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Abstract

For model-based seasonal adjustment, there are ex-
plicit formulas for obtaining the variance of the sea-
sonal factors or the seasonally adjusted series. For
series adjusted with X-11 or X-12, variance estimates
are generally based on a linear approximation of the
seasonal adjustment procedure. The work of Pfef-
fermann (1992) extends earlier work by Wolter and
Monseur.  This study uses simulated series and
comparisons of alternative seasonal adjustment re-
sults for a few economic series to assess the accu-
racy of variance estimates. Pfeffermann’s method
gives good results when the true seasonal is centered
and follows a fairly smooth evolution from year to
year. Comparisons with formula-based computa-
tions and estimates from the TRAMO-SEATS pro-
grams by Maravall and Gomez show the latter can
give good variance results for series adjusted with X-
11 even if the seasonal factors themselves differ from
X-11 factors.

*Industrial Output Section, Federal Reserve Board, Wash-
ington, DC 20551. e-mail wcleveland@frb.gov. The opinions
expressed herein are the author’s and do not necessarily rep-
resent the Board of Governors of the Federal Reserve System
or its staff.

1 Introduction

The question of variances for seasonally adjusted se-
ries has been addressed in a number of contexts. In
the case of model-based seasonal adjustment, there
are explicit formulas which can be applied. For series
adjusted with X-11 or X-12, the discussion usually
takes place in the context of linear approximations
to the X-11 estimator. The work of Pfeffermann
(1992) extends earlier variance estimates advanced
by Wolter and Monseur. An assumption that X-11
produces an unbiased estimate of the true seasonal
is required by Pfeffermann, and the method should
be used with settings specified for autocorrelations
identified in the sampling error of the original se-
ries. This study uses simulated series and compar-
isons of alternative seasonal adjustment results for
a few economic series to assess the accuracy of vari-
ance estimates. Pfeffermann’s method gives good re-
sults when the true seasonal is centered and follows a
fairly smooth evolution from year to year. Estimates
from his method are compared with model-based es-
timates computed directly with formulas and esti-
mates obtained from the TRAMO-SEATS programs
by Maravall and Gomez.

2 Models for Simulated Series

We start with a standard, additive, three component
model for a seasonal series,
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(1)

where y; is the observed series indexed by month £,
py is the trend or trend-cycle component, s; is the
seasonal component, and e; is a noise component.
The noise is assumed to be uncorrelated unless oth-
erwise indicated. Each of these components has an
ARIMA representation.

The trend component will be specified using the
lag operator B as

Ye =Pr + St + €

(1-B)(1—-.8B)p; = a; (2)
which gives the highly autocorrelated trend usually
associated with economic time series. The shocks a;
are iid.

Several models will produce highly seasonal series.
Three will be used to illustrate which are most ap-
propriate for studying variances of seasonal estima-
tors. Since equation 1 is additive, all seasonal sim-
ulations are initialized using a seasonal pattern with
mean zero. Consider

(1 — BIZ)St = bt y

where b; is white noise. Simulated series from this
model have a seasonal with expanding amplitude
over time. The model

(1 —.95B%)s; = b, (3)
is used to generate the first set of series. It also gives
strongly seasonal series, but they approach a nearly
constant amplitude. Simulations using this model
can have a seasonal mean which differs significantly
from zero. Thus, the seasonal generated may differ
appreciably from estimation results from X-11.
A closely related model is

f11(¢sB)sy = by, (4)

where fi;(B) = 1+B+B*..+B" or (1-B) f11(B) =
(1 — B'?). This model does not have the near unit

root at frequency zero, so the average of the seasonal
pattern over a year remains near zero. In simula-
tions, a value ¢, = .995735 was used, so that ¢!? =
.95.

Finally, the seasonal model

(1 - ¢52312)f11(¢sB)8t = by (5)

is like equation 4, but has smoother, more autocor-
related transitions in the seasonal from year to year.
A value of .6666 was used for ¢g5. The measure
sacf12 will indicate the autocorrelations at lag 12 of
(St - 5t712)-

The noise model in all cases will be simply

(6)

until we have need for more structure. Simulated
series were generated with FAME software using 3,
4, and 5 as the seasonal parts of time series models.

