
Using the Bootstrap in a Two-Stage Nested Complex Sample Design1 
Steven Kaufman, National Center for Education Statistics 

 Room 9075,1990 K St. NW, Washington, D.C 20006 
 

                                                           
1 This paper is intended to promote the exchange of ideas among researchers and policy makers.  The views 
expressed in it are part of ongoing research and analysis and do not necessarily reflect the position of the 
U.S. Department of Education. 
 

Key Words: BHR, Super-Population, Finite 
Population Correction, Variance Estimation 
 
1.0 Introduction 
   Replication variance estimation for a two-stage 
nested sample design is usually implemented by 
generating replicate samples (weights) that replicate 
the original first-stage sample selection. Since the 
second-stage is nested, the second-stage variance 
can be reflected by associating each second-stage 
unit with its respective first-stage unit in each first-
stage replicate sample. The second-stage sampling 
can be viewed as being indirectly incorporated into 
the replicates, because the second-stage sampling is 
not independently replicated within each replicate. 
As long as the first-stage sampling rates are not too 
high or first-stage sampling is done with 
replacement, this should provide a reasonable 
variance approximation. This paper investigates 
whether generating replicates that directly reflect 
both the first and second stage sampling provide 
any advantages over replicates that directly reflect 
only the first-stage sampling. 
    This paper is particularly interested in the 
National Center for Education Statistics’ (NCES) 
School and Staffing survey (SASS). In this survey, 
the first-stage sampling rates can be large. SASS 
collects data for both the first and second stage 
units. Because of the large sampling rates, a first-
stage finite population correction (FPC) is required 
for the first-stage data variance estimates. Since 
estimation frequently requires combining the first 
and second stage data, the replicate weights for 
estimates based on first-stage units must be 
consistent with the replicate weights for estimates 
based on second-stage units. This implies using the 
first-stage FPC in both variance estimators. 
However, when the second-stage variance is 
indirectly reflected, applying a first-stage FPC can 
underestimate the second-stage variance component 
(i.e., a first-stage FPC bias), since the second-stage 
component is correct without this adjustment. By 
directly reflecting the second-stage variance in the 
replicates, this bias can be eliminated. 
   This paper will present two sets of replicate 
weights. Both sets will incorporate the same first-
stage FPC. One set will indirectly reflect the 

second-stage variance, while the other set will 
directly reflect the second-stage variance. Results 
will be presented using high and low first-stage 
sampling rates, which will provide a measure of the 
first-stage FPC bias, for different sized FPCs. 
    To generate a set of replicate weights that 
directly reflect the sampling at both selection 
stages, a bootstrap methodology will be used. In 
that methodology, a first-stage bootstrap sample is 
selected of size hn∗ . Within each selected first-stage 

bootstrap unit i∗ , a second-stage bootstrap sample 
is selected of size im∗ . hn∗ and im∗  are chosen to 
provide unbiased first and second order moments. 
Sitter (1992) and Kaufman (2000) provide 
examples how this can be done. 
   To generate replicate weights that indirectly 
reflect the second-stage variance, a bootstrap 
method will also be used. The bootstrap method is 
the first-stage component of the bootstrap estimator 
described above (i.e., a first-stage bootstrap sample 
is selected of size hn∗ , where hn∗ is chosen to provide 
an unbiased variance estimator for the first-stage 
sample). The second-stage replicate weight is the 
product of the first-stage replicate weight, just 
described, times the conditional second-stage 
weight given the first-stage unit is in sample. 
    To compare the variance estimators, a simulation 
study is performed. Within stratum, the first-stage 
SASS is selected systematically probability 
proportional size (PPS). Within each selected first-
stage unit, the second-stage sample is selected 
systematically with equal probability. Kaufman 
(2001) provides an appropriate systematic PPS FPC 
under a locally random assumption. By imposing 
the locally random assumption in the simulation, 
the appropriate first-stage FPC is known for both 
variance estimators. The main source of bias is then 
determined through how this FPC is used in the two 
sets of replicate weights. Performance is measured 
by comparing relative errors and coverage rates. 
    To start, the bootstrap procedures are described. 
2.0 Bootstrap Distribution Function 
    In this discussion, the bootstrap is defined in 
terms of the sampling process rather than in terms 
of a specific variable of interest (i.e., the object is to 
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generate a set of bootstrap samples). The advantage 
of this is that once the bootstrap samples are 
generated, there is no need to repeat the resampling 
process for each variable. A set of bootstrap 
replicate weights can be generated similar to BHR 
replicate weights. See Kaufman (1999 and 2000). 
    In this context, let ( , )

