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Abstract 
Local-area characteristics from the census are often a 
useful supplement to variables in databases created 
from administrative records, when geographical links to 
census block groups can be established.  In large 
databases, some records might not have adequate 
address information to permit geocoding beyond zip 
code; hence, no links could be made to census block 
groups.  Treating these ungeocodable cases as unit 
nonrespondents, we propose a new method that uses 
matched substitutes and regression modeling to create 
multiple imputations for such missing values. 
 
1. Motivation 
In a study of treatment patterns for colorectal cancer 
patients, characteristics such as age, gender and 
race/ethnicity were available from hospital files and 
insurance records.  In this study, investigators also 
believed that variables such as income and education 
level could be useful in model building and prediction.  
Unfortunately, no individual measurements for these 
covariates were available from the administrative 
records.  Instead, mean values of these variables were 
obtained from U.S. Census Bureau records for small 
geographical areas (census block groups or tracts) 
including the subject's residence were used as 
regressors to estimate income and education effects.  
Use of such "contextual variables" is a common 
procedure in epidemiological and health services 
research (Krieger et al, 1997).  Such analyses often 
produce broadly similar results to those based on 
individual variables.  If both individual and contextual 
variables were available, it might be possible to 
separate the effects of individual characteristics and 
context; in a purely contextual analysis, these effects 
are confounded.  Nonetheless, associations between 

contextual characteristics and quality of care would 
suggest an equity problem, regardless of whether they 
primarily reflect individual or community-level 
relationships. 

In the colorectal cancer database, a small but 
substantial percentage of records (about 4.1%, or 2084 
cases) were not geocodable due to insufficient address 
information, and hence no values could be obtained for 
these cases through linkage to their corresponding 
census block groups.  As suggested by Zanutto (1998), 
the availability of information from both administrative 
records and the census for geocodable cases 
(respondents) makes it possible to fit a model to 
estimate the relationship between the information in the 
two sources. This model can then be used to impute 
data for the ungeocodable cases (nonrespondents) based 
on their administrative records. We propose a similar 
strategy for using matched substitutes to impute data 
that are missing for ungeocodable cases in 
geographically linked databases. The matched 
substitutes allow us to incorporate small area effects 
into the imputations without having to explicitly model 
separate effects for each small area.  This work is the 
first real-data application of the methodology proposed 
by Rubin and Zanutto (2001). 
 
2. Imputation Methodology 
Rubin and Zanutto (2001) proposed a method called 
“matching, modeling, and multiply imputing” (MMM) 
that uses matched substitutes to help impute for missing 
data due to nonresponse in sample surveys.  In this 
approach, substitutes are selected for nonrespondents 
using background covariates, which are available prior 
to the survey and are convenient for matching, to obtain 
responses from survey units that appear to be similar to 
the nonrespondents.  Hence, they referred to their 
substitutes as “matched” substitutes.  Rather than the 
usual approach of using the substitutes directly to 
replace nonrespondent data, the method uses the 
matched substitutes along with respondent information 

Proceedings of the Annual Meeting of the American Statistical Association, August 5-9, 2001 



and the background covariates of the nonrespondents to 
build a model to multiply impute the missing data.  To 
help fit this model, substitutes are also chosen for some 
respondents.  Once the missing responses have been 
multiply imputed, the substitutes (for both respondents 
and nonrespondents) are discarded. 

The methodology is designed to work well in 
realistically complex situations.  In particular, it 
accommodates systematic differences between 
respondents and nonrespondents as well as between 
nonrespondents and their substitutes.  In addition to the 
fact that substitutes are, by definition, respondents and 
therefore may be systematically different from their 
matching non-respondents, it is impractical to match 
substitutes to nonrespondents on all relevant covariates.  
For example, suppose that age and address are available 
for all units in the population prior to sampling.  It may 
be feasible to choose substitutes for nonrespondents by 
matching on address (e.g., choosing a neighbor to be a 
substitute), but it may not be easy to include address 
information in a statistical model.  Covariates like 
address are referred to as matching covariates, whereas 
covariates that can be included in statistical models are 
called modeling covariates (Rubin and Zanutto, 2001).  
Though age can be both a matching and modeling 
covariate, it may be difficult to find substitutes that are 
similar to the nonrespondents on both address and age.  
Therefore, one may choose not to match on age, and 
match only on address.  If both the probability of 
response and the value of the survey outcome are 
related to age, then the outcomes for nonrespondents 
and their substitutes will be systematically different due 
to differences in age.  In that case, age is treated as a 
modeling covariate and will be included in the multiple 
imputation model to adjust for the observed differences. 
 
