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Abstract: 
Applications for this method include small area
estimation and imputation, with estimates of standard
errors of totals.  This has been tested and developed, and
now enters full-scale testing and implementation.
Emphasis will be on the integration of this method into
overall survey processing.  Advantages include ease in
revising models, flexible organization, storage and usage
of data, and the ability to maximize the effectiveness of
collected data.  It integrates well with graphical editing.
For purposes of estimation, collected data may be
grouped such that each data set contains as many
members as may be well defined under a single model per
group.  That is, each category (group) should be as large
as it can be and remain basically homogeneous.
Regressor data on the universe are required.

After the models are exercised, there will be either an
observed response or an 'imputed' value for each member
of the population, which can be rearranged and published,
with estimated standard errors, for any subtotals desired.
As a matter of practical importance, data tables
containing observed and imputed values, illustrated in
Knaub(1999) on pages 8, 9 and 22, are very helpful to
people processing such data for publication, especially
when those processing the data may not be inclined to do
statistical analyses.  Errors in publishing (sub)totals,
caused by duplicate records or ‘dropped’ records are
easier to discover when a data manager can see a table for
all members of the universe, which contains either an
observed or an imputed number in each case.  (One must,
however, guard against a customer confusing an imputed
number for a reported number for a given establishment.)
Scatter graphs used for graphical editing can be used in
conjunction with these tables.

Under full-scale testing, more results have become
available for a better study of variance estimation, and
bias is also studied with instructive results.  Other areas
illustrated are the appropriateness of using this technique
under an extreme condition, and the application of this
method across strata.

Introduction:
This work is a continuation of Knaub(1999) and

Knaub(2000), where it is shown that any software that
performs regression and will allow system calculated
values such as residuals to be used in new calculations,
can be used to estimate any subtotals and their standard
errors.  Data may be grouped optimally for estimation
purposes, and regrouped for publication purposes.  There
will be either an observed or an imputed value in each
case.  Imputed values are associated with two other
numbers.  The first is the standard error of the prediction
error for that imputed number, and the second is the root
mean square error divided by the square root of the
regression weight.  This latter number is needed when
estimating standard errors for (sub)totals to be published
using this flexible system.  The advantage lies in the
simplicity with which data may be stored and rearranged
for publishing under a variety of categories.  This method
may be used for inference with model-based sampling, or
as an imputation tool for any kind of sample or census
survey, for which regressor data are available.  For a
design-based sample, imputations may be made first and
then variance due to imputation added to variance due to
the design.  (See Lee, Rancourt and Saerndal (2002).)

The regression model may have any number of
regressors, with regression weights defined as a function
of a single regressor, or combination of regressors.  For
example:
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estimate of  y.  The format, ,  is well1/ 2x wγ −=
established as quite useful.  (See Cochran(1953) and
Knaub(1995).)  Estimation of the value of gamma
indicated by the data is also discussed in Knaub(1993),
and Knaub(1997).  However, in addition to the best
gamma value as indicated by the precise data used in the
model at a given time, there are other considerations.
These considerations are discussed in Knaub(1999).  Also
see Knaub(1997).  The range of useful gamma values will
also be discussed in an upcoming book by K.R.W.
Brewer (Brewer(2002)).  

It is shown in Knaub(1999) that a good estimate of the
variance  of  the estimate of a subtotal for any stratum is
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where , and “r” indicates summation  over0 1< <δ
the  N-n  nonrespondents within the stratum.
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regression weight.  For highly skewed electric power
data,  works very well.  (See Knaub(1999) and0.3δ =
Knaub(2000).)  Further, results have appeared to be more
sensitive to than to  γ .δ

Each stratum  consists  of  a  subsection  of  the category
to be published (publication group, “PG”) that also
belongs to a part of the population for which a single
model was used (an estimation group or “EG”).  Thus, the
strata are each intersections of the PG with an EG.
Variance for the PG is estimated by the total of the
estimated variances for each of the strata within the PG.

An important feature of this methodology is the flexibility
that it gives to data storage and reconstitution under
various categories for subtotaling the results.  The
estimation groups, EGs, do not need to correspond to the
publication groups, PGs.  Thus, estimations (imputations)
for missing values can be made using optimally grouped
EGs for that purpose, regardless as to what PGs are to be
shown in data reports.  This is also useful with regard to
small area estimation, allowing estimation within some
strata of a PG that otherwise may not have been
possible/practical.  The lack of data would result in a
large variance for such strata, and perhaps substantial
bias, but accuracy would be improved over what would
otherwise be obtained, as found in practice at the Energy
Information Administration.