hn hn
G∗

∗=
h

I I A , where ∗
h

I
n

is 

a vector representing a bootstrap PSU sample of 

size ∗
hn  selected from the original sample 

nh
I ; and 

( , )
hn hG ∗I A is some random mechanism generating 

∗
h

I
n

. ∗
hA is an appropriate parameter space needed to 

describe the random mechanism generating ∗
h

I
n

 

(e.g., hn∗ , the first-stage bootstrap sample sizes is an 

element of ∗
hA ). The bootstrap technique is: 

generate ),( ∗
hnh

G AI , so first-order expectations are 

preserved for all ∗
hA . ∗∗ ∈ hho AA is then determined 

so that )ˆ( ∗∗∗
hTvE = )ˆ( hTv , where E∗  and v∗  

represent the bootstrap expectation and bootstrap 
sample variance, respectively (i.e., second-order 
expectations are preserved). The choice of 

),( ∗
hnh

G AI and ∗
hA can be flexible. 

2.1 Randomized Systematic PPS Sample 
    When PSUs are placed in a specific order before 
sample selection, there is no unbiased variance 
estimator for systematic PPS samples. However, if 
a small amount of randomization is introduced and 
it is assumed that the covariance between two 
selected units is zero then an unbiased variance 
estimator can be stated (see Kaufman (1999)). This 

variance estimator can be used to determine ∗
hn  in a 

bootstrap variance estimator using a bootstrap-PSU 

( ∗i ) frame. Kaufman calls this type of sample, a 
randomized systematic PPS sample. 
    The randomized systematic PPS sample variance 
estimator under a relatively mild super-population 
model provides an alternative variance model for 
systematic PPS sampling. See Kaufman (2001) for 
simulation results measuring the performance of 
this alternative variance model. 
    A randomized systematic sample can be chosen 
in the following way: 1) Order the frame in the 
desired way for a regular systematic selection. 2) 
Partition the frame into hn groups (implicit strata), 
so each group’s total measures of size are equal. 3) 
Consecutively pair the implicit strata to form 
variance-strata. 4) Some PSUs may have positive 
selection probability in two variance-strata. Such 
PSUs will be split into two new PSUs by assigning 

a proportionally allocated measure of size to the 
new PSUs, so that the new PSUs are totally within 
the respective variance-strata. 5) The PSUs within 
each variance-stratum are now placed in a random 
order. Finally, a classical systematic PPS sample is 
selected within strata.  
    The randomized systematic sample, as with the 
classical systematic sample implicitly stratifies the 
frame according to the original ordering in 1) 
above. The randomized systematic sample does not 
control as well as the classical systematic sample, 
but the control is still strong. For any contiguous 
group of frame PSUs, the classical systematic 
procedure will be within one PSU of the expected 
sample size for that group, while the randomized 
systematic sampling will be within two PSUs. 
    One advantage of the randomized systematic 
sample is that the total covariance, although not 
necessarily zero, should be expected to be drawn 
toward zero, because of the randomization. This 
should reduce the number of extreme total 
covariances. Since many systematic PPS variance 
estimators assume these covariances are zero, 
anything that reduces the number of extremes will 
reduce the number of extreme over and/or under 
estimates of variance.  
    In practice, one does not have to physically 
randomize the frame to use the randomized 
systematic PPS sample variance as a model for the 
nonrandomized systematic sample variance. 
However, one does need to assume, within 
variance-strata, the frame is randomized (i.e., 
locally random). Assuming the frame ordering 
takes this into consideration, this is not necessarily 
a difficult assumption to approximate. Kaufman 
(2001) describes the frame ordering considerations.  
    Whether one physically randomizes the frame or 
not, it is necessary to assume the total covariance is 

zero (e.g., ( )Cov T
)

=
 ( )

( , )i j
i j j i

Cov T T
≠

∑ ∑
) )