€t = €4

3 Series Descriptors

In order to characterize the series realized using the
different models and relate them to each other, some
basic measures are required. The average values
of a seasonal pattern are obtained from a 2 x 12
moving average filter, as in X-11. The mean of the
absolute values of the averaged seasonal patterns for
a set of series will be called scenter, the degree to
which the simulated seasonal patterns are centered
on zero. Since X-11 routinely centers its seasonal
estimate, one cannot expect small deviations of the
seasonal estimates from the true seasonal unless the
true seasonal is also centered. The amplitude of the
simulated seasonal will be measured by its variance
over a number of complete years, svar. In order to
have comparable results from the three models, the
trend model and the expected value of svar are kept
the same for all simulations. The rate at which the
seasonal pattern changes is measured by the variance
of s; — s4_19, sdvar.

The fundamental measure of the accuracy of the
seasonal estimate will be mean(s; — §;)?, its mean

579



Joint Statistical M eetings - Business & Economic Statistics Section

squared error called here smse. The lower limit of
this measure is affected by the character of seasonal
estimators relative to the true seasonal. It will be
smaller when the estimator has a close relationship
to the data generation processes for the series com-
ponents. In practice, the seasonal data generation
process can only be known to the extent that it is
consistent with the observed series. Both the contri-
butions of the fundamental variance in the seasonal
estimator and the underlying misspecification of the
seasonal component in the estimator are important
aspects of the overall mean squared error. Whether
using model-based estimators or X-11, the estima-
tor is some form of moving average of the observed
series. The estimates obtained may have smoother,
more autocorrelated changes in the seasonal for a
given month than were present in the true seasonal.
This study suggests smooth changes in the true sea-
sonal must be assumed for Pfeffermann’s variance
estimates to be accurate. The bias measure

(7)

reflects both whether the true seasonal and its esti-
mate have the same average value, and the ability of
the estimator to follow the changes in the true sea-
sonal. The index ¢ runs over the number of simu-
lated series. One would expect the mean of (s;—5;),
the seasonal estimate errors for each ¢, to approach
zero for a higher number of simulations if an estima-
tor is capable of replicating the true seasonal.

sbias = meltan(abs(mean(sit — 5i1)))

4 Variances

Model-based analysis begins with the two-

component decomposition

Yt = Ny + Sy, (8)
where
ng = py + €. (9)

The variance of the seasonal component estimate
of the seasonally adjusted series is given in Cleveland
and Tiao (1976) as

DR Sl (10)

The estimator for the seasonal component is

Elsly] = [0+ 2,17 S,y (11)

In this study both the theoretical value from 10
and the smse value obtained by applying 11 to the
simulated series are presented, using computations
performed in SAS IML. SAS computations were
done using matrices of dimension 11 years. The
TRAMO-SEATS programs may also be used to give
a variance estimate like 10. However, these programs
model the observed series directly and then compute
implied component models. This process will not
generally lead to the same models used in the sim-
ulations. It turns out that the variance estimates
from SEATS frequently agree quite well with those
obtained from 10 and with the smse computed using
seasonal factors from SEATS. This suggests that
a reasonable variance estimate for a series season-
ally adjusted with X-12 may be obtained by using
TRAMO-SEATS on the same series, even if the ad-
justments are not quite the same.