Model-bias, particularly for cutoff samples, was a study
topic suggested by the American Statistical Association’s
Committee on Energy Statistics after reviewing this
method at a meeting in the Fall of 2000.  Cochran(1977)
and Hansen, Hurwitz and Madow(1953) discuss the bias
in model-assisted design-based estimation of totals, which
are shown to diminish with increased sample size, and be
proportional to the standard error.  For the model-based
case, Brewer(2002) discusses conditions under which the
bias would be negative.  Further, Valliant, Dorfman and

Royall(2000) discuss work by Royall and Herson(1973)
that uses a polynomial format to generalize a regression
model (with one regressor) to show that model-bias can
be eliminated by making the sample mean for the
regressor, x, equal to the population mean of X, when
using a model-based sample.  This is called a ‘balanced
sample.’  However, this may not always be a practical
solution, especially for highly skewed establishment
surveys.  There are cases where an agency has only
wanted to report on the largest entities and ignore the
others.  Fairness in information disclosure may enter into
consideration.  Perhaps an establishment might file a
complaint about reporting certain data if other
establishments of the same ‘size’ are not required to
report as often.  Also, trying to implement a balanced
sample could introduce more respondent burden than may
be allowed.  Perhaps more of a problem, if randomization
were used, that could result in the need for substantial
imputation anyway.  Substantial nonsampling error often
occurs when attempting to collect timely data from
smaller establishments.  Cutoff samples have therefore
been used for electric power surveys at the Energy
Information Administration, and a study of bias when
using the new methodology of Knaub(1999) is in order.

Discussion of model-introduced bias in Valliant,
Dorfman and Royall(2000) is quite clear:  Since a
polynomial can be used to fit other distributional forms,
the model used can be thought of as one where most
terms are not present.  Use of such a model is not bad
practice in that one should not overspecify, given lack of
perfect knowledge.  Still, bias may be reduced for the
more insightful models.  The presence of multiple
regressors is a further complication, but the principle is
the same.  The number of regressors may be varied, as
well as , and here,  may be varied.  In this study, theγ δ
focus is upon .  Compared to , had littleγ γ δ
influence on resulting variance estimation.  Further,
Brewer(2002) indicates a zero intercept is probably best,
and this author’s research seems to indicate likewise.

Also,  is a general and useful format, as1/ 2x wγ −=
mentioned above.  Therefore, for this study of utility
generation estimation, is a strong influence on theγ
appropriateness of the model, and therefore, a strong
influence on model-introduced bias.  This should be true
in general.  The best value to be used for , however,γ
can be somewhat elusive.  (See Knaub(1997),
Knaub(1993) and Knaub(1995).)  Is further adjustment
for bias possible, or even advisable?  That is a subject
that is taken up in the case study below.

Extreme Circumstance:
Suppose that a single regressor, or function of regressors



Figure 1
Absolute Error of (T'*) 

as a Function of Standard Error of T*
for the 

Adjusted T* Values

y = 0.8165x
(ratio)

0

1 00

200

300

400

500

600

700

800

0 1 00 200 300 400 500
s.e.(T*)

|T
'*

-T
|

Figure 1
Absolute Error of (T'*) 

as a Function of Standard Error of T*
for the 

Adjusted T* Values

y = 0.8165x
(ratio)

0

1 00

200

300

400

500

600

700

800

0 1 00 200 300 400 500
s.e.(T*)

|T
'*

-T
|

used for y, is z.  Suppose further, that this was a mistake:
there is no correlation between y and z!  A balanced
sample would guard against bias under this situation as
well, but a cutoff model-based sample should
underestimate totals (under-predicting for each missing
value) when regression is forced through the origin.  This
is illustrated in Knaub (2001).