=0, where 

iT
)

 and jT
)

 are the weighted components of the 
thi and thj  selected PSU for some total T

)

). This 
may seem like a restrictive assumption; however, 
many variance estimators, under systematic 
sampling, make this assumption. 
2.2 Directly Reflecting Second -Stage Sampling 
    In a single stage sample, one can try to choose 

∗
hn  so that ),( ∗

hn nG
h

I will produce an unbiased 

variance estimate. In a two-stage sample, where hn  

first-stage and im  second-stage units are selected, 

one can try to develop ∗
hn from an appropriate 
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appropriate ), ,( )1()2(
2

∗∗∗
∗∗

∗
∈ hnim nimG

hi

II , to produce 

an unbiased variance estimate (See Sitter (1992) 
when both stages are SRS without replacement).  
2.2.1 The Two-Stage Sample Design 
    To develop a bootstrap variance estimator, it is 
assumed that the SASS sample design can be 
approximated by using: 1) the randomized 
systematic sample, described above to approximate 
the traditional systematic PPS sample; and 2) a 
without replacement simple random sample (SRS) 
to approximate an equal probability systematic 
sample. Therefore, for the simulation, the 
simulation sample design is: A stratified 
randomized systematic PPS sample of schools 
comprises the first-stage sample. The measure of 
size is the square root number of teachers in the 
school. The SASS first-stage frame ordering is 
slightly altered, by introducing a serpentine 
ordering to: 1) make the original ordering look 
more locally random, 2) reduce the number of 

extreme ( )Cov T
)

 and 3) reduce the first-stage FPC. 
Within each school, the second-stage teacher 
sample will be selected SRS w/o replacement.   
2.2.2 The Estimate of Interest 
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thi school (i.e., ip/1 , ip being the selection 

probability for i ); and iŶ is an unbiased estimator 

of the teacher total for i . ∑
=

=
im

j
iijii myMY

1
/ˆ , where 

iM is the number of teachers in school i , ijy is the 

variable of interest for teacher j in school i , and 

im is number of teachers selected in school i .  

2.2.3 Estimating )ˆ(Tv  
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Using a Taylor series approximation, 
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    From Cochran (1977) theorem 11.2, it follows 
that an unbiased estimator, within the Taylor Series 

approximation, for )ˆ(TV  is: 
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)ˆ(1 hTv  is an unbiased variance estimator of the 

first-stage sample evaluated at hT̂ . See Kaufman 

(1999) for )(1 hTv .  

    )ˆ( wor2 iTv is the unbiased estimate of the second-

stage variance of iT̂ . )ˆ( wor2 iTv = 

iiiii msfMw /)1( 2
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A bootstrap variance estimator is generated by: 

1.  Using b
nh

∗I = ),( ∗
hn nG

h
I  and ∗

hn  from Kaufman 

(1999), we have B sets of b
nh

∗I ’s, as well as 

B sets of bootstrap-schools ( ∗i ) weights, ∗
∗bi

w , 

providing an unbiased )(1 hTv . The 
thb replicate weight, ∗

ibw , equals
ib

i b
i S

w ∗
∗

∗

∈
∑ , 

where ibS is the set of ∗i  selected in the 
thb replicate which were generated from i . 

    A solution for ∗
hn may not always exist.  

This can occur in strata where hn is small and 
∗
hn =1 is not small enough to sufficiently 

increase the bootstrap variance. A solution is to 
combine strata, indexed by C , and sort the 
combined stratum by original stratum first. 
This increased Cn in the combined stratum 

should now allow a solution for ∗
Cn . 

2.  Given  ∗
hn and b

nh
∗I  from step 1, define 

b
m

i

∗
∗
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∗∗

∗
∗ ∈ h

b
nimi

nimG
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II as follows: 

For ∗i ∈ b
nh

∗I , independently select ∗
∗i
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with-replacement from the ∗i
m originally 

sampled in school i which generated ∗i . The 
conditional bootstrap replicate weight for the 

thj  teacher is ∗
jw = ∗∗

∗∗ iij mMK / , where ∗
jK is 

the number of times the thj teacher is selected. 

