the
marginal model.

We also examined the coefficient standard errors for
Models 1 and 2 estimated by (i) the ‘naive’ method  where
the coefficient estimates are obtained under the assumption
of independence of individuals and of the spells and then
the ‘naive’ variance estimate is corrected for the spell
dependency (which is a modification of the method
described in Lin and Wei (1989) to include sampling
weights); and by (ii) the robust Binder approach (which
again estimates the coefficients by the ‘naive’ approach but
corrects for the correlation between and within individuals
induced by the survey design in the variance estimation).
The standard errors obtained by correcting for the sample
design effect are larger than the standard errors obtained
by correcting only for the spell dependencies within
individuals.  The design-based variance estimation method
used automatically accounts for the correlations between
individuals and the correlation between multiple spells
experienced by an individual because of the assumption of
with-replacement sampling of psu’s and because both
individuals and spells are nested within psu’s. (Each spell
from the same individual is given the individual weight,
since, given that an individual is chosen for the sample, the
individual’s spells are chosen with probability 1.)  The
ratio of the two standard errors could be considered as a
measure of the magnitude of the sample clustering effect.
The sample clustering effect on  for covariate SEX, for
example,  ranges between 1.35 and 1.65 for Model 1,
while for Model 2 it is 1.80.         

6. CONCLUDING REMARKS
We explored the problem of analysis of multiple spells by
considering two general approaches for dealing with the
lack of independence among the exit times: a variance-
corrected approach and a design-based approach.  The first
approach estimates the model parameters assuming the
independence of the spells, and then corrects the naive
covariance matrix to account for the within-individual
dependencies. This approach does not account for the
clustering between individuals induced by the sample
design. The second approach defines the model parameters
as finite population parameters. These parameters are then
estimated accounting for possible unequal selection
probabilities of individuals. A design-based variance
estimation method that appropriately accounts for the
correlations between individuals ‘automatically’ accounts
for the unspecified dependancies of spells within

individuals. For  large sample sizes this design-based
inference extends directly to the super-population which
hypothetically underlies the finite population. The
deficiency of the first approach is that it totally ignores
the clustering between individuals. A possible
disadvantage of the second approach is that it relies on
the assumption of with replacement sampling of clusters
of individuals. The two approaches coincide in the case
of simple random sampling. We applied these approaches
to three models: two of which use information on the
spell order to specify the interaction of the spell order and
covariates, and to allow for differential unspecified
baseline hazards. The third model was a simple single
spell model. We found that using information on the spell
order affects the modelling of multiple spells.  
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Table 1.  Counts of individuals in the six-year panel of SLID with unemployment spells beginning between January 1993
and December 1998 by the total number of spells and by order of spell (C-completed, U-uncompleted)

Individuals by
number of spells

Spells by order

First Second Third Fourth 5th +

C U C U C U C U C U

1 spell 4141 2221 1920 - - - - - - - -

2 spells 1915 1915 - 1154 761 - - - - - -

3 spells 1044 1044 - 1044 - 612 432 - - - -

4 spells 629 629 - 629 - 629 - 348 281 - -

5+ spells 672 672 - 672 - 672 - 672 - 1158 415

Total 8401 6481 1920 3499 761 1913 432 1020 281 1158 415
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Table 2. Estimated  coefficients for three models

Model 1 Model 2 Model 3 

Order1 Order2 Order3 Order4

SEX (F)
   M         
EDUCLEV (H)
   L                 
   LM                 
   M              
MARST (M)
   Single
   Other                 
TYPJBEND (Fired)
   Voluntary                  
OCCUPATION(Othrs)
   Professionals                 
Admin                
   PrimSector                    
 Manufacture  
   Construction         
FIRMSIZE (1000+)
        <20                 
     20-99                 
   100-499                        
 500-999
PARTTJB (No)
   Yes
ATSCH (No)
   Yes
Family Income Per
Capita (10K-)
    10K-20K
   20K-30K             
   30K+

AGE             
 

  
0.4417

 
-0.4561
-0.2330
-0.0744

 
-0.1142
0.0985

  0.0704

  0.1592
-0.0265
-0.0211
-0.0003
 0.1290

-0.0027
 0.0358
0.0436

-0.0006

-0.2903

-1.0832

0.1294
0.1644
0.1712

-0.0491

  
 0.3781

  -0.5234
  -0.2700
  -0.1060

  -0.1290
  -0.0894

   0.2752

  -0.1364
  -0.2930
  -0.2175
  -0.0994
  -0.1862

  -0.0097
   0.0881
  -0.0905
   0.0153

  -0.5414

  -1.1516

0.1802
0.3611
0.3916

   -0.0311

  
0.3299

 -0.3748
 -0.3310
 -0.1156

 -0.0622
  0.1124

  0.4207

 -0.1388
 -0.1769
 -0.1187
 -0.1295
 -0.0879

  0.1005
  0.0815
  0.0328
 -0.0623

 -0.5109

 -1.2956

 
0.0692

 0.1572
 0.3005

    -0.0269

    
0.4435

   -0.1065
   -0.1653
    0.0668

   -0.1375
   -0.1072

    0.3413

    0.0903
    0.0579
    0.2032
    0.2862
    0.2339

    0.4403
    0.3999
    0.0257
   -0.0067

   -0.1407

   -1.3541

0.1117
0.4900
0.4241

   -0.0207

  
0.4049

 -0.4128
-0.2436
-0.0684

 -0.1357
0.0328

  0.1579

  0.0490
 -0.0971
-0.0410

 -0.0093
0.0490

  0.0441
0.0928

 0.0214
-0.0005

 -0.3693

 -1.1205

0.1345
0.2241
0.2280

   -0.0424

  
 0.4090

  -0.4331
  -0.2474
  -0.0671

  -0.1330
   0.0401

   0.1284

   0.0485
  -0.0938
  -0.0201
  -0.0088
   0.0813

   0.0408
   0.0951
   0.0278
   0.0020

  -0.3743

-1.1266

0.1330
0.2141
0.2115

   -0.0435

Spells  in risk set
   Censored
   Completed

8386
1913
6473

4255
759

3496

2345
432

1913

1300
281

1019

16286
3385

12901

16286
3385

12901

The values significant at  5% level are bold 
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