Balanced sample:
Under such an extreme condition, such as mentioned
above, a “balanced sample” (Valliant, Dorfman and
Royall(2000)), would be useful.  However, using a
balanced sample may often be better in theory than in
practice.  Sometimes, in establishment surveys, data
customers are only tracking the largest few entities.  That
may be all that is collected and published.  Some
published “totals” in official statistics are only the sum of
observations in a ‘sample,’ and it may be difficult to
convince the responsible agency that this is not adequate.
What is excluded may be small at a high aggregate level
(perhaps a national level), but large for some published
less aggregate levels (say, State level numbers).  Thus
estimation for the remaining (many) relatively ‘small’
establishments may also be important, and therefore a
cutoff sample, rather than a truncated universe, may be
desired.  Using a balanced sample would force the
collection of a larger sample size.  Like a design-based
sample, there would be a number of smaller observations
required, which may have to be imputed anyway due to
large nonsampling error, or nonresponse.

Case Study (154 ‘Samples’):
In spite of the possibility of a negative bias shown above,
and that found in Brewer(2002), the ‘obtained’ bias in the
following study was positive.  Electricity generation data
were obtained from utilities, by State, by energy source
(for hydroelectric, coal-fired, gas-fired and petroleum-
fired generation).  There were 154 such categories in this
experiment.  Data were obtained from a census, with
regressor data taken from a previous, similar census and
yet another census survey.  A standard testing procedure
is to simulate a sample by using part of the formerly
mentioned census, and that was done here.  Here, T
represents the total generation actually observed for a
given fuel type and State.  T* represents the estimate,
formed by summing observed values from a cutoff
‘sample,’ and imputed values for the ‘missing’
observations.  The standard error of T* is thus

= s.e.(T*).   z-values found in Figure 4{ } 0 5* *
L

.
(T T)V −

are thus z = (T*-T)/s.e.(T*).

Two sets of results are considered.  In one set, the gamma

value was considered by fuel type, and at least part of the
remaining apparent positive bias was subtracted from T*
(to form a new estimate of T), so that the resulting z-
values appeared to be distributed well with regard to
variance, and with a nearly symmetric shape, indicating
no substantial remaining bias.  (See Figure 3.)  In that

case, the ‘adjusted’ z is ,fz' = (T*-T- c )/s.e.(T*)
where cf  was a fraction of the s.e.(T*) value for each fuel
type, f.  (All variables could be subscripted with an “f”

here.)  The new estimate of T is then T
��
* = fT*- c .

However, this might be considered tantamount to over-
specification.  (See Knaub(1995) with regard to the
somewhat fickle nature of gamma.)  In the other set of
results below, gamma is set at 0.5 (the ‘ratio’ estimate)
for all but the gas-fired cases, which seem quite different,
and experimentation showed that gamma was much better
set at 0.8 for those instances.  There was no further
adjustment.  (Note that in later applications to monthly
testing, where fuel switching, seasonality and higher
nonsampling errors can confuse the situation, the ratio
estimate, being more robust, appeared useful for gas-fired
generation as well.)

Before showing the graphs of z-values for these two sets
of results, graphs are presented that show |T*-T| as a
function of s.e.(T*).  (Note that in the formerly described,
or more ‘adjusted’ results, T* has subtracted from it a
fraction of the standard error, varying by fuel type, and
may therefore be designated as T

��
*.)  The Excel generated

“trend lines” in the figures below automatically assume
OLS, so SAS PROC REG was used to estimate the
equations using a ratio, model-based estimate.  These
graphs show that the standard errors for the latter results
(less adjusted, only using gamma equal to 0.5 or 0.8),
conservatively cover error estimation so that there is little
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chance of indicating greater accuracy than has been
achieved.  That could be quite important in official

statistics.   Also, remember  appears robust.*T ( 0.5)γ =

    Figure 3

                                 
                             Figure 4

Conclusion with Regard to Case Study:
Use of gamma = 0.5 for all cases except for electricity
generated from natural gas, where gamma = 0.8 was used,
appears to result in noticeable bias and a slight
overestimate of variance.  However, as a general indicator
of the reliability of the associated estimates of (sub)totals,
results appear satisfactory.  By avoiding further
‘adjustments,’ programming may be more generally
applicable so that monthly production of reports based on
monthly sampled observations may proceed more
smoothly.  The ratio estimate (gamma=0.5) in particular,
has shown robust behavior.  (This has also appeared to be
the case, in the author’s opinion, for other situations
encountered over a number of years.)  This may
contribute toward uninterrupted production of frequently
produced data publications.