2.1 Matching 
Matches for ungeocodable cases can be obtained by 
making random selections from a pool of all 
geocodable cases in the same zip code; when the 
desired number of matches could not be achieved 
within the same zip area, the selection process is 
expanded to the nearest zip areas until all matches have 
been found.  In our analysis, we used two substitutes 
per nonrespondents, but theoretically one could use any 
number of substitutes.  As suggested by Rubin and 
Zanutto (2001), substitutes are also chosen, in similar 
fashion, for some randomly selected geocodable cases.  
In this study, all matches were obtained from the same 
colorectal cancer database.  In general, substitutes need 
not be necessarily drawn from the same population 
where the nonrespondents and respondents originated.  
For example, one can select substitutes for colorectal 
cases from a general population of cancer patients, and 
then fit a model to correct for differences. 

2.2 Modeling and Multiply Imputing 
Suppose our model is 

ijiijij dy εβ +++= �x0 , 

where i  indexes small area (e.g., zip code), j  indexes 

unit within area, and ijx  and �  are covariate and 

coefficient vectors.  This model includes a regression 
prediction �x ij+0β , a small-area effect id , and a unit-

specific residual ijε .  We assume that id  follows some 

distribution dF  with 0)( =idE , and ijε  follows some 

distribution εF  with mean zero and variance 2σ  

(assuming for the moment that y  is univariate, an 

assumption which we will relax shortly). 

If we are given pairs of units 1iy  and 2iy  within 

the same small area, i.e., 

1101 iiii dy εβ +++= �x , 

2202 iiii dy εβ +++= �x , 

then we estimate �  from the within-area regression 

)()()( 212121 iiiiii yy εε −+−=− �xx , 

where the constant term and the small area effect drop 
out.  The residuals from this regression have a 
symmetrical distribution with variance 22σ .  Assume 
for the moment that we have a way of drawing from the 
posterior distribution of �  and 0β , and we carry out all 

the rest of this analysis conditional on that draw. 

Now suppose that we are interested in imputing 
for a third unit in the same small area.  Assuming a flat 
prior for id , the posterior distribution for 

�xx ,,,,, 02121 βiiiii yyd  has mean  
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and variance 23 2σ  which is the sum of 2σ , the 

predictive variance under the model conditional on all 
parameters, and 22σ , the posterior variance of id .  

One also could use predictors that only utilize part of 
the data (i.e. only 1iy  or only 2iy ).  Since the estimator 

presented above uses data from both 1iy  and 2iy , it is 

therefore more efficient than an estimator that uses only 
one of 1iy  and 2iy .  Note that use of a flat prior leads to 

overdispersed draws relative to what would be obtained 



with a proper prior from a hierarchical model, but is 
much simpler (especially in the multivariate-outcome 
case). 

There are several approaches to draw residuals.  
For single dimension, one could estimate the residual 
variance and make independent draws under univariate 
normality.  To generalize to multiple dimensions, the 
corresponding approach would estimate the residual 
covariance matrix and then draw under multivariate 
normality.  To save investigators from having to model 
a covariance matrix and to relax the normality 
assumption, we propose sampling the residuals jointly 
from the within-area regressions and multiply them by 

43  to adjust residuals with variance 22σ  so that 

they have variance 23 2σ  as desired.  This may be a 

little overdispersed if the residuals are long-tailed since 
2)( 213 iii εεε +−  may be closer to normality than 

21 ii εε − .  On the other hand, the former is asymmetrical 

and the latter is symmetrical.  Simulation results 
suggest that the above simple rescaling gives a 
reasonably good approximation for our data.  If we 
believe the model might be heteroskedastic (in the 
general sense that the residual distribution is related to 
x , not necessarily just a change of scale as in 
univariate normal models), we could draw residuals 
within classes of observations believed to be “similar” 
with respect to residual variation. 

To create multiple imputations for missing values 
of a unit in the same small area, we first fit a within-
area regression for each dimension and save the 
residuals.  Then we repeat the following two steps 
several times:  

1. Draw 0β  and �  under the model.  For example, 

))(,)ˆ,ˆ((~),( 21
00 σββ −XX��

TTT N  if ijε  are iid 

),0( 2σN . 

2. For each missing case, calculate the predictive 
mean under the model and then add a randomly-

sampled residual times 43 . 

 
3. Application: Colorectal Cancer Study 
The main colorectal cancer database has a total of 
50,740 patient records.  Approximately 96% are 
geocodable and 4% are ungeocodable.  Among the 
ungeocodable, about 50% have P.O. box addresses 
(often in a rural area); the rest have mistyped addresses, 
or addresses that lie in a new housing development and 
therefore is not in the address databases. 