5 Results

All three model specifications used equation 2 for
the trend with o2 = .036. Models 1 - 3 in Table 1
use the seasonal models in equations 3 to 5, respec-
tively. The noise variances for o7 were .1, .05, and
.0064. Expanding the covariance generating func-
tions for the seasonal models gives a variance of 1 for
s¢ in each case. For the models 2a and 3a, e; had
variance 0.3, while e¢; had variance 0.1 for models
2b and 3b. For model 3c, ¢; had an MA(1) model
with variance .3 and covariance .15. Sixteen se-
ries were simulated for each model condition. New
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noise terms were used for all three components in
each simulation. ~While sixteen is not enough to
achieve asymptotic results, the standard deviations
of the measures showed this to be enough to make
the desired distinctions. The numbers in parenthe-
ses are the standard deviations of the 16 mean square
estimates (smse) obtained. Most of the entries in
the left column of Table 1 have been defined. The
entry “var mod” is the central value from equation
10, while “smse mod” refers to the results of equa-
tion 11 compared with the true seasonal. Similarly,
“var SEATS” is the average of the variance estimates
given by the SEATS program, and “smse SEATS”
is the average mean squared error of the seasonal
estimates computed by the TRAMO-SEATS pro-
grams. Series were simulated for the period 1970
through 1999, and seasonal adjustment runs in X-12
and Tramo-SEATS were from 1977 through 1996.
Only the values from 1982 through 1993 were used
for mse computations to correspond with the model-
based calculations carried out in SAS and eliminate
end effects. Of course, variances are larger at the
end of a seasonally adjusted series. Computations
of variance estimates using Pfeffermann’s procedure
assumed a correlation at lag 1 for the sampling er-
ror. This would generally raise the estimate over
using lag 0 and this assumption might be used as a
precaution where the correlations are unknown.

As expected, the measure scenter is relatively
large for Model 1, where the true seasonal is not
centered. The large smse values for the three es-
timates of the seasonal pattern also reflect the not-
centered true seasonal. Of course the variance es-
timated by SEATS under Model 1 is a small value
like that of Pfeffermann, reflecting the centered sea-
sonal assumption by both. Note that the ”var mod”
calculation from equation 10 is close to the actual
smse. More generally, the ”smse mod” values from
equation 11 using the optimal filters are consistently
smallest and agree well with the theoretical variance
from the SAS calculations, as they should.

This table shows that Pfeffermann’s method

gives good results with the autocorrelated seasonal
changes of Model 3. Given that these models are
most like models previously suggested for X-11 and
that X-11 seasonal factor estimates tend to have
smooth year-to-year changes, this merely confirms
the assumptions required for his method. Whether
true seasonals in actual economic series are more like
those of model 2 or model 3 is a matter of opinion.
The estimated seasonal variance from Pfeffermann’s
method for Model 3¢ with an MA1 error is quite
good, responding well to the correlated error. The
variance estimates produced by SEATS are good for
Model 2, but high for models 3b and 3c. The
true variance of the seasonal estimate is likely to lie
between Pffermann’s estimate and that of SEATS.
Model 3b is the most like models which have been
advanced as having estimators close to the default
linear X-11 estimator. The smse from X-12 is small-
est for this model and not far from the Pfeffermann
variance estimate.

This result may not be strong enough for a statis-
tical agency using X-12 to publish either the Pfeffer-
mann or the SEATS variance estimate as the vari-
ance of the seasonally adjusted series, but it gives
the data analyst an idea of how sensitive decisions
should be to a seasonally adjusted series.

6 Analysis of Selected Series

To get a feeling for the implications of estimated
seasonal factor variances for seasonally adjusted eco-
nomic series, five aggregate series were analyzed,
with the results in Table 2. As measured by the
variation in the seasonal compared to the variation
in the X-12 irregular, the seasonal patterns range
from strong to fairly mild. In general, the agencies
publishing these series do not adjust them as aggre-
gates but as a sum of adjusted components, so the
analyses here do not correspond to the seasonal ad-
justment procedures used. However, the seasonally
adjusted series obtained here using Tramo-SEATS
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Table 1: Simulation Results

Model 1 | Model 2a | Model 3a | Model2b | Model3b | Model 3¢
scenter 201 011 .007 011 .007 .008
sbias .084 .061 .039 .055 .030 .040
svar .899 1.007 953 1.007 .953 .948
sdvar .107 .109 .023 .109 .023 .023
sacfl2 -.016 -.018 .545 -.018 .545 .545
var Pfef .064 .063 .053 .031 .021 .058

(.011) (.009) (.008) (.003) (.003) (.010)
smse X-12 .166 .100 .060 .072 .032 .065

