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Abstract1. A common disclosure limitation method for
tabular data is cell suppression. The cell suppression
method for statistical tables with marginals involves
two steps : (1) determining which cells are sensitive
and must therefore be suppressed  (i.e., not published)
(2) determining which additional cells should be
suppressed so that a data intruder, despite knowing the
additive relationships of the tables, will not be able to
estimate the sensitive cells too precisely. It has been
known for more than twenty years that the second step
of the cell suppression method, usually called the
secondary or complementary cell suppression problem,
can be formulated as a linear programming (LP)
problem. However, until recently it did not appear to be
a practical alternative to programs based on network
flow or other algorithms. It now appears that due to
improvements in LP solvers and in computer speed,
suppression programs based on the LP formulation can
be used for sets of large 3D linked tables.  We review
the LP formulation and then present some timing
results.

1.  Introduction
A commonly used disclosure limitation

method for tabular data is cell suppression (ref: WIL).
The cell suppression method for statistical tables with
marginals involves two steps: (1) determining which
cells are sensitive and must therefore be suppressed
(i.e., not published) (2) determining which additional
cells should be suppressed so that a data intruder,
despite knowing the additive relationships of the tables,
will not be able to estimate the sensitive cells too
precisely. It has been known for more than twenty
years that the second step of the cell suppression
method, usually called the secondary or complementary

cell suppression problem, can be formulated as a linear
programming (LP)  problem (ref: ROB, SAN).  LP
models used for  cell suppression have desirable
properties not possessed by network flow models. 
Tables of all dimensions and structures can be viewed
as LP models. Thus, for all tables, the LP approach will
identify a suppression pattern that provides at least the
desired amount of protection for each primary cell (ref:
COX). Network flow methods are designed to work on
networks and a 2D table with a hierarchy in at most one
dimension may be modeled as a network. However,
when network flow methods are applied to non-
network LP problems (not surprisingly) they may not
work well. Since tables of dimension three and higher
cannot, in general, be modeled as networks, applying
network flow methods to them, will often lead to a poor
suppression pattern (either undersuppression or
oversuppression). It is worth noting here that network
models may be viewed as a special type of LP model
(see discussion below).

The main reason for continuing to use network
flow models in the computational module of
suppression programs has been the short  run times of
suppression programs based on these models. Until
recently, for most realistic sets of  large tables (linked
or not) from a given survey, the network flow models
were fast enough to allow disclosure analysis to
proceed in a reasonable time whereas the LP based
programs were not. (When applied to a pure network
problem, the CPLEX network optimizer may run 100
times faster than the CPLEX simplex optimizer (ref:
CPX, p. 154). Results from  a simplified version of the
suppression program that used CPLEX as an LP solver
(written by Jim Fagan of the Census Bureau) indicated
a significant reduction in running times from earlier LP
based programs using a slower LP solver and run on
slower machines. We modified an earlier LP based
subroutine (written by Fagan and Laura Zayatz) that
used this slower LP solver. At the U.S. Census Bureau,
we are now finding that due to use of faster computers
and a faster, more flexible LP package, the LP based
programs are likely to be used for a much wider class
of suppression tasks. In addition to the above
improvements, which might be called "system
improvements", slight reductions in run times have
been achieved from restructuring the code so that some
part of the solution from one primary can be used for
the next primary being protected.
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 2.  The LP formulation of the cell suppression
problem.
Basic terminology for statistical tables.

Let us define some terms that are useful when
discussing statistical tables with totals included.
Assume that it makes sense to add the cell values.
Consider the set of cells  that exist before marginals are
constructed. We call these cells the interior cells. The
marginal row is the row of totals formed by summing
all the rows of interior cells. Similarly for the marginal
column and higher dimensional marginals. The
marginal cells, i.e., the cells that appear in any of the
marginals, are called, in contrast, the exterior cells. 