Researchers were interested in obtaining local-
area characteristics from the census as contextual 
predictors of treatment processes.  For geocodable cases 

where links to census block groups could be 
established, the following census measurements were 
available: 

=1Y  Median Household Income, 

=2Y  Percent with no High School Diploma, 

=3Y  Percent in Poverty; 

each of which had values for each of six race groups 
(Asian/Pacific Islanders, Blacks, Hispanics, Native 
American/Eskimo/Aleutian Islanders, Whites, and 
Others).  No contextual values could be obtained for 
ungeocodable cases because their address information 
were not sufficient to identify the corresponding census 
block groups.  We applied the methodology described 
in Section 2 to create multiple imputations for these 
unobserved values. 
 
3.1 Transformations 
To better fit the regression model, a scaled logit 
transformation (see “transforming variables” in help 
topics for the imputation software NORM: Schafer, 
1999) was applied to each of the two percentage 
variables 2y  and 3y .  The transformed values were 

obtained by 
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with 5.0−=a  and 5.100=b .  Upon completion of 
imputations, applying the inverse transformation and 
rounding to the nearest integer ensured that all imputed 
values were integers between 0 and 100 inclusively. 

For the race-specific median income variables, 
we observed from the main database that they were 
truncated (bottom- and top-coded) at $2,500 to 
$100,000.  Though in some blocks certain race groups 
were shown as having zero representation and hence 
were coded as having $0 median household income, it 
did not necessarily mean that there were actually no 
members observed for these groups.  Rather it is very 
likely that the observed counts were so small that they 
were rounded down to zero for confidentiality reasons; 
and as a result these groups were labeled as having $0 
median household income.  In fact, in the main 
database, many of the blocks showing zero 
representation in certain race groups had the bottom-
coded median income for other races at the same block.  
Because of this and the fact that less than 1% of our 
data have zero median incomes, for simplicity, these 
zeros were replaced with the bottom-coded value 
$2,500; then a log-transformation was applied to these 
observed median household income 1y , i.e. 1log y .  To 

avoid clumsy notation, hereafter 1y , 2y  and 3y  

represent their transformed versions. 



3.2 Matching, Modeling & Multiply Imputing 
Preliminary analyses reported about 91% (1,888 out of 
2,084) of the ungeocodable cases have zip code 
information.  For simplicity, we used zip code as a 
convenient definition for neighborhoods, our matching 
covariate.  In some situations, the numerical sequence 
of zip codes does not correspond to the implied 
neighborhood relationships.  For example, locally we 
have a 02138 post office that also uses the 02238 zip 
code for mailboxes; there is also a 02215 zip code that 
was carved out by splitting the 02115 area.  To capture 
more realistically the distances between neighborhoods, 
we used the latitude and longitude of the post office that 
goes with each zip code in our neighborhood definition.  
Fortunately, all the 1,888 cases have such latitude and 
longitude information.  To help fit the model, some 
geocodable cases (1,882 in total) were randomly 
selected from the main database. 

According to the procedure described in Section 
2.1, two matches (first match, second match) were 
selected for each of the 1,888 ungeocodable cases and 
each of the 1,882 geocodable cases.  Figure 1 displays 
the structure of the data after matching. 
 

Figure 1: Data Structure 

Administrative 
Information 

Census Contextual 
variables  Data 

AGE �  ACOS99 1y  2y  3y  

9 �  9 9 9 9 
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1,882 cases 
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Geo. 9 �  9 9 9 9 

9 �  9 9 9 9 

�  �  �  �  �  �  
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Geo. 9 �  9 9 9 9 
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UnGeo. 

1,888 cases 
9 �  9 ? ? ? 
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�  �  �  �  �  �  
First 

Matches for 
UnGeo. 9 �  9 9 9 9 

9 �  9 9 9 9 

�  �  �  �  �  �  
Second 

Matches for 
UnGeo. 9 �  9 9 9 9 

99 = Observed, ? = Missing 
 

Census contextual variables refer to the race-
specific census measurements 1Y , 2Y  and 3Y  defined 

earlier.  The values for these three variables are 
observed for geocodable cases, but are missing for the 
ungeocodable records.  Administrative information is a 
collection of patient characteristics in the main 
colorectal cancer database.  To avoid complexity, 
subsequence analysis will be carried out using only the 

seven modeling covariates presented in Table 1.  These 
covariates are believed to be somewhat correlated with 
the three dependent variables 1Y , 2Y  and 3Y . 

