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SUMMARY 
  
In the present investigation, we propose a penalized chi 
square distance function for estimating the total/mean of a 
finite population.  The function produces a general class of 
estimators for the population total that includes, among 
others, the estimators of Searls (1964), Singh and Srivastava 
(1980), and the famous unbiased ratio estimator of Hartley 
and Ross (1954).  Several of the estimators in the resulting 
general class are not members of the family based on the 
pioneer technique of Deville and Sarndal (1992).  The 
existing gap in the GES developed at Statistics Canada to 
study Searls’ (1964) estimator and unbiased estimation 
through calibration could be filled with the help of 
technology developed here. 
 
Key words: Auxiliary information; Calibration; Estimation 
of total/mean; Model-Assisted approach; Ratio and 
regression type estimators; Searls’ estimator. 
 
 

1. INTRODUCTION 

 
When auxiliary information is available, the most commonly 
used estimator of the population total/mean is the 
generalized linear regression (GREG) estimator.  In what 
follows, we consider the simplest case of GREG, where 
information on only one auxiliary variable has been 
collected. Suppose that from a population { }Ni,..,,..,2,1=Ω , a 
probability sample ( )Ω⊂ss  is drawn with a given sampling 
design, ( ).p . The inclusion probabilities ( )sii ∈= Prπ  and 

( )sjiij ∈= &Prπ  are assumed to be strictly positive and 
known.  Let (xi, iy ) be a bivariate observation consisting of 
the values of the auxiliary variable and the variable of 
interest for the i-th population element. The Horvitz-

Thompson (1952) estimator of the population total ∑=
=

N

i
iyY

1
is:  
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where di i= 1 π  are the Horvitz-Thompson weights.  The 
variance of (1.1) is 
  

( ) ( )2
2
1ˆ

jjii
ji

ijHT ydydYV −∑ ∑Θ=
≠ Ω∈

 

 

 
 

(1.2) 

where ( )ijjiij πππ −=Θ .An unbiased estimator for (1.2) is 
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where .ijijijD πΘ=  Deville and Sarndal (1992) proposed a 
new estimator for the total, naming it GREG: 
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Here the iw  are weights that, for a given metric, are as close 
as possible in an average sense to the id  while respecting 
the calibration equation 
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Let qi  be a set of suitably chosen weights.  Minimizing the 
chi square type distance function 
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subject to (1.5),  yields new weights as 
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(1.7) 

Particular choices for qi  yield different forms of the 
estimator in (1.4). Substituting wi  in (1.7) into (1.4), yields 
the generalized regression estimator of the population total 
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where ∑∑=
==

n

i
iii

n

i
iiiids xqdyxqd

1

2

1
β̂ , with approximate variance: 

  

( ) ( )∑ −∑Θ=
≠ Ω∈ji

jjiiijds ededYV 2
2
1ˆ  

 

 
(1.9) 

As an estimator for (1.9) considered by Sarndal et al. (1989), 
Deville and Sarndal (1992) and Sarndal (1996), is 
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 where idsii xye β̂−= .The estimator in (1.8) is quite general 
and includes different estimators as particular cases.  For 
example, if ii xq 1=  then (1.8) reduces to the ratio estimator 
studied by Cochran (1977) as 
  

( )HTHTds XXYY ˆˆˆ =  
 

 
(1.11) 

where ∑=
∈si

iiHT xdX̂ .  If 1=iq , then (1.8) reduces to general 

regression estimator 
  

( )HTdsHTds XXYY ˆˆˆˆ −+= β  
 

 
(1.12) 

Unfortunately there is no choice of iq  that results in (1.8) 
matching the linear regression estimator of Hansen, Hurwitz 
and Madow (1953) given by 
  