The LP formulation of the cell suppression
problem requires that we express the marginal
relationships in terms of linear equations. This is best
described with an example. Suppose we have a 2 row
by 3 column table of interior cells which becomes a  3
row by 4 column table when marginals are included.
Let x(i,j) denote the value of the flow in cell (i,j) for
some protection pattern being evaluated during the
optimization procedure. The flow values are subject to
the same constraints as the original cell values.
Therefore we have: 

x(1,1) + x(1,2) + x(1,3) = x(1,4) for the first
row; similarly for the 2nd and 3rd rows.
We also will have :

x(1,1) + x(2,1) = x(3,1) for the first column;
similarly for columns 2 through 4.
Note that the constraint for the (marginal) 3rd row and
the (marginal) 4th column, given the other constraints
are redundant. They both express (indirectly) that the
grand total cell, x(3,4), is the sum of all the interior
cells.  Fortunately, most modern LP packages can
quickly remove such redundancies from the full list of
linear constraints that are supplied to it.

Let us introduce the notion of a "shaft" and
relate it to the marginals of the 2D table above and
higher dimensional tables. Each linear equation that is
used to describe the marginals of a table is called a
shaft. In the above 2D table, we have (2 + 1) + (3+1)
= 7 shafts. Let us define a dimension 'i' shaft (denoted
dim-i) as a marginal relation one gets by fixing a value
for each dimension in the table other than i; this makes
a shaft a one-dimensional object.  For example,
consider a table that, with marginals, has size 4 x 5 x 3.
Then, if we fix the column as '3' and the level as '2', the
corresponding dim-1 shaft, denoted (sum, 3, 2),
expresses the relation:  (1,3,2) + (2,3,2) + (3,3,2) =
(4,3,2) . Thus there are 5 x 3 = 15 dim-1 shafts, 4 x 3 =
12 dim-2 shafts, and 4 x 5 = 20 dim-3 shafts. This
yields 47 total shafts for this table; this includes some
redundancies.

The set of all these shafts constitutes the set of linear
equation constraints for the LP problem we are
formulating. There is another set of constraints that are
expressed as inequalities; viz., the variables in cell
suppression problems typically are required to be non-
negative; we'll call this the positivity assumption (for
variables).  In addition, there are upper bounds for each
cell variable.

3.  Informational description of suppression
problem

It is useful to interpret the constraints using an
informal notion of information. The constraints contain
enough information to allow reconstruction of a limited
amount of suppressed information of either interior or
exterior cells. For example, if exactly one cell is
suppressed in any shaft then clearly the suppressed cell
value can be solved for (i.e., reconstructed or
determined) exactly. This does not require the
positivity assumption.  On the other hand, if two or
more cells in each shaft are suppressed, often the
suppressed cells (values) cannot  be determined
exactly.  However an estimate can, in general, be
constructed using the  positivity assumption. Clearly
the marginals associated with a given cell provide a set
of upper bounds for the cell value because of the
positivity assumption. The cell suppression problem
may be viewed as purposeful and controlled reduction
of tabular information with the goal of achieving a very
specific degree of fuzziness (i.e., ambiguity) about the
values of each of the suppressed cells.  
When we collect data for later publication as a table,
it is generally the case that the value of one cell places
no restriction on the value of another cell. However,
once we have all the data for the interior cells of the
table and begin to calculate the marginals (i.e., exterior)
cells based on the interior cells, the cells values are
linked (a physicist might say "coupled"). Suppression
may be viewed as a weakening of that linkage (or
coupling).

4.  The Network Flow Model  viewed as a special
case of the LP model

A network flow model may be expressed as an
LP model with a special structure. A network flow
model, when expressed as an LP model, must have a
constraint matrix in which all the coefficients have the
value 0,1, or -1. Recall that  the rows of a constraint
matrix express the constraints, the columns represent
the variables. In addition each variable must appear in
at most two rows (i.e., constraints) with at most one
coefficient of +1 and one coefficient of -1. It is easy to
see that the constraint matrix for a simple 2D table can



be written in this form. This is because in a simple 2D
table the two variables for a given cell (viz. the positive
flow variable and the negative flow variable appear
only once in a row shaft (constraint) and only once in
a column shaft. These two constraints can easily be
written so that each of these variables appears  with a
+1 coefficient in one of these constraints and with a -1
in the other. 