(.070) (.018) (.019) (.011) (.009) (.025)
var mod 176 .081 .049 .048 .027 .055
smse mod 158 .083 .053 .048 .029 .059

(.067) (.018) (.019) (.010) (.011) (.023)
var SEATS .100 110 .088 .082 .073 .084

(.012) (.021) (.016) (.023) (.022) (.016)
smse SEATS | .171 .098 .057 .073 .045 .090

(.071) (.021) (.019) (.022) (.018) (.054)
Notes:

scenter = m(ian(mean(abs(mageﬂ(sit)))), sbias = m(ian(abs(me_an(sit — 51)))

svar = mean(var(s;)), sdvar = mean(var(sy — Sit—12))
) )

sacf12 = meian(cor(sit — Sit-12, Sit-12 — Sit-24))

smse(§y) = mean(mse(S; — si))
7

and X-12 are as close to the published ones as they
are to each other, giving some assurance that the
variance estimates are reasonable. In some situa-
tions the real focus of attention is on monthly growth
rates or ratios. Variances of log differences depend
on the correlation of adjacent log level estimates. If
this correlation is .5, then the level and growth rate
variances are the same. Values in the model covari-
ance matrices suggest that adjacent seasonal factor
estimates may be either posivively or negatively cor-
related, so it might be best to assume differences
have twice the variance of levels. Entries in the
table are 100 times the standard deviations of log
measures. They can be interpreted as one standard
deviation of percent error in level or roughly 0.7 of

the growth rate standard deviation in percent, as-
suming uncorrelated adjacent errors.

Estimates of the standard deviation of the sea-
sonal factors from Pfeffermann’s method and from
SEATS are given in the third and fourth rows of the
table. They track each other pretty well. For the
CPI and M2 series, these deviations are relatively
large compared with the standard deviation of the
seasonal pattern. These series also have the most
noise in relation to the seasonal pattern. As an
additional benchmark, the root mean square of the
differences (RMSD) between the two estimated sea-
sonal patterns for each series are presented in row
5. These values compare fairly closely with the
standard deviations of the factor estimates, though
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somewhat smaller for CPI and M2 where the season-
als have less variation. To check out the impact on
growth rates implied by these numbers, standard de-
viations of month-to-month ratios of the seasonally
adjusted series were computed. If these are large
compared to the standard deviations of the seasonal
factor estimates, then errors in the seasonal factors
would not distort growth rates much. The ratios
of the values in the last row to those in the third
row are about 3.5, except a 4.5 for CPI. Using a

model where the variance of s is a component of the
variance of the estimated seasonally adjusted ratios,
a ratio of 3.5 implies the correct sign for the true
growth rate 90 to 95 percent of the time.

Table 2: Estimated Variances for Selected Series

St. Dev. SEATS = seasonal factor standard devi-
ation estimates from the TRAMO-SEATS program,
percent

RMSD = root mean square of the difference be-
tween the Tramo-SEATS and X-12 estimates of the
seasonal factors

St. Dev. SAR = 100 times the standard deviation
of the seasonally adjusted month-to-month ratios.

IP | Retail | CPI | Labor | M2

St. Dev s | 1.50 7911 0.15 1.07 | 0.29

St. Dev I | .37 1.25 | .10 A4 | 17

St. Dev. Pfeff | .22 64| .07 08 .10
St. Dev. SEATS | .27 .bb | .08 .08 .13
RMSD | .34 841 .04 .07 .05

St. Dev. SAR | .74 2.12 | .32 271 .36

Notes to the table:
[P = Industrial Production index, Federal Reserve

Board

Retail = Retail Sales, Commerce Department

CPI = Consumer Price Index (all urban, all

items), Labor Department

Labor = Civilian Labor Force, Labor Department
M2 = M2 Index of Money Supply, Federal Reserve

Board

St. Dev s = standard deviation of the estimated
seasonal pattern in logs (amplitude of the seasonal

pattern)

St. Dev I = standard deviation of the X-12 irreg-

ular in logs

St. Dev. Pfeff = seasonal factor standard devia-
tion estimates from Peffermann’s method, percent
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