( )HTolsHThhm XXYY ˆˆˆˆ −+= β  
 

 
(1.13) 

where ( )( ) ( )∑ −∑ −−=
∈∈ si

ii
si

iiiols xxdyyxxd 2β̂ , ∑∑=
∈∈ si

i
si

ii dxdx  

and ∑∑=
∈∈ si

i
si

ii dydy . Wu and Sitter (2001) added the 

constraint 11 =∑
∈

−

si
iwN  on the weights and developed a new 

estimator of the population total 
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where ( )( ) ( )2***ˆ ∑ −∑ −−=
∈∈ si

iii
si

iiiiols xxqdyyxxqdB  and 

** ˆˆ xByA ols−=  with ∑∑=
∈∈ si

ii
si

iii qdxqdx*   and 

∑∑=
∈∈ si

ii
si

iii qdyqdy* .  Note that if 1=iq  then olsolsB β̂ˆ = , 

but for any IPPS scheme (except simple random sampling 
without replacement) it is the case that hhmws YY ˆˆ ≠ .  Wu and 

Sitter (2001) made hhmws YY ˆˆ = by neglecting a small term, 

AdN
si

i
ˆ
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


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∈

, from their estimator (equation no. 9, page 187, 

JASA). In short, the estimator (1.14) rediscovered by Wu 
and Sitter (2001) is a special case of the Deville and Sarndal 
(1992) estimator obtained by setting one auxiliary variable 
out of p at a fixed level.  This demonstrates that, for any 
unequal IPPS sampling scheme, the calibration technique 
cannot achieve the lower bound for the variance of the 
traditional linear regression estimator. Using a priori 
information on ( ) 2ˆ YYVC HTy = , Searls (1964, 1967) 
suggested the following estimator of the population total 

 
  

( )21ˆˆ
yHTsearl CYY +=  

 

 
(1.15) 

with mean squared error given by 
  

( ) ( ) ( )21ˆˆ
yHTsearl CYVYMSE +=  

 

 
(1.16) 

Reddy (1978) studied the properties of (1.15) and has found 
it to be useful if yC is large and the sample size is small. A 
similar conclusion regarding sample size was also reached 
by Searls (1964) and Arnholt and Hebert (1995). Fay and 
Herriot (1979) have discussed the importance of the James-
Stein (1961) procedure while estimating the income for 
small places from census data.  Note that the estimators due 
to James-Stein (1961) and Searls (1964) can be shown to be 
from the same family. Prasad (1989) proposed a ratio type 
estimator of the population total under an SI design as 
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where ∑=
=
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i
ixnx

1

1  is an unbiased estimator of ∑=
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i
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1

1 , 

while Jain (1987) considered the application of Searls’ 
(1964) estimator to the usual linear regression estimator 
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Note that it can be shown that (1.18) has mean squared error: 
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(1.19) 

Singh and Srivastava (1980) investigated an unbiased 
regression estimation strategy for the population total, Y, as: 
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In the present investigation, we propose a penalized chi 
square distance function that produces a general class of 
estimators for the population total that includes, among 
others discussed here, the estimators of Searls (1964), Singh 
and Srivastava (1980), and the famous unbiased ratio 
estimator of Hartley and Ross (1954) given by 
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where ∑=
=
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i
ii xy

n
r

1
.1  
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2. PENALIZED CHI SQUARE DISTANCE FUNCTION 
 
We suggest here the penalized chi square distance function 
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(2.1) 

where *
iq  are weights and Φ  is a positive quantity that 

reflects a penalty to be decided by the investigator based on 
prior knowledge, or the desire for certain levels of efficiency 
and bias. Different choices for *

iq result in different 
estimators, while increasing Φ  results in a decrease in the 
mean square error of the estimator; unfortunately has the 
side effect of increasing the bias.  If 0→Φ , then the 
penalized chi square distance function (2.1) reduces to the 
Deville and Sarndal (1992) distance function. Considering 
the estimator of population total to be of the form 
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(2.2) 

We shall minimize the penalized chi square distance 
function for five different situations: 
 
1. No auxiliary information is available. 
2. Calibration of Deville and Sarndal (1992).  
3. Penalized calibration constraint. 
4. Unbiased strategy of Singh and Srivastava (1980). 
5. Unbiased ratio estimator by  Hartley and Ross (1954). 
 
We shall also discuss the estimators belonging to each one 
of the above situations. 
 