Using the language of combinatorial
optimization theory, we can say that an LP model has
the form of a network flow model if the constraint
matrix is "totally unimodular." (ref: NEM, p. 540-542).
In general,  LP models for tables of dimension 3 or
higher cannot be put into this form; however, CPLEX
is able to search for and extract submatrices of the
constraint matrix that have the network form. Since
network flow models can be solved faster than the
typical LP problem, this extraction of network
submatrices may lead to shorter running times.

5.  Integer Programming Formulation of the
Secondary Cell Suppression Problem

Two of the cost functions for the secondary cell
suppression problem are : (1) the total number of cells
to be suppressed  or (2) the total value of the cells to be
suppressed . In order to express these functions exactly,
one needs to associate a  binary variable to each cell ;
it will take on the value  '1' if  the cell is selected for
suppression or the value '0' otherwise. Such binary
variables are  available in integer programming models
but not in linear programming models.  Linear
programming models use the same continuous variables
in the cost function that are used in the constraints.
These continuous variables, which one may call "flow
variables", represent the change in value of cell
required to provide the desired protection to the
primary. In contrast, integer programs use these
continuous variables in the constraints, but use binary
variables in the cost function. In integer programs,
these two sets of variables are related by inequalities of
the form x # U · z where x is continuous and z is binary
and 'U' is the upper bound of the variable x (ref: FIS).

Specifically, in a linear programming model in which
x(i) represents the flow associated with cell 'i', the cost
function Cost is expressed as:

  Cost  =    c i x i
cells i

( ) ( )⋅∑
where for case (1), total number, c(i)=1 for each cell i
and for case (2), total value, c(i)=value(i). The value of
the flow variables x(i) is determined by the optimizer
which determines the minimum value of Cost. 

6.  The need for auditing programs

Some suppression programs implement a method that
is known, from theory, to achieve the desired amount
of protection for each primary. This is the case for
those based on the integer programming method. It
appears to hold also for those based on the LP
formulation (ref: ROE2).
(The concern here is that the suppressed values are
often known to be integral but that fact is not built into
the LP based programs.) For any method for which it
does hold, it is not necessary to evaluate the results of
the suppression program with an 'auditing' program to
see if the desired protection has been achieved for each
primary. We say such programs are 'self-auditing.'
However, when using programs based on  network
flow for tables of dimension greater than two, we have
no such theoretical guarantees. That is, these programs
are not 'self-auditing' and we must run an audit program
based on a theoretically correct method that is designed
to handle tables with dimension those of the input
tables. Currently we use 3D or 4D audit programs
based on the LP method to evaluate the results of
network based programs when they are used to
suppress 3D and 4D tables.

7. Warm Starts.

Our suppression programs protect the set of primaries
sequentially; i.e., they find a suppression pattern that
protects a given primary suppression, update the table
database by flagging the newly selected
complementaries, and then update the various
quantities that will be used in determining a
suppression pattern for the next primary.  Some of the
LP quantities change from primary to primary but there
are also some that are static. The idea of a warm start
for the suppression problem is based on reusing the
static quantities (e.g., equality constraints) from
primary to primary along with the basis generated by
solving the optimization problem for the previous
primary (ref: ROE).  In the table below, we describe the
'dynamic status' of each of the key quantities used in
the LP formulation of the cell suppression program. By
'dynamic' we mean that the quantity changes from
primary to primary within a given table; by 'static' we
mean it does not change. The term 'capacity' (used
below)  measures how much protection a given cell can
provide to a given primary.