Each pair of matches corresponds to 1iy  and 2iy  

(defined in Section 2.2) with observed modeling 
covariates 1ix  and 2ix  respectively.  All matches are 

race-specific to allow for projection to the race of an 
ungeocoded person at the imputation stage.  Following 
the steps described in Section 2.2, separate regression 
models were fitted for each race.  For a particular race, 
we regressed )( 21 ii yy −  on )( 21 ii xx −  separately for 

each of the three dimensions: median household income 

1Y , percent with no high school diploma 2Y , and 

percent in poverty 3Y .  The residuals from these within-

area regressions were then saved.  Each imputed value 
was the sum of the predictive mean for the 13×  vector 

TYYY ),,( 321  and 43  of a randomly-sampled triple of 

residuals.  Five sets of imputations were created.  In 
short, each block group had six sets of the three 
variables, one for each race; we fitted models separately 
for each of these and then imputed whichever one was 
needed. 
 

Table 1: Seven modeling covariates extracted from the main 
colorectal cancer database 

Variable Type Range/Possible values 
Patient’s Age at 
diagnosis 

C 11 – 104 

Patient’s Gender N 1, 2 
Patient’s Marital 
Status at diagnosis 

N 1, 2, 3, 4, 5, 9 

Type of Cancer 
and Radiotherapy 
Treatment 

N 
C = Colon, 
RR = Rectum with Radiotherapy, 
R = Rectum without Radiotherapy 

Cancer Stage O 00, 10, 20, 25, 30, 40 
Chemotherapy 
Treatment 

N 0 = No, 1 = Yes 

ACOS category of 
approval, 1999 

N 1, 2, 3, 4, 5, 9 

C = Continuous, N = Nominal, O = Ordinal 

 
 
3.3 Multiple-Imputation Inference 
To illustrate and evaluate the multiple-imputation 
inference, we treated the data used in these analyses as 
if they were the entire dataset and performed inferences 
for means of each of the three contextual variables 1Y , 

2Y  and 3Y .  Based on the rules for combining complete-

data inferences, we present in Table 2 a summary of the 
multiple-imputation )5( =m  inferences, where 

Q  = the complete-data point estimate, 

Q  = the average of the complete-data point 

estimates over the five imputed datasets, 

U  = the within-imputation variance estimate, 



B  = the between-imputation variance estimate, 

λ̂  = an estimate of the fraction of missing 
information about Q . 

Detailed expressions for the above quantities can be 
found in Rubin (1987, Chap. 3) or Schafer (1997, p. 
109-110). 

We can see from Table 2 that the estimates of the 
fraction of missing information about the Q ’s are 

significantly less than the fraction of missing data, 
which is 17.0)882,13888,13(888,1 ≈×+× .  This 

implies that, compared to complete data estimates for 
each Y , we have achieved more efficient estimates for 
the Q ’s using the sets of imputed data generated from 

our methodology described in Section 2. 
 

Table 2: Multiple-Imputation Inference 

Q  Q  U  B  λ̂  

1Y  0.1375 0.1120 0.0186 0.0581 

2Y  0.1120 0.1300 0.0246 0.0742 

3Y  38,060 110,400 48,383 0.0938 

 All =< 17.0λ̂  Fraction of Missing Data 
 
 
4. Summary 
Motivated by Rubin and Zanutto (2001), we propose a 
similar strategy that uses matched substitutes to 
improve imputations.  The methodology is practical, 
flexible, and easy to be implemented under multiple 
dimensions.  It has been successfully implemented for 
the colorectal cancer database.  Five sets of imputed 
data were created from the procedures described in 
Section 2.  Based on these imputed data, we estimated 
the fraction of missing information about the mean for 
each of the three contextual predictors.  Each of which 
was substantially less than the fraction of missing data.  
This suggests that the imputed datasets generated by 
our model produce more efficient estimates than the 
corresponding complete-data version.  The imputed 
data have been used in our analyses of distribution of 
services for colorectal cancer patients. 

In future work, we might attempt to fit more 
sophisticated models using more covariates from the 
main colorectal cancer database, and quantify the gains 
relative to the main effects model fitted in Section 3.  
Methods and quantitative measures should be 
developed to assess the properties and to evaluate the 
“goodness” of the imputed values generated by the 
presented methodology.  In conclusion, we have 
demonstrated that imputation methodology can be 
useful for researchers working with geographically 
linked databases when some cases cannot be fully 

geocoded to the level at which the linkage is being 
made. 
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