3.     For the thb  school bootstrap sample in step 

1, b
nh

∗I , select b
m

i

∗
∗

I for each ∗i ∈ b
nh

∗I , to get a set 

of conditional teacher bootstrap weights given 

the ∗i ’s, ∗
∗ jbi

w = ∗∗
∗∗ iijb mMK / and a set of 

overall replicate weights, ∗
ijbw =

ib

i b i jb
i S

w w∗ ∗
∗

∗ ∗

∈
∑ . 

4.  Repeat step 3 B times for each school 

bootstrap sample, producing B sets of ∗
ijbw ’s. 

5.     Using the B  sets of replicate weights in step 

4, compute B estimates ∗
bT̂ . The simple 
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variance of these B estimates is the bootstrap 

variance, )ˆ( ∗∗ Tv , where )ˆ( ∗∗ TV = )ˆ( ∗∗∗ TvE . 

Now, choosing ∗
hn as above and 

2( 1) /(1 )i ii i
m m w f∗ ∗

∗ ∗= − − , it follows that )ˆ( ∗∗ TV  

is an unbiased estimator for )ˆ(TV , within the 
Taylor Series approximation (see Kaufman (2000)). 

    If  ∗
∗i

m is not an integer then it needs to be 

bracketed between the integer less than ∗
∗i

m ( Lm ) 

and the integer greater than ∗
∗i

m  ( Um ). Lm  is 

selected with probability ∗∗
∗∗−

ii
UL mmmm /)( . If 

Lm  is not selected then Um  is used.  

    This estimator is denoted by ( )Dv T∗ )

. 

2.3 Indirectly Reflecting Second- Stage Sampling 
    Here the bootstrap replicate weight is the first-
stage replicate weight, described in section 2.2.3 
step 1, times the conditional second-stage weight 
given the first-stage sample. This estimator applies 
the first-stage FPC to both the first and second 
stage variance components. 
    One should expect this to underestimate the 
variance, since the first-stage FPC is applied to the 
second-stage variance component, when it should 
not be applied. This would be especially true when 
the first-stage sampling rates are high. This 

estimator is denoted by ( )Iv T∗ )

. 

3.1 Simulation Sample Design and Frames 
    The simulation sample design has been described 
in section 2.2.1. Now, the school and teacher 
sampling frames will be described. 
    NCES does not have a list of all teachers in the 
elementary/secondary school system. Instead, the 
8,600 public school teacher lists collected during 
the SASS collection, among the 50 states, will be 
grouped into three simulation states. 
    The first step in this process is to identify states 
that have low, medium and high SASS sampling 
rates and then choosing one per sampling rate 
category to simulate, each in a different 4 category 
census region. Within a Census region/SASS 
stratum, SASS schools providing a teacher list are 
randomly chosen, along with their reported teacher 
data, to be included in the simulation for the 
simulation state corresponding to the respective 
census region. The number of schools selected 
within a SASS stratum corresponds to the number 
of schools actually in the chosen state’s school 
frame. This is the teacher frame and data used to 
select teacher samples and estimates. The 
corresponding school data made up the school 
frame and data to produce school samples and 

estimates. Any missing data are imputed using a 
sequential nearest neighbor procedure. The school 
and teacher sample allocation corresponds to the 
normal SASS allocation for these three states. 
    The three simulation states chosen have school 
sampling rates of 5, 12 and 28%. The teacher 
sampling rates are chosen to yield an equally 
weighted teacher sample, given the schools are 
chosen proportional to the square root of the 
number of teachers in the school. Additionally, the 
combined school stratum sampling rate is 31%. 
    Estimates (26 totals and proportions), based on 
the variables collected from teacher-listing 
operation, are computed by state, school level, and 
urbanicity, each having three categories. 
 3.2 Performance Statistics 

   ( )Dv T∗ )

 and ( )Iv T∗ )

 will be based on 48 bootstrap 
samples ( B ) and 460 simulations. To measure their 
performance, the following statistics will be 
compared: 
3.2.1 Relative Error 

eRE = ( ( ) ( )) / ( )e t tv T V T V T∗ −
) ) )

, where ( )tV T
)

 is the 
simple variance of the simulation estimates of 

T
)

, sT
)

 and ( )ev T∗ )

is the average of one of the 

bootstrap variance estimators ( e = D  or I ) across 
the simulation samples. 
3.2.2 Coverage Rate 
    The coverage rate is the percent of the time that 
the true estimate is within the 95% confidence 
intervals across the simulation samples. 