---------------------------------------------------------------------
Dynamic Status of Key Quantities used in LP
Formulation of the Suppression Program
---------------------------------------------------------------------
LP quantities : dynamic (D) or static (S)
1.   cost coefficients

(D)  since they depend on the flag status of
each cell, which may change 

2.   bounds
(D)  since they depend on capacities which
depend on the primary

3.   equality constraints
(S)     since they express the additive structure
of the given table 

In the simplest cases of the secondary cell suppression
problem, the capacities of all the cells are independent
of the primary being protected.  For example,
sometimes the capacity of each cell is equal to  its
value. In these cases, the bounds are a static quantity
and only the cost coefficients are dynamic. 

There is an interesting and often positive
consequence of using the warm start mode. The warm
start uses as a starting basis the final basis from the
previous primary. In general, the starting basis does not
affect the final solution, i.e. selection of a suppression
pattern. However, when there are multiple suppression
patterns with the same value of the cost function, the
pattern that is returned does depend on the initial basis.
The selection of a suppression pattern is likely to affect
the pattern and costs for succeeding primaries.

8.  Choice of  LP optimizer
There are really two decisions to make.
(1) Choice of  which LP package to use. The best
commercial packages often require a license with a
substantial fee.
(2) Choice of which LP optimizer to select from the set
of those available in the chosen LP package.
 There are many LP packages available (ref: SOF). The
Census Bureau disclosure limitation research group has
a license for CPLEX. For this package, we found that
there are great improvements in speed when one uses
the optimizer based on the dual simplex method  as
opposed to that based on the primal simplex method.
The CPLEX manual (ref: CPX) indicates that many LP
problems are solved faster by the dual simplex
optimizer than by the primal simplex optimizer. "For
example, a primal-degenerate problem with little
variability in the right-hand side coefficients but
significant variability in the cost coefficients will
usually lend itself to the dual simplex optimizer." (ref:
CPX, p.70). 

9.  Test Results

Data: from 1997 Census of Wholesale Trade; Set of
Linked Tables
Row structure and meaning:
The rows represent NAICS codes; 42 is the code for
wholesale trade establishments.
The full NAICS has several levels of hierarchy
representing  production functions for the
establishments. These are increasingly specific as one
"descends"  the hierarchy. For our testing we used only
the highest level part of that hierarchy. 42 = 421 + 422;
where 421 and 422 are each further partitioned into
nine production types. Viewing 42 as level 1, we have:
Number of Rows: 21   
Level 1 = 2 Level 2's  ;  each Level 2 = 9 Level 3's

Column structure and meaning:
Each table is defined by a column relation that
expresses a partition of some geographical unit into
smaller units (e.g., a state into counties, a Metropolitan
Statistical Area (MSA) into counties)
We used the first five of the 90 relations for the state of
California.
Number of Columns: 30
Structure of Linked Column Relations:  
Relation 1:  Level 1 (#1) = 26 Level 3's
Relation 2:  Level 2 (#1) = 4 Level 3's (from the 26 in
relation 1)
Relation 3:  Level 2 (#2) = 2 Level 3's  (" ")
Relation 4:  Level 2 (#3) = 6 Level 3's  (" ")
Relation 5:  Level 1 (#1) =The three Level 2's in
Relations 2,3,4 (=12 Level 3's) + 14 Level 3's 
Note: Relation 5 is implied by the first four relations.

Variable for the 3rd table dimension: structure and
meaning:
There 3 operational categories for wholesale trade plus
a sum level.
Total number of cells
There are 21 x 30 x 4 = 2520 cells of which 18 x 26 x
3 = 1404 are interior cells.  
There are 411 primary suppressions with a total value
of 47M (M=Million dollars).