To put these results into practice, one must consider
stratification.  Thus the next section describes that
procedure.

New Method: Application across strata:
An  example of a  “partial”  data file illustrating the new



method is found on page 8 of Knaub(1999).  Figure 5
below represents such data.  

   Figure 5

��
An ‘EG’ is an ‘estimation group’ for
purposes of regression modeling.�
A ‘PG’ is a ‘publication group’ from which a
subtotal is to be published.  (There may be any
number of such groupings.)�
The data points ‘observed’ are circled.  Those
‘imputed’ are not circled.  �
Estimated totals are easy to obtain.  For the
estimated total in the western States (PG1 = 2),
simply add the observed and imputed numbers
for d, l, m, b, i, h, k and s.  �
For variances, sum the variance estimates from
relevant strata.  
(A stratum is the intersection  of a ‘PG” with
an ‘EG.’)�
Example for a given stratum: 
The estimated variance for the southern stratum
of PG1 = 2 sums information for k and s, using
data from e, g, c, i and h in a model applicable to
EG = 2.  (More data would normally be present,
but this is just for purposes of illustration.)

�
How to establish the EGs:
Practical matters, such as considering areas with
similar precipitation patterns when collecting
data on hydroelectric generation, should be part
of this decision making process.  ‘Trial and
error’ may be used, comparing model
parameters, but caution should be exercised if
hypotheses are tested.  (See Knaub(1987).)
Since p-values are sample size dependent,
confidence intervals are often more informative.

It is possible that a given PG will contain no collected
data at all, yet with wise determination of EGs, a decent
estimate for that PG could be obtained.  (However, this is
not likely, and the estimated variance would normally be
large, so it would not be crucial to know the bias.  The
estimated (sub)total would probably not be publishable.)

Epilogue:
This method is now being implemented for two sample
surveys as a small area method, and may be tested as an
imputation method for at least one census survey in the
near future, possibly to be expanded to several others.
Test data results were good, and there is a clear
understanding as to the implementation of this method
across strata.  It can be used for imputation for any kind
of survey, including design-based sample surveys.  (See
Lee, Rancourt and Saerndal(2002).)  Applications as a
small area technique, as opposed to imputation for a
census, may best be accomplished by attention to the
gamma values employed, as indicated in Knaub(1999).
Use with design-based sampling, and differences between
establishment and household surveys and any other
possible applications may be addressed by giving
attention to the delta value(s) chosen, as well as gamma.
  
The Energy Information Administration is currently
beginning to use this methodology for the Electric Power
Monthly publication, as a means for estimation.  Related
graphical edits are being implemented on a larger scale,
to help identify nonsampling error.  Thus the application
of models is being expanded.

Further considerations for implementation:
Many practical matters must be taken into account.  In
some cases, regressor data may not be complete, or some
change may have taken place at an establishment which
would cause the model to no longer apply to those data.
In such a case, data collected from that establishment may
be used to represent only that establishment, and should
not be used to estimate for ‘missing’ data.  Such
responses may be labeled as “ADD-ONs.”  (Note: For
purposes of data editing, it is very useful to graph the data
element of interest as a function of a regressor or of a
function of regressors.  “Add-ons” may not be included
in such graphs.  Other scatterplots may examine the
relationship between data elements when data are not
complete for any of these elements but the graphs may
still be useful for data editing purposes.)  Another
practical consideration would be changes in the frame due
to company mergers.  Making certain that regressor data
and current data of interest are matched properly is often
far from trivial.  That is one more way that an agency
with a disorganized approach can find itself in trouble.



Finally, consider nonsampling error.  One approach was
mentioned in Knaub(1999), on pages 8 and 9.  It involves
a study that could include noting revisions to observed
responses.  Another possibility might be a simulation that
predicts for successively removed responses and
"averages" the predicted standard errors.

Comments on SAS code for implementation:
Code on pages 18 through 23 in Knaub(2001) was
extracted from a SAS program written by Dr. Orhan M.
Yildiz for application at the Energy Information
Administration.  Fragments of this code may be useful to
various readers.  (Also see the shorter, more generalized
code on pages 33 and 34 of Knaub(1999).)  Note that
coefficients and other statistics are determined here by
SAS PROC REG, but that other software might be used
to perform the same functions.
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