3.2.3 Total Covariance Term, ˆ( )Cov T  

    Since ( )Dv T∗ ∗)  is unbiased, assuming ˆ( )Cov T =0, 

an unbiased estimator for ˆ( )Cov T = ( ) ( )t DV T v T∗ − 
) )

. 

Relative ˆ( )Cov T = ( ) ( ) / ( )t D tV T v T V T∗ − 
) ) )

= DRE− . 

4.0 Results 
    The simulation is designed so that only two 
sources of error exist for the indirect second-stage 
method: 1) the use of the incorrect FPC on the 
second-stage variance component and 2) the 

assumption that ˆ( )Cov T =0. Similarly, by design, 
the direct second-stage variance method is 

unbiased, assuming ˆ( )Cov T =0. So, the only source 
of error is this assumption. 
4.1 Relative Total Covariance 
    Table 1 provides the distribution of the relative 
total covariances. For the high sampling rate 
estimates (estimates with an overall sampling 
rate>25%), 15.4% of the relative covariances are 
extremes (< -30%). For the low sampling rate 
estimates (estimates with an overall sampling rate 
<25%), 1.0% of the relative covariances are 
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extremes ( ≥ 15%). This suggests: 1) 

assuming ˆ( )Cov T =0 may not always be 
appropriate; and 2) the relative covariance may 
explain a significant share of the variance errors. 
For this reason, the results control for the 
covariance whenever possible. 
4.2 Relative Error 
    Table 2 provides the distribution of the relative 
errors for the two variance methodologies. For the 

direct second-stage method ( ( )Dv T∗ )

), there is no 
variance underestimation for estimates with high 
sampling rates; all relative error are positive. This 
indicates that the first and second stage FPCs are 
appropriately applied. However, 15.4% of the 
relative errors are on the extreme positive side. For 
the estimates with low sampling rates, almost all 
relative errors are in a reasonable range, only 1.0% 
are in an extreme range. Again, the simulations 
indicate that the FPCs are appropriately applied. 
Since the relative covariance is estimated by DRE− , 

the row ‘ ( )Dv T∗ )

+ cov( )T
)

’ in table 2, which adds the 

Relative ˆ( )Cov T  to the relative error, has relative 
errors of zero for all estimates (i.e., all error is due 

to ˆ( )Cov T  not being incorporated into ( )Dv T∗ )

). 

    For the indirect second-stage method ( ( )Iv T∗ )

) 
with high sampling rates, given that the wrong FPC 
is used in the second-stage variance component, the 
relative errors do not look too bad, with 9.6% in the 
extreme negative category. The explanation for this 
is that the covariances for this group are all 

negative. With the ˆ( )Cov T =0 assumption, these 
variances should be overestimates, while the 
incorrect FPC should induce an underestimate. The 
net affect is a lower error rate than the size of the 

FPC would indicate. From the ‘ ( )Iv T∗ )

+ cov( )T
)

’ 
row, 65.4% of the relative errors are less than –
30%. So, the errors due to the first-stage FPC bias 
are masked by the negative covariances. 
    For estimates with low sampling rates, the 
indirect second-stage method relative errors look 
very reasonable with only 2.8% in the less than –
15% category. After controlling for the covariance, 
there are no extreme relative errors, although all are 
negative.  When the sampling rates are not high, the 
first-stage FPC induces a slight variance 
underestimation. 
4.3 Coverage Rates 
    Table 3 provides the distribution of the coverage 
rates. For the direct second-stage method with high 
sampling rate estimates, the coverage rates look 
good. Only 3.9% of the coverage rates are low 
(<90%). One might expect the estimates in this 