TABLE:  RUN TIMES AND SUPPRESSION
PATTERNS FOR VARIOUS MODELS
Run Time      Suppression Pattern (#C's, total value)

Low Protection Level

LP  (warm)         12 min      706 C   val=259 M
LP  (cold)           18 min      717 C val=306 M
network               28 sec      837 C val=291 M



Moderate Protection Level
        LP  (warm)          13 min    735 C       val=276M
        LP  (cold)            20 min     758 C      val=325 M
        network               32 sec      841 C      val=312 M
Full Protection Level
         LP  (warm)        18 min      815 C      val=372 M
         LP (cold)           25 min      848 C      val=418 M 
         network             33 sec       871 C      val=324 M

To explain these protection levels, we first have to
define 'backtracking' (ref: Wil,p.204). A
complementary suppression that provides protection to
a primary will need protection for itself (so that it
cannot be determined too precisely). If this
complementary appeared in a table that was previously
suppressed, the program has to ensure that the
complementary has the needed amount of protection in
the previous table. This may require that the program
revisit the previous table and protect the
complementary there as if it were a primary.
Backtracking can account for a significant fraction of
the total run time; to reduce this time one can decrease
the amount of protection sought for these
complementaries during the backtracking stage. That
decrease is relative to the full protection level; in the
table above we describe it as low or moderate
protection levels.

On the DEC-ALPHA the LP programs ran slightly
faster (about 25%). The speed superiority of the
network approach may be due partly to non-modeling
aspects of the programs (e.g. I/O) as well as the
modeling differences (network vs. LP).  However, after
some detailed timing analysis, it  appears that about  80
to 90 % of the total run time required for protecting a
primary is consumed by the routine that implements the
LP model and calls the LP solver.

Description of computers used in testing programs.
When comparing program running times, ideally the
programs should be run on the same computer and that
computer should be the one that will be used for
production runs.
However, due to practical constraints and convenience
we have not achieved this goal so far.
The production computers that are used for cell
suppression runs are as follows:
(1) Network flow based programs are run on a DEC
machine with the VMS operating system.
(2) LP based programs are run on a DEC Alpha
machine with the UNIX operating system.
However most of our test runs were run on a SUN
machine with SUN-OS/UNIX. 

10.   Conclusions
1.  LP based programs vs. network flow based
programs

It appears that the fastest LP based programs
are sufficiently fast for some production work. They
are currently slower than the network based programs
by a factor greater than 20 (see table); however this is
partly due to some I/O features that have not yet been
implemented in the LP based programs.  Since both
theory and experience indicate that the LP based
program produce a superior suppression pattern, it
appears that LP based programs should be used unless
the projected  reduction in time by running the network
based programs is crucial for meeting production
deadlines. Note that in the test case, the LP based
programs produced patterns with 6% to 16% fewer
complementaries (depending on the case).
2.  Choice of  LP package

It appears that CPLEX is a very fast LP solver,
has a choice of three optimizers,  and allows  great
flexibility in modifying specific aspects of an LP
program and in extracting the desired information from
the solution. It is well documented and we have not
noticed any bugs.
3.  Choice of LP solver and running mode

It appears that there is significant reduction
(factor of 3) in running times when choosing the solver
based on the dual simplex method versus that based on
the primal simplex method.This is due to the specific
structure of the suppression problem. It appears there
is a 1/3 reduction in running times when running the
dual simplex solver in the warm start mode versus the
cold start mode. The warm start mode generated fewer
complementary suppressions in the test cases (see
explanation in the last lines of section 7).

11.   Goals for future work
It is possible that the warm start option could be
improved by examining the basis that CPLEX forms in
the course of solving the LP problem for a given
primary.  Perhaps a better understanding of  how
capacities depend on the primary being protected would
allow one to change the bounds for a fewer number of
cells as one traverses the list of primaries.  Some effort
may be given to extending the current set of
suppression programs so that they can handle several
linked tables (i.e., column relations) at once; this would
allow such sets of linked tables to undergo suppression
without the need for backtracking. The LP based
programs are well suited for this since any set of
(additive) columns relations can be expressed in an LP
model. The LP solver can easily eliminate redundancies
that often exist in the column relations.
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