3. NO AUXILIARY INFORMATION AVAILABLE 
 
In the absence of auxiliary information, minimizing (2.1) 
with respect to *

iw  gives 
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(3.1) 

which implies that 
  

( )2* 1 Φ+= ii dw  
 

 
(3.2) 

On substituting (3.2) into (2.2), we obtain a new estimator of 
population total given by 
  

( ) ( )22 1ˆ1ˆ Φ+=Φ+∑=
∈

HT
si

iinew YydY  

 

 
(3.3) 

The penalized estimator newŶ  is independent of the choice of 
*
iq , which indicates that Searls(1964) estimator is a unique 

estimator in its class.  Following Searls (1964), the mean 
squared error of the penalized estimator is 

 
 
 

 
( ) ( ) ( )21ˆˆ Φ+= HTnew YVYMSE  

 

 
(3.4) 

so that the efficiency of (3.3) relative to the Horvitz-
Thompson estimator is given by 
 
 
 

 
21 Φ+=RE  

 

 
(3.5) 

The bias in (3.3) is given by 
 
 
 

 
( ) ( ){ }YYB new

22 1ˆ Φ+Φ−=  
 

 
(3.6) 

Interestingly if ∞→Φ , then ∞→RE  but 
( ) ( ) 1ˆˆ −→= YYBYRB newnew ; thus an increase in the penalty 

may be advantageous in that the gain in relative efficiency 
may outweigh the increase in bias.  If 0→Φ then 

1→RE and ( ) .0ˆ →newYRB  If yC=Φ , the penalized estimator 
reduces to Searls (1964) estimator. In practice the best 
choice of value for the penalty is in the range from 0 to 1.  If 

1=Φ , the penalized estimator is 200% more efficient than 
the Horvitz-Thompson estimator with ( ) .5.0ˆ −=newYRB  If 

5.0=Φ , the relative efficiency is 125% with 
( ) .2.0ˆ −=newYRB  

James-Stein (1961) Estimator 
If the iY  are assumed to be independent and identically 
distributed according to a normal distribution with mean iθ  
and variance D , then each iY  is the obvious estimate of its 
respective iθ .  For  k > 3, James and Stein (1961) defined 
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ii Y
S

Dk




 −
−=

21'δ  

 

 
 

(3.7) 
 

as an estimator of iθ , with ∑=
i

iYS 2 .  Note that if iHT YY =ˆ  

and ( ){ } ( ){ }SDkSDk 2122 −−−=Φ , then the penalized 

estimator newŶ  in (3.3) reduces to James and Stein (1961) 
estimator. 
 

Fay and Herriot (1979) Estimator 
 
Following James and Stein (1961), if ( )DNY iindi ,~ θ  and 

( )AXN iindi ,~ βθ , Fay and Herriot (1979) combined the 

regression estimator ( ) YXXXXY ii '' 1* −=  with the direct 
estimator iY  to form an empirical Bayes estimator of iθ  as 
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
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(3.8) 
 

Similarly, the convex combination of the proposed penalized 
estimator with the empirical Bayes estimator will lead to the 
estimator of Fay and Herriot (1979) 
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The estimator (3.9) is also called a composite estimator and 
plays an eminent role in small area estimation. 
 

4. CALIBRATION OF DEVILLE AND SARNDAL 
 
In order to minimize the penalized chi-square distance 
function subject to the calibration constraint of Deville and 
Sarndal (1992), we consider the Lagrange function 
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Setting 0* =∂∂ iwL , yields 
 

( ) ( )
























∑−Φ+
∑

+
Φ+

=
∈

∈
si

ii

si
iii

iii
ii xdX

xqd
xqd

dw 2
2*

*

2
* 1

1
1  

 

 
 
 

(4.2) 
 

so that a penalized estimator of population total Y is given by 
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Note that if ii xq 1* = , then (4.3) reduces to the usual ratio 
estimator of the population total, namely 
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The mean squared error of the estimator in (4.3) is given by 
 
 
 

 
( ) ( ) ( )21ˆˆ Φ+= dsnew YVYMSE  

 

 
(4.5) 

where 

( ) ( )∑ −∑Θ=
≠ Ω∈ji

jjiiijds ededYV 2
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1ˆ  and ( ) ( )22 ˆ XYYV ds β−=Φ .  It 

is interesting to note that if XY→β , then ∞→Φ  and the 
relative efficiency also approaches infinity; however this 
may have a serious adverse effect on bias.  If Φ is known, 
then an estimator for the mean squared error of (4.3) is 
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2
1ˆˆ  is a new penalized 

estimator of variance of the Deville and Sarndal (1992) 
estimator. 
 