category would have positive covariances. 
However, this is not the case; 100% are negative. 
However, the negative covariances seems to 
explain the small number of coverage rates (3.9%) 
that are very large ( ≥  97%). For estimates with low 
sampling rates, the coverage rate distribution is 
very reasonable. Only 4.7% are in an extreme 
category with most seemingly caused by an 
appropriately signed covariance. 
      For estimates with high sampling rates, the 
indirect second-stage method produces a poor 
coverage rate distribution with 32.7% of the rates in 
the extremely low category. Since the covariances 
are all negative, which would imply higher 
coverage rates, the covariances are not causing this 
result. Seemingly, the first-stage FPC incorrectly 
applied to the second-stage variance component is 
causing the errors. For estimates with low sampling 
rates, the coverage rate distribution looks good. 
Where there are extremes, the covariances are 
mostly consistent with the direction of the error.  
5.0 Conclusions 
    The object of this research is to measure the 
performance of the indirect variance methodology 
for the SASS teacher survey, a two-stage design 
with high first-stage sampling rates. The indirect 
methodology does not correctly estimate the 
second-stage variance component. As an 
alternative, the direct methodology, which correctly 
estimates the second-stage variance component, is 
proposed and compared to the indirect method. 
     Both methodologies assume the total covariance 
is zero. Results of this analysis show this can be an 
incorrect assumption.    In terms of relative error, 
both methods perform acceptably, although the 
indirect method is aided by two biases in different 
directions reducing the net bias. The indirect 
method’s poor coverage rates provide the overall 
conclusion that the direct method performs better. 
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Table 1 -- %Distribution of the relative total covariance 

Design Relative 
covariance

30%< −  

-30% ≤ Relative 
covariance<0% 

0% ≤ Relative 
covariance<15% 

Relative 
covariance

%15≥  

 
 

Min. 

 
 

Max. 

High Sampling Rates 15.4 84.6 0.0 0.0 -41.6 -3.0 

Low Sampling Rates 0.0 50.9 48.1 1.0 -23.7 16.8 
 
Table 2 -- % Distribution of relative error 

Variance Design Relative 
error 15< − % 

-15% ≤ Relative 
error<0% 

0% ≤ Relative 
error<30% 

Relative 
error 30≥ % 

 
Min. 

 
Max. 

      

0.0 0.0 84.6 15.4 3.0 41.6 

0.0 0.0 100 0.0 0.0 0.0 

      

1.0 48.1 50.9 0.0 -16.8 23.7 

Direct Second-stage 
High Sampling Rates 

( )Dv T∗ )

 

( )Dv T∗ )

+ 1cov( )T
)

 
Low Sampling Rates 

( )Dv T∗ )

 

( )Dv T∗ )

+ 1cov( )T
)

 0.0 0.0 100 0.0 0.0 0.0 

      

9.6 48.1 36.5 5.8 -25.8 36.7 

65.4 34.6 0.0 0.0 -34.8 0.0 

      
2.8 69.4 27.8 0.0 -20.2 17.5 

Indirect Second-stage 
High Sampling Rates 

( )Iv T∗ )

 

( )Iv T∗ )

+ 1cov( )T
)

 
Low Sampling Rates 

( )Iv T∗ )

 

( )Iv T∗ )

+ 1cov( )T
)

 0.0 99.5 0.5 0.0 -14.0 0.1 
1 This row adds the total relative covariance ( DRE− ) to the relative error. 
Table 3 -- % Distribution of Coverage Rates 

Variance Design Coverage
<90% 

90% ≤ Coverage
<97% 

Coverage
97%≥  

Coverage 
Min. 

Coverage 
Max. 

     
3.9 92.2 3.9 89.1 97.6 

0.0 0.0 0.0 NA NA 

100 100 100 89.1 97.6 

4.7 95.3 0.0 86.9 96.3 

80.0 47.5 0.0 86.9 95.0 

Direct Second-stage 
High Sampling Rates 1  

With cov( ) 0T >
)

 
With cov( ) 0T <

)

 

Low Sampling Rates 1  
With cov( ) 0T >

)

 
With cov( ) 0T <

)

 20.0 52.5 0.0 89.3 96.3 

     
32.7 67.3 0.0 85.4 96.9 

0.0 0.0 0.0 NA NA 

100 100 0.0 85.4 96.9 

7.1 92.9 0.0 86.5 95.4 
80.0 46.7 0.0 86.5 94.6 

Indirect Second-stage 
High Sampling Rates 1  

With cov( ) 0T >
)

 
With cov( ) 0T <

)

 

Low Sampling Rates 1  
With cov( ) 0T >

)

 
With cov( ) 0T <

)

 20.0 53.3 0.0 89.1 95.4 

1 Row percentages sum to 100% 
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