PRODUCT METHOD OF ESTIMATION 
 
The problem of estimating the product of two variables is 
well known when the two variables are negatively 
correlated. For example, an estimate of the force, F, of 
certain objects is given by amF ˆˆˆ ×=  , where m̂  and â  are 
the average mass and acceleration. For further details on 
product estimation, see Robson (1957) and Murthy (1964).  
Minimization of (2.1) subject to a new calibration constraint, 
defined as 
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leads to calibrated weights given by 
 
 
 

( )























∑













∑−Φ+

+
Φ+

=

∈

∈

si
ii

si
i

HT
ii

ii
qd

d
X

X
qd

dw
*

2*

2
*

1
ˆ

1
1  

 
 

(4.8) 
 

and the following penalized estimator of the population total 
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If 1* =iq , then 
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which is same product estimator studied by Murthy (1964). 

 
5. PENALIZED CALIBRATION CONSTRAINT 

 
We suggest here a new penalized calibration constraint as: 
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Minimization of the penalized chi square distance function 
(2.1) subject to (5.1) leads to the calibrated weights 
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The resultant penalized estimator of the population total is: 
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while the minimum mean square error of (5.3) is 
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where ( ) 22 ˆ YYV ds=Φ . An estimator of the variance of (5.3) is  
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which is similar to the estimator studied by Prasad (1989). 
Following Prasad (1989), the penalty in (5.6) can be taken as 
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which is a new estimator of the population total. 
 

6. SINGH AND SRIVASTAVA’s UNBIASED 
ESTIMATION STRATEGY 
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which satisfy the condition of minimal distance if 
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Thus a new penalized estimator of the population total is 
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Under SRSWOR sampling, nNdi =  and if 

( ){ } ( ){ }1122 −+−=Φ NnNn  and 1* =iq , then (6.8) becomes 

( )
( )

( )

( )
( )



















−
∑ −

∑ −
−

−
−

=

=

= Xx
Xx

Xxy
y

n
NnY

n

i
i

n

i
ii

new

1

2
1

1
1ˆ  

 
 

(6.9) 
 

which is identical to the unbiased regression type estimator 
proposed by Singh and Srivastava (1980).  Note that 

( ){ } ( ){ }1122 −+−=Φ NnNn  lies between 0 and 1 and hence 
satisfies the condition of minimal distance. 
 

7. HARTLEY AND ROSS ESTIMATOR 
 
In order to minimize (6.1) subject to the Deville and Sarndal 
(1992) calibration constraint, we consider the Lagrange 
function 
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Setting 0* =∂∂ iwL , yields 
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so that a penalized estimator of the population total Y is: 
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Under SRSWOR sampling, if 2* 1 ii xq =  and 

( ){ } ( ){ }1122 −+−=Φ NnNn  then (7.3) reduces to 
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which is equivalent to the Hartley and Ross (1954) 
estimator. 
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CONCLUSION 

 
A penalized chi square distance function has been proposed 
that covers a wider variety of estimators than the original chi 
square function introduced by Deville and Sarndal (1992).  
The proposed function produces a general class of estimators 
for the population total that includes the estimators of Searls 
(1964), Singh and Srivastava (1980), and the famous 
unbiased ratio estimator of Hartley and Ross (1954), among 
others. 
 

FURTHER STUDY 
 
The extension of one-dimensional penalized chi-square 
distance function to two-dimensional penalized chi-square 
distance function and study of resultant estimators on the 
lines of Singh, Horn and Yu (1998) is in progress.  Note that 
we have considered only simplest penalized chi-square 
distance function, but any one among the distance functions 
discussed by Deville and Sarndal (1992) can be penalized, 
and will lead to more interesting estimators.  
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